首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Of the L and D configurations of four amino acids (phenylalanine, valine, tryptophan, tyrosine) tested for influence on the growth rate of Tetrahymena, only L-tyrosine was able to induce imprinting in Tetrahymena pyriformis Zeuthen. D-valine stimulated the division of T.pyriformis NT-1, but failed to induce imprinting. The experiments have substantiated the selectivity of the amino acid receptors of Y.pyriformis, and the extraordinary imprinting potential of tyrosine as well, as judged by its influence on the growth rate.  相似文献   

2.
Hormonal imprinting induced in Tetrahymena and in Chang liver cells with di-, tri-, tetra- and pentapeptides (synthetic opioids and their fragments) has shown that both cell types are able to differentiate the related molecules from one another. The dipeptide phenylalanine + proline induced a measurable imprinting in the liver cells, and chain length increase, especially terminal coupling with tyrosine enhanced the imprinting potential enormously. Intra-chain changes in the amino acid sequence had a measurable effect on the intensity of imprinting. The molecules showing the relatively strongest physiological action accounted for the most intensive imprinting in both cell types; this indicates that, in all probability, induction of binding site formation plays a key role in the development of signal molecules, and thereby in hormone evolution.  相似文献   

3.
P Kovács  G Csaba  O T?r?k 《Cytobios》1989,60(241):97-101
Insulin dimers deprived of biological activity by linking with suberic acid symmetrically in position B29 or B1 were not able to induce imprinting. Lack of N-terminal phenylalanine or even of five C-terminal amino acids did not interfere with imprinting, regardless of whether or not it was associated with an activity loss. It appears that while hormonal imprinting is closely associated with the hormone's ability to bind to the receptor, it may be related as well as unrelated to the hormone's biological activity. The imprinted Tetrahymena and Chang cells bound the insulin and its derivatives in a similar manner.  相似文献   

4.
5.
Insulin imprinting given to the unicellular Tetrahymena considerably increases the uptake and intracellular storage of amino acids even many generations after the actual contact with the hormone. On the other hand, both the first and the second contacts with insulin increase the rate of the excretion of the stored amino acids. On the basis of the results obtained it seems to be possible that both protein synthesis and exocytosis of the Tetrahymena change as an effect of imprinting, either in general or specifically due to the formation of new hormone receptors.  相似文献   

6.
Primary exposure of Tetrahymena cells to insulin gave rise to hormonal (insulin) imprinting in the offspring generations, as judged from the increase in binding upon reexposure to insulin. Vanadate mimicked the action of insulin, inasmuch as it also induced imprinting for insulin, whereas the other tyrosine kinase activator tested, namely H2O2, had no such effect. However, combined treatment with vanadate+H2O2 + insulin induced a more pronounced imprinting for insulin than either insulin or vanadate on their own. The tyrosine kinase inhibitor genistein, a plant flavonoid, did not change the value for insulin binding significantly relative to the control immediately after exposure, but increased it slightly in the offspring generations after 24 h at high dilution. Upon combination with insulin, 10(-4)M genistein inhibited imprinting by insulin. These experimental observations suggest that there may be a key role for tyrosine kinase activity in the mechanism (development) of imprinting.  相似文献   

7.
The incorporation of [3H]phenylalanine, [3H]tyrosine, and [3H]tryptophan into protein and amino acyl-tRNA was studied in cell-free preparations from rat brain. Tyrosine and tryptophan inhibited the incorporation of phenylalanine into protein, and tyrosine inhibited the incorporation of phenylalanine and tryptophan into amino acyl-tRNAs. In most cases, homogentisate, phenylpyruvate, and phenyllactate inhibited the incorporation of phenylalanine, tyrosine, and tryptophan into protein and amino acyl-tRNAs, and the incorporation of phenylalanine into polyphenylalanine. All other protein amino acids, and phenylacetate, salicylate, and benzoate were wholly ineffectual. The results suggest that the formation of amino acyl-tRNAs may have been the step which was affected most by the inhibitors. The incorporation data at different concentrations of the aromatic amino acids were fitted to the simple Michaelis equation. Homogentisate and phenylpyruvate generally tended to reduce both Km and V in the incorporation of aromatic amino acids into protein and amino acyl-tRNAs, even if V decreased more than Km.  相似文献   

8.
Transport of Aromatic Amino Acids by Pseudomonas aeruginosa   总被引:9,自引:5,他引:4       下载免费PDF全文
Kinetic studies of the transport of aromatic amino acids by Pseudomonas aeruginosa revealed the existence of two high-affinity transport systems which recognized the three aromatic amino acids. From competition data and studies on the exchange of preformed aromatic amino acid pools, the first transport system was found to be functional with phenylalanine, tyrosine, and tryptophan (in order of decreasing activity), whereas the second system was active with tryptophan, phenylalanine, and tyrosine. The two systems also transported a number of aromatic amino acid analogues but not other amino acids. Mutants defective in each of the two and in both transport systems were isolated and described. When the amino acids were added at low external concentrations to cells growing logarithmically in glucose minimal medium, the tryptophan pool very quickly became saturated. Under identical conditions, phenylalanine and tyrosine each accumulated in the intracellular pool of P. aeruginosa at a concentration which was 10 times greater than that of tryptophan.  相似文献   

9.
Brain tryptophan increases significantly within two hr of the time that rats begin to consume a diet containing carbohydrate and fat, but fails to rise if the diet also contains 18–24% protein. The effects of particular diets on brain tryptophan are not well correlated with plasma tryptophan concentrations alone, but do correlate well with the ratio of plasma tryptophan to individual neutral amino acids (leucine, isoleucine, valine, tyrosine, phenylalanine) or to their sums. (These amino acids compete with tryptophan for uptake into the brain.) Carbohydrate ingestion raises brain tryptophan by elevating plasma tryptophan and depressing the plasma levels of the competing neutral amino acids; protein consumption prevents an increase in brain tryptophan by raising the plasma concentrations of the competing amino acids more than of tryptophan.  相似文献   

10.
Phenylalanine hydroxylation is necessary for the conversion of phenylalanine to tyrosine and disposal of excess phenylalanine. Studies of in vivo regulation of phenylalanine hydroxylation suffer from the lack of a method to determine intrahepatocyte enrichment of phenylalanine and tyrosine. apoB-100, a hepatic export protein, is synthesized from intrahepatocyte amino acids. We designed an in vivo multi-isotope study, [(15)N]phenylalanine and [2H2]tyrosine to determine rates of phenylalanine hydroxylation from plasma enrichments in free amino acids and apoB-100. For independent verification of apoB-100 as a reflection of enrichment in the intrahepatocyte pool, [1-(13)C]lysine was used as an indicator amino acid (IAA) to measure in vivo changes in protein synthesis in response to tyrosine supplementation. Adult men (n = 6) were fed an amino acid-based diet with low phenylalanine (9 mg.kg(-1).day(-1), 4.54 mumol.kg(-1).,h(-1)) and seven graded intakes of tyrosine from 2.5 (deficient) to 12.5 (excess) mg.kg(-1).day(-1). Gas chromatography-quadrupole mass spectrometry did not detect any tracer in apoB-100 tyrosine. A new and more sensitive method to measure label enrichment in proteins using isotope ratio mass spectrometry demonstrated that phenylalanine hydroxylation measured in apoB-100 decreased linearly in response to increasing tyrosine intake and reached a break point at 6.8 mg.kg(-1).day(-1). IAA oxidation decreased with increased tyrosine intake and reached a break point at 6.0 mg.kg(-1).day(-1). We conclude: apoB-100 is an accurate and useful measure of changes in phenylalanine hydroxylation; the synthesis of tyrosine via phenylalanine hydroxylation is regulated to meet the needs for protein synthesis; and that plasma phenylalanine does not reflect changes in protein synthesis.  相似文献   

11.
Primary interaction of TSH with the unicellular Tetrahymena accounted for an increase in TSH binding capacity on reexposure, i.e. for a regular hormonal imprinting. TSH in itself did not give rise to a faulty imprinting (for insulin). Combination of TSH with dibutyryl cAMP reduced the intensity of imprinting, whereas theophylline or lithium ions not only reduced the efficacy of normal imprinting, but also gave rise to faulty imprinting (for insulin instead of TSH).  相似文献   

12.
After the oral administration of large doses of tyrosine, tryptophan, or phenylalanine to rats, increased plasma levels of these amino acids can be observed. These levels can be further elevated, approximately 2-fold, by administering along with the amino acids, inhibitors of aromatic-l-amino acid decarboxylase. The inhibitors, by themselves, do not alter control plasma levels of the aromatic amino acids. This effect of the inhibitors appears to be specific for amino acids which are substrates of the decarboxylase since they did not further elevate plasma levels of leucine or valine after oral loading of these amino acids. Elevation of plasma tyrosine could also be observed after inhibition of the decarboxylase when tyrosine was administered intraperitoneally or in rats pretreated with antimicrobial agents, indicating that inhibition of decarboxylation by intestinal bacteria was not responsible for the effects. It was shown that the decarboxylase inhibitors do not act by simultaneously inhibiting other major routes of metabolism, such as transamination in the case of tyrosine. These findings indicate that, when tissue levels of tyrosine, phenylalanine, or tryptophan are elevated, decarboxylation becomes a major route for their metabolism.  相似文献   

13.
Whole metabolizing Brevibacterium linens cells were used to study the transport of aromatic amino acids. Kinetic results followed the Michaelis-Menten equation with apparent Km values for phenylalanine, tyrosine, and tryptophan of 24, 3.5, and 1.8 microM. Transport of these amino acids was optimum at pH 7.5 and 25 degrees C for phenylalanine and pH 8.0 and 35 degrees C for tyrosine and tryptophan. Crossed inhibitions were all noncompetitive. The only marked stereospecificity was for the L form of phenylalanine. Transport was almost totally inhibited by carbonyl cyanide-m-chlorophenylhydrazone. Iodoacetate and N-ethylmaleimide were much more inhibitory for tryptophan transport than for transport of the other two aromatic amino acids.  相似文献   

14.
In the biosynthetic pathway of aromatic amino acids of Brevibacterium flavum, ratios of each biosynthetic flow at the chorismate branch point were calculated from the reaction velocities of anthranilate synthetase for tryptophan and chorismate mutase for phenylalanine and tyrosine at steady state concentrations of chorismate. When these aromatic amino acids were absent, the ratio was 61, showing an extremely preferential synthesis of tryptophan. The presence of tryptophan at 0.01 mM decreased the ratio to 0.07, showing a diversion of the preferential synthesis to phenylalanine and tyrosine. Complete recovery by glutamate of the ability to synthesize the Millon-positive substance in dialyzed cell extracts confirmed that tyrosine was synthesized via pretyrosine in this organism. Partially purified prephenate aminotransferase, the first enzyme in the tyrosine-specific branch, had a pH optimum of 8.0 and Km’s of 0.45 and 22 mM for prephenate and glutamate, respectively, and its activity was increased 15-fold by pyridoxal-5-phosphate. Neither its activity nor its synthesis was affected at all by the presence of the end product tyrosine or other aromatic amino acids. The ratio of each biosynthetic flow for tyrosine and phenylalanine at the prephenate branch point was calculated from the kinetic equations of prephenate aminotransferase and prephenate dehydratase, the first enzyme in the phenylalanine-specific branch. It showed that tyrosine was synthesized in preference to phenylalanine when phenylalanine and tyrosine were absent. Furthermore, this preferential synthesis was diverted to a balanced synthesis of phenylalanine and tyrosine through activation of prephenate dehydratase by the tyrosine thus synthesized. The feedback inhibition of prephenate dehydratase by phenylalanine was proposed to play a role in maintaining a balanced synthesis when supply of prephenate was decreased by feedback inhibition of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP*) synthetase, the common key enzyme. Overproduction of the end products in various regulatory mutants was also explained by these results.  相似文献   

15.
G Csaba  Z Darvas 《Bio Systems》1986,19(1):55-59
Histidine stimulates the phagocytosis of Tetrahymena to the same extent as histamine, and also stimulates its division, which histamine does not. Tyrosine and diiodotyrosine equally stimulate the growth of the Tetrahymena. Both amino acids inhibit the characteristic influence of the adequate amino acid hormone when added to Tetrahymena culture 72 h in advance of it. Primary interaction with diiodotyrosine and tyrosine notably increases the cellular growth rate. Histamine has a similar, although less notable effect than histidine. In the light of these experimental observations there is reason to postulate that the receptors of the amino acid hormones have developed from amino acid receptors.  相似文献   

16.
Summary Incorporation of 14C-phenylalanine by T. neapolitanus was inhibited competitively by relatively low concentrations of glycine, serine, alanine, valine, leucine, isoleucine, tryptophan, tyrosine, histidine, threonine, and methionine (Group I amino acids), but not greatly depressed by aspartate, glutamate, lysine, arginine, cysteine (Group II amino acids) and proline at similar concentrations. Group I acids competed with each other for incorporation but were little affected by Group II acids. Similarly Group I acids little depressed the incorporation of Group II acids, among which, however, some mutual inhibition occurred. Incorporation of proline was depressed by both Group I and II acids. Two main permeation mechanisms are proposed, one transporting Group I acids, the other Group II acids, but some overlapping of function probably occurs. Proline may be transported by a third permease, which is subject to inhibition by both Group I and II acids. T. concretivorus also has a common transport mechanism for some amino acids. Less interaction between amino acids was found using two heterotrophic pseudomonads.Exogenous phenylalanine inhibited both the biosynthesis and the uptake of tyrosine and tryptophan by T. neapolitanus. High phenylalanine concentrations depressed the assimilation of 14C-labelled tyrosine and tryptophan less than low ones, suggesting that the bacteria developed a requirement for external tyrosine and tryptophan when exposed to highly inhibitory concentrations of phenylalanine.  相似文献   

17.
A cell line of Eschscholtzia californica selected for meta-fluorotyrosine (MFT) tolerance was found to have 10-fold increased levels of phenylalanine and tyrosine compared to the parent line, while most other amino acids were only increased 2-fold. Tracer experiments with shikimic acid in the presence of MFT showed that the biosynthesis of the aromatic amino acids was not impaired in the tolerant line. Feeding experiments with phenylalanine, tyrosine, or shikimic acid also revealed a reduced turnover of the pools of the aromatic amino acids in the variant. Thus undisturbed de novo biosynthesis of the aromatic amino acids and dilution of toxic effects of MFT by the enlarged pool sizes seemed to be the main reason for the acquired tolerance. Despite the enlarged availability of the precursor tyrosine, formation of the benzophenanthridine alkaloids was enhanced neither in the growth nor in the production medium.  相似文献   

18.
Two new mutations are described which, together, eliminate essentially all the aminotransferase activity required for de novo biosynthesis of tyrosine, phenylalanine, and aspartic acid in a K-12 strain of Escherichia coli. One mutation, designated tyrB, lies at about 80 min on the E. coli map and inactivates the "tyrosine-repressible" tyrosine/phenylalanine aminotransferase. The second mutation, aspC, maps at about 20 min and inactivates a nonrespressible aspartate aminotransferase that also has activity on the aromatic amino acids. In ilvE- strains, which lack the branched-chain amino acid aminotransferase, the presence of either the tyrosine-repressible aminotransferase or the aspartate aminotransferase is sufficient for growth in the absence of exogenous tyrosine, phenylalanine, or aspartate; the tyrosine-repressible enzyme is also active in leucine biosynthesis. The ilvE gene product alone can reverse a phenylalanine requirement. Biochemical studies on extracts of strains carrying combinations of these aminotransferase mutations confirm the existence of two distinct enzymes with overlapping specificities for the alpha-keto acid analogues of tyrosine, phenylalanine, and aspartate. These enzymes can be distinguished by electrophoretic mobilities, by kinetic parameters using various substrates, and by a difference in tyrosine repressibility. In extracts of an ilvE- tyrB- aspC- triple mutant, no aminotransferase activity for the alpha-keto acids of tyrosine, phenylalanine, or aspartate could be detected.  相似文献   

19.
Immobilization for 2 h significantly decreased plasma concentrations of 13 of 16 amino acids assayed, including the transmitter amine precursors tyrosine and total tryptophan. The level of plasma free tryptophan, however, was increased. Despite the reduced plasma levels, corresponding brain concentrations of many large neutral amino acids (LNAAs) were increased (tryptophan, phenylalanine, valine, leucine, and isoleucine). Brain concentrations of tyrosine and the other amino acids measured were unaltered. The results for the LNAAs were not explained by calculated brain influx rates. Therefore, altered influx kinetics or perhaps altered brain protein metabolism or efflux may be responsible. Comparison of calculated brain influxes and brain concentrations of LNAAs suggests that the rise in level of plasma free tryptophan during immobilization is not responsible for the increase in level of brain tryptophan and that the mechanism responsible for the maintenance of or increase in brain concentrations of the other LNAAs is probably involved. Maintenance of brain concentrations of basic amino acids is explicable by reduced competition for brain uptake.  相似文献   

20.
Surface enhanced Raman scattering (SERS) of some enzymes (alkaline phosphatase, horseradish peroxidase and lactoperoxidase) and some amino acids (tryptophan, tyrosine and phenylalanine) on silver electrodes has been studied. The spectral band intensities of certain amino acids and amino acid residues were determined by their orientation on the surface and depended on the electrode potential (E).Abbreviations SERS surface enhanced Raman scattering - Trp tryptophan - Tyr tyrosine - Phe phenylalanine - E electrode potential - ORC oxidation-reduction cycle  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号