首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microdeletions spanning 2p14–p15 have recently been described in two patients with developmental and speech delay and intellectual disability but no congenital malformations or severe facial dysmorphism. We report a 4-year-old boy with a de novo 3.7 Mb long deletion encompassing the region deleted in the previous cases. The patient had clinical features partly consistent with the published cases including intellectual disability, absent speech, microcephaly, long face, bulbous nasal tip and thin upper lip, but his overall clinical picture was more severe compared to the published patients. The identification of this additional patient and a detailed analysis of deletions identified in various patient cohorts and in normal individuals support the existence of a new rare microdeletion syndrome in 2p14–p15. Its critical region is in the vicinity of but clearly separate from the minimal region deleted in the well established 2p15–p16.1 microdeletion syndrome. A thorough comparison of the deletions and phenotypes indicates that multiple genes located in this region may be involved in intellectual functioning, and that some patients may show composite and more complex phenotypes due to deletions spanning both critical regions.  相似文献   

2.
Chromosome 18 abnormalities rank among the most common autosomal anomalies with 18q being the most frequently affected. A deletion of 18q has been attributed to microcephaly, mental retardation, short stature, facial dysmorphism, myelination disorders, limb and genitourinary malformations and congenital aural atresia. On the other hand, duplications of 18q have been associated with the phenotype of Edwards syndrome. Critical chromosomal regions for both phenotypes are contentious. In this report, we describe the first case of an 11-year old male with a combined interstitial duplication 18q22.1, triplication 18q22.1q22.2 and terminal deletion 18q22.2q23 with phenotypic features of isolated 18q deletion syndrome and absence of phenotypic features characteristic of Edwards syndrome despite duplication of the suggested critical region. This report allows for reevaluation of proposed critical intervals for the phenotypes in deletion 18q syndrome and Edwards syndrome.  相似文献   

3.
Jacobsen syndrome is caused by segmental aneusomy for the distal end of the long arm of chromosome 11. Typical features include mild to moderate psychomotor retardation, trigonocephaly, facial dysmorphism, cardiac defects, and thrombocytopenia, though none of these features are invariably present. To define the critical regions responsible for these abnormalities, we studied 17 individuals with de novo terminal deletions of 11q. The patients were characterized in a loss-of-heterozygosity analysis using polymorphic dinucleotide repeats. The breakpoints in the complete two-generation families were localized with an average resolution of 3.9 cM. Eight patients with the largest deletions extending from 11q23.3 to 11qter have breakpoints, between D11S924 and D11S1341. This cytogenetic region accounts for the majority of 11q patients and may be related to the FRA11B fragile site in 11q23.3. One patient with a small terminal deletion distal to D11S1351 had facial dysmorphism, cardiac defects, and thrombocytopenia, suggesting that the genes responsible for these features may lie distal to D11S1351. Twelve of 15 patients with deletion breakpoints as far distal as D11S1345 had trigonocephaly, while patients with deletions distal to D11S912 did not, suggesting that, if hemizygosity for a single gene is responsible for this dysmorphic feature, the gene may lie distal to D11S1345 and proximal to D11S912.  相似文献   

4.
Patients with deletions in 22q13 are known to have phenotypic features that include normal or accelerated growth, large hands and feet, hypotonia, delayed psychomotor development and mild facial dysmorphism. To date, very few cases have been investigated by detailed molecular genetic analysis. We have analyzed three new patients with terminal deletions in 22q. We compared the cytogenetic observations with molecular data assessed by fluorescence in situ hybridization and an array of characterized bacterial artificial chromosome recombinants. The shortest region of deletion overlap is localized in 22q13.2–qter distal to the marker D22S94, but the telomeric repeat in the deleted chromosome appears to remain intact. When parental alleles were investigated in two of the three patients, the aberrant homolog was found to be of paternal origin in both cases. Although the deleted region still spans >20 cM, molecular analysis of additional patients and screening for new genes might help in elucidating candidate genes connected with the dysmorphisms defined by deletions of 22q13. Received: 14 August 1997 / Accepted: 27 January 1998  相似文献   

5.
The DiGeorge syndrome (DGS) is a developmental defect of the third and fourth pharyngeal pouches, which is associated with congenital heart defects, hypoparathyroidism, cell-mediated immunodeficiency, velo-pharyngeal insufficiency and craniofacial dysmorphism. The aetiological factor in a great majority of DGS cases is monosomy for the chromosomal region 22q11. To analyze DGS at the molecular level, a new molecular probe (DGCR680) encompassing the ADU balanced translocation breakpoint was prepared. When 13 Korean patients with DGS-type congenital heart disease were analyzed with this probe, 9 turned out to have a deletion at this locus, and all of them except one exhibited a typical facial dysmorphism associated DGS. Though only 9 independent patients were detected to have a deletion at the locus using the commercial probe N25 (D22S75), which maps at about 160 kb from the ADU breakpoint to the telomeric end, results from fluorescence in situ hybridization revealed a deletion in all cases tested at this locus. Two patients who had a deletion at the locus D22S75 but not at DGCR680 did not exhibit any DGS-type facial abnormalities. This result implies that the 680 bp probe covering the ADU translocation breakpoint might be a candidate for a molecular marker that can distinguish a specific phenotype, such as facial features associated with the DiGeorge syndrome. This study also suggested that systematic approaches with several small DNA probes along the DGCR could help to dissect the complex phenotypes associated with the DiGeorge syndrome, such as cardiac defects, abnormal faces, thymic hypoplasia, cleft palate, and hypocalcemia, etc.  相似文献   

6.
In this report, we describe a 6 month old girl with a "pure" deletion 9 (pter----p22:) of paternal origin and very discrete facial dysmorphism as the only minimal phenotypic expression of the chromosomal imbalance. We hypothesize that the phenotypic expression in pure 9p deletion may depend from its parental origin.  相似文献   

7.
DiGeorge syndrome in humans is charaterized by immunodeficiency, heart defects, mental retardation and facial dysmorphism; cytogenetic analysis has shown that deletions at 22q11 occur in approximately 25% of cases. To generate DNA markers from this region, we have microdissected and microcloned band q11 of human Chromosome (Chr) 22. Nineteen thousand clones were obtained from material dissected from 20 chromosome fragments. Seventeen of 61 clones analyzed (28%) were repetitive, 27 (44%) gave no signal, and 17 (28%) detected single copy sequences of which ten mapped to Chr 22. Two of these were found to be deleted in patients with DiGeorge syndrome and either monosomy for 22q11-pter or visible interstitial deletions of 22q11. These two markers are also hemizygous in patients with no visible chromosomal abnormality, demonstrating that submicroscopic deletions are common in DiGeorge syndrome patients.  相似文献   

8.
9.
We present evidence for the existence of a novel chromosome 2q32 locus involved in the pathogenesis of isolated cleft palate. We have studied two unrelated patients with strikingly similar clinical features, in whom there are apparently balanced, de novo cytogenetic rearrangements involving the same region of chromosome 2q. Both children have cleft palate, facial dysmorphism, and mild learning disability. Their karyotypes were originally reported as 46, XX, t(2;7)(q33;p21) and 46, XX, t(2;11)(q33;p14). However, our molecular cytogenetic analyses localize both translocation breakpoints to a small region between markers D2S311 and D2S116. This suggests that the true location of these breakpoints is 2q32 rather than 2q33. To obtain independent support for the existence of a cleft-palate locus in 2q32, we performed a detailed statistical analysis for all cases in the human cytogenetics database of nonmosaic, single, contiguous autosomal deletions associated with orofacial clefting. This revealed 2q32 to be one of only three chromosomal regions in which haploinsufficiency is significantly associated with isolated cleft palate. In combination, our data provide strong evidence for the location at 2q32 of a gene that is critical to the development of the secondary palate. The close proximity of these two translocation breakpoints should also allow rapid progress toward the positional cloning of this cleft-palate gene.  相似文献   

10.
Wolf-Hirschhorn syndrome (WHS), associated with a deletion of chromosome 4p, is characterized by mental and growth retardation and typical facial dysmorphism. A girl with clinical features of WHS was found to carry a subtle deletion of chromosome 4p. Initially suggested by high-resolution chromosome analysis, her deletion was confirmed by fluorescence in situ hybridization (FISH) with cosmid probes, E13 and Y2, of D4S113. To delineate this 4p deletion, we performed a series of FISH and pulsed-field gel electrophoresis analyses by using probes from 4p16.3. A deletion of approximately 2.5 Mb with the breakpoint at approximately 80 kb distal to D4S43 was defined in this patient and appears to be the smallest WHS deletion so far identified. To further refine the WHS critical region, we have studied three unrelated patients with presumptive 4p deletions, two resulting from unbalanced segregations of parental chromosomal translocations and one resulting from an apparently de novo unbalanced translocation. Larger deletions were identified in two patients with WHS. One patient who did not clinically present with WHS had a smaller deletion that thus eliminates the distal 100-300 kb from the telomere as being part of the WHS region. This study has localized the WHS region to approximately 2 Mb between D4S43 and D4S142.  相似文献   

11.
Summary The association of nephropathy, Wilms' tumour and genital abnormalities is known as Drash syndrome. Two of these features are also seen in the WAGR (Wilms' tumour, aniridia, genito-urinary abnormalities, mental retardation) complex, known to be associated with deletions of chromosome region 11p1S. We have carried out karyotypic and molecular studies in 10 Drash patients, 5 males and 5 females. All the males had a 46XY karyotype as did 3/5 of the phenotypic females, the other two having a 46XX karyotype. One of the 46XX females also had a deletion of region 11p13–p12, the only detectable autosomal chromosome abnormality in any of the patients studied. Lymphoblastoid cell lines were prepared from 6 of the Drash patients and were used in dosage studies using a variety of DNA probes from the 11p13 region. There was no evidence of microdeletions in any patient with a normal karyotype. Because of the 46XY karyotype in phenotypic females, selected X and Y chromosome loci were analysed and all found to be normal. Although Drash syndrome is likely to be of genetic origin, there are no readily detected deletions within the 11p13 region.  相似文献   

12.
The cri-du-chat syndrome is a contiguous gene syndrome that results from a deletion of the short arm of chromosome 5 (5p). Patients present with a cat-like cry at birth, which is usually considered diagnostic of this syndrome. Additional features of the syndrome include failure to thrive, microcephaly, hypertelorism, epicanthal folds, hypotonia, and severe mental retardation. We report on four families in which patients with 5p deletions have only the characteristic cat-like cry, with normal to mildly delayed development. The precise locations of the deletions in each family were determined by FISH using lambda phage and cosmid clones. All of the deletion breakpoints map distal to a chromosomal region that is implicated with the facial features and severe mental and developmental delay in the cri-du-chat syndrome. DNA clones mapping in the chromosomal region associated with the cat-like cry feature will be useful diagnostic tools. They will allow for the distinction between 5p deletions that will result in the severe delay observed in most cri-du-chat syndrome patients and those deletions that result in the isolated cat-like cry feature, which is associated with a better prognosis.  相似文献   

13.
In this report the authors describe an 8-year-old severely mentally retarded girl with facial features resembling the facial dysmorphism seen in patients with Alagille-Watson syndrome, severe growth retardation and a 46,XX/46,XX,del(20)(pter-->p12.2) mosaicism in fibroblasts.  相似文献   

14.
15.
Congenital heart defects are known to be associated with facial dysmorphism and other congenital anomalies. Oculo-facio-cardio-dental (OFCD) syndrome is one such rare multiple congenital anomaly syndrome inherited as an X-linked dominant condition characterized by congenital cataracts, multiple minor facial dysmorphic features, congenital heart defects and dental anomalies. It is unrecognized by many medical and dental professionals. Only 21 cases have been reported so far. This syndrome is often misrecognized as rubella embryopathy because of association of congenital cataract with cardiac anomalies. It is usually the orthodontists who diagnose the syndrome based on typical findings on dental panoramic radiographs. But we suspected our patient to be having OFCD syndrome based on typical facial dysmorphism, ocular and cardiac defects, and finally it was confirmed after noticing typical dental radiographic findings.  相似文献   

16.
Molecular analysis of the 18q- syndrome--and correlation with phenotype.   总被引:10,自引:7,他引:3  
Seven individuals with deletions of the distal long arm of chromosome 18 were evaluated at the clinical, cytogenetic, and molecular levels. The patients had varying degrees of typical clinical findings associated with the 18q- syndrome. Cytogenetic analysis revealed deletions from 18q21.3 or 18q22.2 to qter. Somatic cell hybrids derived from the patients were molecularly characterized using ordered groups of probes isolated from a chromosome 18-specific library. In general, the size of the deletion could be correlated with the severity of the phenotype. Based on the clinical pictures of these seven patients, a preliminary phenotypic map for the clinical features associated with deletions of the distal portion of the long arm has been generated. Furthermore, genes previously localized to 18q21 were mapped relative to the chromosome breakpoints present in these patients.  相似文献   

17.
We have used array comparative genomic hybridization to map DNA copy-number changes in 94 patients with cri du chat syndrome who had been carefully evaluated for the presence of the characteristic cry, speech delay, facial dysmorphology, and level of mental retardation (MR). Most subjects had simple deletions involving 5p (67 terminal and 12 interstitial). Genotype-phenotype correlations localized the region associated with the cry to 1.5 Mb in distal 5p15.31, between bacterial artificial chromosomes (BACs) containing markers D5S2054 and D5S676; speech delay to 3.2 Mb in 5p15.32-15.33, between BACs containing D5S417 and D5S635; and the region associated with facial dysmorphology to 2.4 Mb in 5p15.2-15.31, between BACs containing D5S208 and D5S2887. These results overlap and refine those reported in previous publications. MR depended approximately on the 5p deletion size and location, but there were many cases in which the retardation was disproportionately severe, given the 5p deletion. All 15 of these cases, approximately two-thirds of the severely retarded patients, were found to have copy-number aberrations in addition to the 5p deletion. Restriction of consideration to patients with only 5p deletions clarified the effect of such deletions and suggested the presence of three regions, MRI-III, with differing effect on retardation. Deletions including MRI, a 1.2-Mb region overlapping the previously defined cri du chat critical region but not including MRII and MRIII, produced a moderate level of retardation. Deletions restricted to MRII, located just proximal to MRI, produced a milder level of retardation, whereas deletions restricted to the still-more proximal MRIII produced no discernible phenotype. However, MR increased as deletions that included MRI extended progressively into MRII and MRIII, and MR became profound when all three regions were deleted.  相似文献   

18.
We report on a small de novo interstitial deletion of the short arm of chromosome 20, 46,XY,del(20)(p12.3p13), in a young boy with hypotonia, moderate development delay, mild facial dysmorphism and severe growth failure. This patient did not show major features of Alagille-Watson Syndrome (AWS) which are common in more proximal 20p deletions. Standard and high resolution chromosome banding analysis revealed an apparent terminal deletion. Nevertheless, using chromosomal fluorescent in situ hybridization (FISH) and molecular analysis with polymorphic markers, we demonstrated that the abnormal chromosome resulted from a de novo interstitial deletion of paternal origin spanning from D20S842 to D20S900 and covering approximately 6 Mb. These findings indicate that a karyotype can lead to insufficient characterization of an apparently terminal deletion, and that one or a few genes in 20p13-->p12.3 bands are important for normal growth.  相似文献   

19.
20.
Two interstitial deletions of different segments of 9q are reported. The first deletion (9/11q22) was seen in an 8-year-old boy with severe psychomotor retardation and descrete facial dysmorphism. The second deletion (9q32q34) was seen in a 5-month-old boy with a very peculiar cranio-facial dysmorphism including brachycephaly, frontal bossing, a deep nasal bridge, a short nose, and absence of triradii b, c and d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号