共查询到20条相似文献,搜索用时 15 毫秒
1.
Corinne M. Nielsen 《Developmental biology》2010,340(2):430-3699
Critical to the exchange and metabolic functions served by tissues like brain choroid plexi and lung is the coherent development of an epithelial sheet of large surface area in tight apposition to an extensive vascular bed. Here, we present functional experiments in the mouse demonstrating that Sonic hedgehog (Shh) produced by hindbrain choroid plexus epithelium induces the extensive vascular outgrowths and vascular surface area fundamental to choroid plexus functions, but does not induce the more specialized endothelial cell features of fenestrations and bore size. Our findings indicate that these Shh-dependent vascular elaborations occur even in the presence of Vegf and other established angiogenic factors, suggesting either that the levels of these factors are inadequate in the absence of Shh or that a different set of factors may be more essential to choroid plexus outgrowth. Transducing the Shh signal is a perivascular cell—the pericyte—rather than the more integral vascular endothelial cell itself. Moreover, our findings suggest that hindbrain choroid plexus endothelial cells, as compared to other vascular endothelial cells, are more dependent upon pericytes for instruction. Thus, in addition to Shh acting on the progenitor pool for choroid plexus epithelial cells, as previously shown, it also acts on choroid plexus pericytes, and together serves the important role of coordinating the development of two disparate yet functionally dependent structures—the choroid plexus vasculature and its ensheathing epithelium. 相似文献
2.
The developing anlage of the choroid plexus and supraependymal structures in the fourth ventricular roof plates of nine normal human embryos ranging from Carnegie stages 14 to 19 were investigated with scanning electron microscopy. In the human embryos at stage 18, the first semimacroscopic choroidal anlage developed in the form of bilateral evaginations that ran dorsomedially and caudally from the bilateral corners of the rhombencephalon. The anlage became evident with even smaller and parallel ridges in the embryo at stage 19. Embryos at earlier stages exhibited surface membrane modifications such as convexity, microvilli, cilia, and spherical protrusions at the middle one-third of the rhombencephalon, which corresponded to the future choroidal anlage region. Two morphologically different groups of supraependymal cells (SE cells) were elucidated throughout the stages examined. Type 1 SE cells has spindle or tear-drop-like bodies, frequently with one or more long cytoplasmic processes. Type 2 SE cells were globular, with numerous fine pseudopodial processes. Type 1 SE cells were distributed mainly at the future choroidal anlage regions or on the anlage itself and were less frequently located at the rostral end of the roof. We found no general pattern in the distribution of type 2 SE cells. Supraependymal fibers (SE fibers) were seen as fine processes that were distributed similarly to type 1 SE cells and extended transversely for a long distance. 相似文献
3.
During development, the lumen of the neural tube develops into a system of brain cavities or ventricles, which play important roles in normal CNS function. We have established that the formation of the hindbrain (4th) ventricle in zebrafish is dependent upon the pleiotropic functions of the genes implicated in human Dandy Walker Malformation, Zic1 and Zic4. Using morpholino knockdown we show that zebrafish Zic1 and Zic4 are required for normal morphogenesis of the 4th ventricle. In Zic1 and/or Zic4 morphants the ventricle does not open properly, but remains completely or partially fused from the level of rhombomere (r) 2 towards the posterior. In the absence of Zic function early hindbrain regionalization and neural crest development remain unaffected, but dorsal hindbrain progenitor cell proliferation is significantly reduced. Importantly, we find that Zic1 and Zic4 are required for development of the dorsal roof plate. In Zic morphants expression of roof plate markers, including lmx1b.1 and lmx1b.2, is disrupted. We further demonstrate that zebrafish Lmx1b function is required for both hindbrain roof plate development and 4th ventricle morphogenesis, confirming that roof plate formation is a critical component of ventricle development. Finally, we show that dorsal rhombomere boundary signaling centers depend on Zic1 and Zic4 function and on roof plate signals, and provide evidence that these boundary signals are also required for ventricle morphogenesis. In summary, we conclude that Zic1 and Zic4 control zebrafish 4th ventricle morphogenesis by regulating multiple mechanisms including cell proliferation and fate specification in the dorsal hindbrain. 相似文献
4.
Positive and negative regulations by FGF8 contribute to midbrain roof plate developmental plasticity
The roof plate (RP) of the midbrain shows an unusual plasticity, as it is duplicated or interrupted by experimental manipulations involving the mid/hindbrain organizer or FGF8. In previous experiments, we have found that FGF8 induces a local patterning center, the isthmic node, that is essential for the local development of a RP. Here, we show that the plasticity of the midbrain RP derives from two apparently antagonistic influences of FGF8. On the one hand, FGF8 widens beyond the neural folds the competence of the neuroepithelium to develop a RP by inducing the expression of LMX1B and WNT1. Ectopic overexpression of these two factors is sufficient to induce widely the expression of markers of the mature RP in the midbrain. On the other hand, FGF8 exerts a major destabilizing influence on RP maturation by controlling signaling by members of the TGFbeta superfamily belonging to the BMP, GDF and activin subgroups. We show in particular that FGF8 tightly modulates follistatin expression, thus progressively restraining the inhibitory influence of activin B on RP differentiation. These regulations, together with FGF8 triggered apoptosis, allow the formation of a RP progress zone at some distance from the FGF8 source. Posterior elongation of the RP is permitted when the source of FGF8 withdraws. Growth of the posterior midbrain neuroepithelium and convergent extension movements induced by FGF8 both contribute to increase the distance between the source of FGF8 and the maturing RP. Normally, the antagonistic regulatory interactions spread smoothly across the midbrain. Plasticity of midbrain RP differentiation probably results from an experimentally induced imbalance between regulatory pathways. 相似文献
5.
During vertebrate development, an organizing signaling center, the isthmic organizer, forms at the boundary between the midbrain and hindbrain. This organizer locally controls growth and patterning along the anteroposterior axis of the neural tube. On the basis of transplantation and ablation experiments in avian embryos, we show here that, in the caudal midbrain, a restricted dorsal domain of the isthmic organizer, that we call the isthmic node, is both necessary and sufficient for the formation and positioning of the roof plate, a signaling structure that marks the dorsal midline of the neural tube and that is involved in its dorsoventral patterning. This is unexpected because in other regions of the neural tube, the roof plate has been shown to form at the site of neural fold fusion, which is under the influence of epidermal ectoderm derived signals. In addition, the isthmic node contributes cells to both the midbrain and hindbrain roof plates, which are separated by a boundary that limits cell movements. We also provide evidence that mid/hindbrain roof plate formation involves homeogenetic mechanisms. Our observations indicate that the isthmic organizer orchestrates patterning along the anteroposterior and the dorsoventral axis. 相似文献
6.
Manzanares M Trainor PA Ariza-McNaughton L Nonchev S Krumlauf R 《Mechanisms of development》2000,94(1-2):147-156
dreher is a spontaneous mouse mutation in which adult animals display a complex phenotype associated with hearing loss, neurological, pigmentation and skeletal abnormalities. During early embryogenesis, the neural tube of dreher mutants is abnormally shaped in the region of the rhomboencephalon, due to problems in the formation of a proper roof plate over the otic hindbrain. We have studied the expression of Hox/lacZ transgenic mouse strains in the dreher background and shown that primary segmentation of the neural tube is not altered in these mutants, although correct morphogenesis is affected resulting in misshapen rhombomeres. Neural crest derivatives from rhombomere 6, such as the glossopharyngeal ganglion, are defective, and the dorsal neural tube marker Wnt1 is absent from this segment. Selected trunk neural crest populations are also altered, as there is a lack of pigmentation in the thoracic region of mutant mice. Skeletal defects include abnormal cranial bones of neural crest origin, and improper fusion of the dorsal aspects of cervical and thoracic vertebrae. Taken together, the gene affected in the dreher mutant is responsible for correct patterning of the dorsal-most cell types of the neural tube, that is, the neural crest and the roof plate, in the hindbrain region. Axial skeletal defects could reflect inductive influence of the dorsal neural tube on proper fusion of the neural arches. It is possible that a common precursor population for both neural crest and roof plate is the cellular target of the dreher mutation. 相似文献
7.
Emerging findings imply that distinct neurobehavioral systems process gains and losses. This study investigated whether individual differences in gain learning and loss learning might contribute to different life financial outcomes (i.e., assets versus debt). In a community sample of healthy adults (n = 75), rapid learners had smaller debt-to-asset ratios overall. More specific analyses, however, revealed that those who learned rapidly about gains had more assets, while those who learned rapidly about losses had less debt. These distinct associations remained strong even after controlling for potential cognitive (e.g., intelligence, memory, and risk preferences) and socioeconomic (e.g., age, sex, ethnicity, income, education) confounds. Self-reported measures of assets and debt were additionally validated with credit report data in a subset of subjects. These findings support the notion that different gain and loss learning systems may exert a cumulative influence on distinct life financial outcomes. 相似文献
8.
Summary The choroid plexus from the lateral ventricles of 18-day chick embryos was cultivated as an organ in medium 199 until the degeneration of the stroma. Selected plexuses forming an empty epithelial sac were then incubated with enzyme-treated human immunoglobulin (5S-antibody) and with native human immunoglobulin (7S-antibody). Uptake of the 7S-antibody was observed after 30 min, whereas the 5S-antibody was taken up by the choroid plexus within 1 min, as demonstrated by means of the peroxidase-anti-peroxidase (PAP) technique (Sternberger 1974). The antibodies were located in conspicuous, large vacuoles of the choroid epithelium. Further experiments were performed using only 5S-antibody. In addition to the demonstration of the protein structure of this immunoglobulin, it was also shown that its binding capacity for tetanus toxoid as an antigen remains intact in the intracellular location. It was not possible to observe lysosomal degradation. Moreover, 5S-antibody was detectable in cultures first incubated with 5S-antibody for 30 min and subsequently in antibody-free medium for a further period of 7 to 11 days.The biological significance of the uptake of material from the cerebrospinal fluid and the possibility of the existence of a receptor for 5S-antibody are discussed. 相似文献
9.
Bill BR Balciunas D McCarra JA Young ED Xiong T Spahn AM Garcia-Lecea M Korzh V Ekker SC Schimmenti LA 《PloS one》2008,3(9):e3114
Background
The choroid plexus (CP) is an epithelial and vascular structure in the ventricular system of the brain that is a critical part of the blood-brain barrier. The CP has two primary functions, 1) to produce and regulate components of the cerebral spinal fluid, and 2) to inhibit entry into the brain of exogenous substances. Despite its importance in neurobiology, little is known about how this structure forms.Methodology and Principal Findings
Here we show that the transposon-mediated enhancer trap zebrafish line EtMn16 expresses green fluorescent protein within a population of cells that migrate toward the midline and coalesce to form the definitive CP. We further demonstrate the development of the integral vascular network of the definitive CP. Utilizing pharmacologic pan-notch inhibition and specific morpholino-mediated knockdown, we demonstrate a requirement for Notch signaling in choroid plexus development. We identify three Notch signaling pathway members as mediating this effect, notch1b, deltaA, and deltaD.Conclusions and Significance
This work is the first to identify the zebrafish choroid plexus and to characterize its epithelial and vasculature integration. This study, in the context of other comparative anatomical studies, strongly indicates a conserved mechanism for development of the CP. Finally, we characterize a requirement for Notch signaling in the developing CP. This establishes the zebrafish CP as an important new system for the determination of key signaling pathways in the formation of this essential component of the vertebrate brain. 相似文献10.
11.
12.
Dr. William F. Agnew Renate B. Alvarez Ted G. H. Yuen Agnes K. Crews 《Cell and tissue research》1980,208(2):261-281
Summary Light (LM-ARG) and electron microscope (EM-ARG) autoradiographs were prepared from immature rat choroid plexus and ependyma at 5, 10, 30, and 60 min and 16 h following intraperitoneal administration of [3H]- labeled amino acid mixtures. Intracellular protein synthesis and transport were ascertained in lateral and fourth ventricle choroid plexus epithelium by quantitative EM-ARG at the several post-injection intervals. ARG were also prepared from choroid plexuses cultured for one day, pulse labeled for one hour and reincubated for various periods in nonradioactive media. Significant labeling of both attached and free apical protrusions (blebs) was observed in both choroid plexus and ependyma in vivo and in choroid plexus in vitro. This phenomenon was interpreted as a physiologically significant mechanism for protein transport (apocrine secretion) by epithelia into the cerebrospinal fluid (CSF).This study was supported in part by N.I.H. Research Grant NS 12906 相似文献
13.
In this communication we report observations on the tight junctions of the frog choroid plexus obtained by thin section and freeze-fracture electron microscopy. It is shown that the choroid plexus epithelial tight junctions comprise a relatively high number (mean 5-6, range 3-10) of continuous, anastomosing strands. This is remarkable in relation to: (1) recent observations that the frog choroidal epithelium has a very low transepithelial resistance, and (2) current concepts of the proportional relationship between transepithelial resistance and number of tight junction strands. It is concluded that there exists a marked lack of correlation between tight junction structure and function in the frog choroid plexus epithelium. 相似文献
14.
J Oliver S Herbuté M Mirshahi J P Faure P Brisson J P Collin 《Comptes rendus de l'Académie des sciences. Série III, Sciences de la vie》1987,305(12):485-491
Using monoclonal and polyclonal antibody immuno-fluorescence, various areas of the quail diencephalon were tested immunocytochemically for the presence of S-antigen, which is a regulatory protein of retinal photoreceptors. In adult quail and embryos (from day 13 until hatching), S-antigen immunoreactivity was demonstrated in the cytoplasm of epithelial cells in the choroid plexus of the third ventricle. Similar data have previously been obtained in quail retinal photoreceptors. No labeling could be seen in the other investigated diencephalic areas, including the hypothalamus. Although an extraocular photoregulation of the reproductive cycle has previously been reported in birds, further investigations are needed before it can be concluded that the choroid plexus of the third ventricle is involved in this or other types of regulation. 相似文献
15.
Dark and light epithelial cells in the choroid plexus of mammals 总被引:1,自引:0,他引:1
G J Dohrmann 《Journal of ultrastructure research》1970,32(3):268-273
16.
Dr. Esteban M. Rodriguez 《Cell and tissue research》1967,82(3):362-375
Summary Two types of granules can be distinguished in the toad choroid plexus under the light microscope: pigment granules, mainly localized in the cells that line the free ends of the choroidal villi, and Gomori-positive granules, present in most epithelial cells.The ultrastructural analysis of the choroid plexus reveals three types of granules: multivesicular bodies (MVB), multigranulous bodies (MGB) and dense bodies (DB), and intermediate stages between the last two bodies. The pigment granules seen under the light microscope probably correspond to the DB of the electron micrographs, and the Gomori-positive granules to the MGB. The probable role of these bodies is discussed and so is the significance of the glycogen present in the choroidal cells, their processes and endothelium.This study was partially supported by the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the Rockefeller Foundation (School grant RF — 58028).Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina. The author wishes to thank Prof. M. H. Burgos for his constant interest. His thanks are also due to Prof. H. Heller for providing certain facilities in his department and for his criticism. 相似文献
17.
Summary The reactions given for various oxidative and hydrolytic enzymes by the choroid plexus of the squirrel monkey and the rat brain have been studied in detail. The lining cells show strong activity for citric acid cycle and glycolytic pathways enzymes. The stroma shows strong activity for adenosine triphosphatase, alkaline phosphatase, adenosine monophosphatase and glucose-6-phosphatase. The peripheral part or luminal borders of the cytoplasm of the choroidal cells show strong activity for alkaline phosphatase, adenosine monophosphatase and adenosine triphosphatase, and a well developed thiamine pyrophosphatase positive Golgi complex, indicating their participation in the formation and transport of secretory material. The nucleoli of the lining cells give a positive reaction for glucose-6-phosphatase and adenosine triphosphatase. Acid phosphatase like the thiamine pyrophosphatase positive Golgi material is found all over the cytoplasm. The functional significance of these findings is briefly discussed.This work has been carried out with the aid of Grant No. FR-00165 from the Animal Resources Branch, National Institutes of Health and NASA Grant NGR-11-001-016.T. R. Shanthaveerappa in previous publications. 相似文献
18.
19.
Some populations of Pogonomyrmex harvester ants comprise pairs of highly differentiated lineages with queens mating at random with several males of their own and of the alternate lineage. These queens produce two types of diploid offspring, those fertilized by males of the queens' lineage which develop into new queens and those fertilized by males of the other lineage which mostly develop into functionally sterile workers. This unusual mode of genetic caste determination has been found in 26 populations and a total of four lineage pairs (F(1)-F(2), G(1)-G(2), H(1)-H(2) and J(1)-J(2)) have been described in these populations. Despite the fact that a few interlineage queens are produced, previous studies revealed that there is a complete lack of genetic introgression between lineages. Here we quantify the proportion of interlineage queens produced in each of the four lineage pairs and determine the fate of these queens. In the F(1)-F(2), G(1)-G(2) and H(1)-H(2) lineage pairs, interlineage queens were produced by a minority of colonies. These colonies exclusively produced interlineage queens and workers, suggesting that interlineage eggs can develop into queens in these three pairs of lineages in the absence of competition with pure-lineage brood. An analysis of three key stages of the colony life cycle revealed that colonies headed by interlineage queens failed to grow sufficiently to produce reproductive individuals. In laboratory comparisons, interlineage queens produced fewer viable eggs, with the effect that they raised fewer workers and lost more weight per worker produced than pure-lineage queens. In the J(1)-J(2) lineage pair, we did not find a single interlineage queen, raising the possibility that interlineage eggs have completely lost the ability to develop into queens in this lineage pair. Hence, two distinct mechanisms seem to account for the complete lack of between-lineage gene flow in the F(1)-F(2), G(1)-G(2), H(1)-H(2) and J(1)-J(2) lineage pairs. 相似文献