首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immunoglobulin-binding activity of subcomponent Clq of human complement is lost following treatment with diethylpyrocarbonate; the inactivation showed first-order kinetics with respect to time and modifier concentration. Soluble IgG oligomers protected Clq against diethylpyrocarbonate modification. Treatment of modified Clq with hydroxylamine resulted in an 85% recovery of its ability to bind to aggregated immunoglobulin. The inactivation process was associated with modification of 12.1 +/- 0.7 histidine residues per Clq molecule. These data are consistent with the presence of histidine residues in the immunoglobulin-binding sites of Clq; these residues may participate in ionic interactions with the carboxyl groups known to be in the Clq binding site of IgG.  相似文献   

2.
The cellular plasma membrane becomes permeable to macromolecules during the cell injury process. This results in exposure of the interior of the cell to plasma proteins and to high-affinity binding of the Fc part of IgG to intermediate filaments (Hansson, G K, Starkebaum, G A, Benditt, E P & Schwartz, S M, Proc natl acad sci USA 81 (1984) 3103). Such IgG binding could be an early step in a process that serves to eliminate the injured cell. We have now identified its effect on the complement system. Intermediate filaments were reconstituted in vitro from purified vimentin, and incubated with plasma proteins. Cross-linker experiments showed binding of the heavy chain of IgG to vimentin, indicating that the vimentin protein carries an Fc-binding site. In contrast, no direct binding of complement factor Clq to vimentin could be detected. Binding of both IgG and Clq could, however, be detected by immunofluorescence when cytoskeletons of cultured endothelial cells were incubated with fresh serum. Therefore, IgG binding to filaments in the presence of serum is accompanied by Clq binding to IgG. This was in turn followed by fixation of C4 and C3 to intermediate filaments in a process that was dependent on both Ca2+, Mg2+ and Clq, indicating that it was part of a complement activation via the classical pathway. Exposure of fresh serum to intermediate filaments also resulted in production of the anaphylatoxic complement cleavage fragment. C3a, with a dose-response relationship between the amount of filaments present and the amount of C3a generated. Chemotactic activity towards granulocytes and monocytes was also generated by exposure of serum to intermediate filaments, and this activity was dependent on the presence of complement factor C5 and on the classical complement activation cascade, implying that it was due to the C5a peptide. Exposure of the interior of the cell to plasma proteins thus results in binding of IgG to intermediate filaments and activation of the complement cascade via the classical pathway. This, in turn generates bioactive mediators which may recruit leukocytes to the injured cell (C5a) and have profound effects on vascular permeability (C3a, C5a). We propose that this is part of a scavenger mechanism for the elimination of damaged cells.  相似文献   

3.
Antibody-dependent eosinophil-mediated cytotoxicity plays a role in host protection against metazoan parasite invasion. We examined a possible role for Clq in eosinophil-mediated cytotoxicity by using a Schistosoma mansoni schistosomula killing system in vitro. The addition of monomeric purified human Clq enhanced IgG-dependent human eosinophil-mediated killing from 1.4-fold to 2.3-fold (mean percent killing 12% +/- 4 vs 21% +/- 4, p less than 0.005) when the immune IgG concentration was low. In contrast, there was no significant enhancement of neutrophil-mediated killing. When the IgG concentration was increased fourfold Clq did not cause enhancement of eosinophil-mediated killing (35% +/- 9 vs 37% +/- 5). Preincubation of eosinophils with type 1 collagen abrogated Clq enhancement of killing, raising the possibility of a receptor-mediated process, which depends upon cellular binding of Clq via the collagenous portion of the molecule. Eosinophils and neutrophils were examined for the presence of Clq receptors by using 125I labeled Clq. Clq binding to both cell types was saturable, reversible, and specific, indicating that binding is through specific receptors. Type 1 collagen inhibited binding of Clq to cells, suggesting that Clq binding is via the collagenous stalk of Clq. The number of receptors was approximately twice as high for eosinophils as compared with neutrophils (1.9 X 10(7) vs 1.1 X 10(7), p less than 0.025). Affinity constants for the two cell types were similar (1.5 X 10(7) vs 1.3 X 10(7). These findings suggest that Clq and receptors for Clq on eosinophils may be important for eosinophil-mediated schistosomula killing.  相似文献   

4.
The high affinity receptor for IgE (FcepsilonRI) plays an integral role in triggering IgE-mediated hypersensitivity reactions. The IgE-interactive site of human FcepsilonRI has previously been broadly mapped to several large regions in the second extracellular domain (D2) of the alpha-subunit (FcepsilonRIalpha). In this study, the IgE binding site of human FcepsilonRIalpha has been further localized to subregions of D2, and key residues putatively involved in the interaction with IgE have been identified. Chimeric receptors generated between FcepsilonRIalpha and the functionally distinct but structurally homologous low affinity receptor for IgG (FcgammaRIIa) have been used to localize two IgE binding regions of FcepsilonRIalpha to amino acid segments Tyr129-His134 and Lys154-Glu161. Both regions were capable of independently binding IgE upon placement into FcgammaRIIa. Molecular modeling of the three-dimensional structure of FcepsilonRIalpha-D2 has suggested that these binding regions correspond to the "exposed" C'-E and F-G loop regions at the membrane distal portion of the domain. A systematic site-directed mutagenesis strategy, whereby each residue in the Tyr129-His134 and Lys154-Glu161 regions of FcepsilonRIalpha was replaced with alanine, has identified key residues putatively involved in the interaction with IgE. Substitution of Tyr131, Glu132, Val155, and Asp159 decreased the binding of IgE, whereas substitution of Trp130, Trp156, Tyr160, and Glu161 increased binding. In addition, mutagenesis of residues Trp113, Val115, and Tyr116 in the B-C loop region, which lies adjacent to the C'-E and F-G loops, has suggested Trp113 also contributes to IgE binding, since the substitution of this residue with alanine dramatically reduces binding. This information should prove valuable in the design of strategies to intervene in the FcepsilonRIalpha-IgE interaction for the possible treatment of IgE-mediated allergic disease.  相似文献   

5.
The binding of [3H]tuftsin to normal and in vivo stimulated mouse peritoneal macrophage populations was studied at 22 degrees C. The [3H]tuftsin binding to thioglycollate-stimulated macrophages was shown to be rapid and saturable, with an equilibrium dissociation constant (K(D)) (calculated from a Scatchard plot) of 5.3 X 10(-8) M. The calculated number of binding sites per macrophage amounts to approximately 72,000. Binding competition studies with unlabelled tuftsin yielded a K(D) of 5.0 X 10(-8) M. [3H] [N-Acetyl-Thr1]tuftsin, an inactive analog of tuftsin, failed to bind specifically to thioglycollate-stimulated macrophages. [N-Acetyl-Thr1]tuftsin and the tripeptide [Des-Arg4]tuftsin failed to compete for tuftsin binding sites, while [D-Arg4]tuftsin, an analog with small tuftsin-like activity, exhibited a low degree of inhibition of [3H]tuftsin binding. Thus a rather high degree of specificity is involved in the binding of the tetrapeptide. Normal as well as six different macrophage populations induced by stimulation with thioglycollate, concanavalin-A, starch, mineral oil, glucan and Bacillus Calmette Guerrin (BCG), exhibited a similar degree of binding of [3H]tuftsin. Corynebacterium parvum (CP)-stimulated macrophages, on the other hand, showed a 6- to 10-fold-lower capacity for tuftsin binding. Under similar experimental conditions, mouse fibroblast and lymphocyte preparations revealed no detectable specific binding. Tuftsin augmented the phagocytic response of normal and stimulated macrophages assessed both for phagocytosis mediated via the Fc-receptor and via non-specific receptors. CP-stimulated macrophages did not exhibit an increased phagocytic response upon treatment with tuftsin.  相似文献   

6.
Chemical modification of ovomucoid third domain (DIII) has been conducted to characterize the binding site residues that determine antigenecity and allergenecity of DIII. Nitration of Tyr, ethoxyformylation of His and succinylation of Lys residues led to a decrease of alpha-helix content of DIII. Modification of His, Tyr, Glu, Asp and Lys residues on DIII resulted in a reduction of human IgG binding activity, but little effect on IgE binding activity. These results suggest that hydrophilic residues appear to be more critical for human IgG binding site, whereas hydrophobic residues may be more important for IgG binding site.  相似文献   

7.
N Marks  M J Berg  R C Makofske  W Danho 《Peptides》1990,11(4):679-682
Cystatin domains or homologous sequences were synthesized and tested as inhibitors of papain, and rat brain cathepsins B and L. These domains included: I, an enzyme substrate binding site containing a -GG- cleavage site (YGGFL); II, known cystatin consensus sequences (-QVVAG- or -QLVSG-); and III, the proposed ancillary site for binding of chicken cystatin to papain (-IPWLN-). A Domain II analog QVVAG(K-NH2) inhibited cathepsin L and papain with Ki 1-4 X 10(-4) M but was inactive towards cathepsin B. A peptide containing Domains I and II, YGGFL-QVVAG(K-NH2), inhibited papain and cathepsin B with Ki 10(-4)-10(-5) M, and cathepsin L with Ki 10(-6) M. The presence of Domain III in the analog YGGFL-QVVAG-IPWLN(K-NH2) resulted in a 10-fold increase in potency towards papain. These data demonstrated that putative cystatin domains are: 1) probably proximal in the intact cystatins; 2) can be linked directly to each other to yield smaller peptides active as inhibitors; 3) showed some specificity towards the three cysteine proteinases.  相似文献   

8.
A model for the complex between E. coli RNase HI and the DNA/RNA hybrid (previously refined by molecular dynamics simulations) was used to determine the impact of the internucleotide linkage modifications (either 3-O-CH2-P-O-5' or 3-O-P-CH2-O-5) on the ability of the modified-DNA/RNA hybrid to create a complex with the protein. Modified internucleotide linkages were incorporated systematically at different positions close to the 3-end of the DNA strand to interfere with the DNA binding site of RNase H. Altogether, six trajectories were produced (length 1.5ns). Mutual hydrogen bonds connecting both strands of the nucleic acids hybrid, DNA with RNase H, RNA with RNase H, and the scissile bond with the Mg++. 4H2O chelate complex (bound in the active site) were analyzed in detaiL Many residues were involved in binding of the DNA (Arg88, Asn84, Trp85, Trp104, Tyr73, Lys99, Asn100, Thr43, and Asn 16) and RNA (Gln76, Gln72, Tyr73, Lys122, Glu48, Asn44, and Cys13) strand to the substrate-binding site of the RNase H enzyme. The most remarkable disturbance of the hydrogen bonding net was observed for structures with modified internucleotide linkages positioned in a way to interact with the Trp104, Tyr73, Lys99, and Asn100 residues (situated in the middle of the DNA binding site, where a cluster of Trp residues forms a rigid core of the protein structure).  相似文献   

9.
B S Gibbs  S J Benkovic 《Biochemistry》1991,30(27):6795-6802
A pterin analogue, 5-[(3-azido-6-nitrobenzylidene)amino]-2,6-diamino-4-pyrimidinone (ANBADP), was synthesized as a probe of the pterin binding site of phenylalanine hydroxylase. The photoaffinity label has been found to be a competitive inhibitor of the enzyme with respect to 6,7-dimethyltetrahydropterin, having a Ki of 8.8 +/- 1.1 microM. The irreversible labeling of phenylalanine hydroxylase by the photoaffinity label upon irradiation is both concentration and time dependent. Phenylalanine hydroxylase is covalently labeled with a stoichiometry of 0.87 +/- 0.08 mol of label/enzyme subunit. 5-Deaza-6-methyltetrahydropterin protects against inactivation and both 5-deaza-6-methyltetrahydropterin and 6-methyltetrahydropterin protect against covalent labeling, indicating that labeling occurs at the pterin binding site. Three tryptic peptides were isolated from [3H]ANBADP-photolabeled enzyme and sequenced. All peptides indicated the sequence Thr-Leu-Lys-Ala-Leu-Tyr-Lys (residues 192-198). The residues labeled with [3H]ANBADP were Lys198 and Lys194, with the majority of the radioactivity being associated with Lys198. The reactive sulfhydryl of phenylalanine hydroxylase associated with activation of the enzyme was also identified by labeling with the chromophoric label 5-(iodoacetamido)fluorescein [Parniak, M. A., & Kaufman, S. (1981) J. Biol. Chem. 256, 6876]. Labeling of the enzyme resulted in 1 mol of fluorescein bound per phenylalanine hydroxylase subunit and a concomitant activation of phenylalanine hydroxylase to 82% of the activity found with phenylalanine-activated enzyme. Tryptic and chymotryptic peptides were isolated from fluorescein-labeled enzyme and sequenced. The modified residue was identified as Cys236.  相似文献   

10.
Hagemann H  Marcillat O  Buchet R  Vial C 《Biochemistry》2000,39(31):9251-9256
Two distinct methods were used to investigate the role of Trp residues during Mg-ADP binding to cytosolic creatine kinase (CK) from rabbit muscle: (1) Raman spectroscopy, which is very sensitive to the environment of aromatic side-chain residues, and (2) reaction-induced infrared difference spectroscopy (RIDS) and photolabile substrate (ADP[Et(PhNO(2))]), combined with site-directed mutagenesis on the four Trp residues of CK. Our Raman results indicated that the environment of Trp and of Tyr were not affected during Mg-ADP binding to CK. Analysis of RIDS of wild-type CK, inactive W227Y, and active W210,217,272Y mutants suggested that Trp227 was not involved in the stacking interactions. Results are consistent with Trp227 being essential to prevent water molecules from entering in the active site [as suggested by Gross, M., Furter-Graves, E. M., Wallimann, T., Eppenberger, H. M., and Furter, R. (1994) Protein Sci. 3, 1058-1068] and that another Trp could in addition help to steer the nucleotide in the binding site, although it is not essential for the activity of CK. Raman and infrared spectra indicated that Mg-ADP binding does not involve large secondary structure changes. Only 3-4 residues absorbing in the amide I region are directly implicated in the Mg-ADP binding (corresponding to secondary structure changes less than 1%), suggesting that movement of protein domains due to Mg-nucleotide binding do not promote large secondary structure changes.  相似文献   

11.
The human immunodeficiency virus type 1 transmembrane envelope glycoprotein gp41 has been previously shown to activate the C1 complex of human complement through direct interaction with its C1q subunit. The major interaction site has been located within the gp41 immunodominant region (residues 590-620), and a synthetic peptide overlapping residues 601-613 of gp41 (sequence GIWGCSGKLICTT) was shown to inhibit binding of gp41 to C1q in vitro (Thielens, N.M., Bally, I.M., Ebenbichler, C.F., Dierich, M.P. & Arlaud, G.J. (1993) J. Immunol. 151, 6583-6592). The ectodomain of gp41 (s-gp41) was secreted from the methylotrophic yeast Pichia pastoris and purified by immunoaffinity chromatography. Enzymatic deglycosylation of the recombinant s-gp41 was necessary to allow its in vitro interaction with C1q. A solid-phase competition assay was used to monitor the effect of mutant peptides derived from segment 601-613 of gp41 on the binding of deglycosylated s-gp41 to C1q. Whereas mutation of Ser606 had no effect, replacement of Ile602, Trp603, Lys608, Leu609 and Ile610 by Ala abolished the ability of the resulting peptides to inhibit binding of s-gp41 to C1q, suggesting that these residues participate in the interaction between gp41 and C1q. These findings are discussed in the light of a structural model of the immunodominant loop of gp41. It is proposed that the recognition of gp41 by C1q is driven by hydrophobic interactions, and that the sites of gp41 responsible for interaction with gp120 and C1q partly overlap.  相似文献   

12.
The determinants of binding of a peptide lacking C-termini-exposed lysine residues to a kringle domain were investigated using an up-regulated lysine binding kringle (K2Pg[C4G/E56D/K72Y]) of plasminogen and a peptide (a1-PAM) with a sequence derived from a surface-exposed M-like streptococcal protein. Significant kringle-induced chemical shifts in a His side-chain of a1-PAM were revealed by two-dimensional NMR. Further studies using isothermal titration calorimetry (ITC) provided support for the involvement of His12 in the peptide/ protein complex. In an effort to screen a1-PAM-derived truncation peptides, a combinatorial mixture, a1deltaa2-PAM[H12X] (where X=Pro, Arg, His, Trp, Lys, Ala, Phe, Asp and Gly), was analyzed using the surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI) platform. The major peptide that remained bound to the surface of the K2Pg[C4G/ E56D/K72Y]-containing chip was that containing His12, corresponding to the wild-type sequence. Minor peaks, representing binding, were obtained for Lys12-, Arg12- and Trp12-containing peptides. Individual peptides containing these amino acids were then examined using ITC and the binding constants obtained correlated with the relative strengths of binding estimated from the SELDI-based screen.  相似文献   

13.
Mutations in ribosomal proteins L4 and L22 confer resistance to erythromycin and other macrolide antibiotics in a variety of bacteria. L4 and L22 have elongated loops whose tips converge in the peptide exit tunnel near the macrolide-binding site, and resistance mutations typically affect residues within these loops. Here, we used bacteriophage λ Red-mediated recombination, or “recombineering,” to uncover new L4 and L22 alleles that confer macrolide resistance in Escherichia coli. We randomized residues at the tips of the L4 and L22 loops using recombineered oligonucleotide libraries and selected the mutagenized cells for erythromycin-resistant mutants. These experiments led to the identification of 341 resistance mutations encoding 278 unique L4 and L22 proteins—the overwhelming majority of which are novel. Many resistance mutations were complex, involving multiple missense mutations, in-frame deletions, and insertions. Transfer of L4 and L22 mutations into wild-type cells by phage P1-mediated transduction demonstrated that each allele was sufficient to confer macrolide resistance. Although L4 and L22 mutants are typically resistant to most macrolides, selections carried out on different antibiotics revealed macrolide-specific resistance mutations. L22 Lys90Trp is one such allele that confers resistance to erythromycin but not to tylosin and spiramycin. Purified L22 Lys90Trp ribosomes show reduced erythromycin binding but have the same affinity for tylosin as wild-type ribosomes. Moreover, dimethyl sulfate methylation protection assays demonstrated that L22 Lys90Trp ribosomes bind tylosin more readily than erythromycin in vivo. This work underscores the exceptional functional plasticity of the L4 and L22 proteins and highlights the utility of Red-mediated recombination in targeted genetic selections.  相似文献   

14.
The alpha(2)-plasmin inhibitor (A2PI) is a main physiological regulator of the trypsin-like serine proteinase plasmin. It is composed of an N-terminal 15 amino acid fibrin cross-linking polypeptide, a 382-residue serpin domain, and a flexible C-terminal segment. The latter, peptide Asn(398)-Lys(452), and its Lys452Ala mutant were expressed as recombinant proteins in Escherichia coli (r-A2PIC and r-A2PICmut, respectively). CD and NMR analyses indicate that r-A2PIC is flexible, loosely folded, and with low content of regular secondary structure. Functional characterization via intrinsic fluorescence ligand titrations shows that r-A2PIC interacts with the isolated plasminogen kringle 1 (r-K1) (K(a) approximately 69.9 mM(-)(1)), K4 (K(a) approximately 45.7 mM(-)(1)), K5 (K(a) approximately 4.3 mM(-)(1)), and r-K2 (K(a) approximately 3.2 mM(-)(1)), all of which are known to exhibit lysine-binding capability. The affinities of these kringles for r-A2PIC are consistently larger than those reported for the ligand N(alpha)-acetyllysine, a mimic of a C-terminal Lys residue. The r-A2PICmut, with a C-terminal Ala residue, also interacts with r-K1 and K4, although with approximately 5-fold lesser affinities relative to r-A2PIC, demonstrating that while Lys(452) plays a major role in the binding, internal residues in r-A2PIC tether the kringles. (1)H NMR spectroscopy shows that key aromatic residues within the K4 lysine-binding site (LBS), namely, Trp(25), Trp(62), Phe(64), Trp(72), and Tyr(74), selectively respond to the addition of r-A2PIC and r-A2PICmut, indicating that these interactions proceed via the kringles' canonical LBS. We conclude that r-A2PIC docks to kringles primarily through lysine side chains and that Lys(452) most definitely enhances the binding. This suggests that multiple Lys residues within A2PI could contribute, perhaps in a zipper-like fashion, to its binding to the in-tandem, multikringle array that configures the plasmin heavy chain.  相似文献   

15.
E2020 (R,S)-1-benzyl-4-[(5,6-dimethoxy-1-indanon)-2-yl]methyl)piperidine hydrochloride is a piperidine-based acetylcholinesterase (AChE) inhibitor that was approved for the treatment of Alzheimer's disease in the United States. Structure-activity studies of this class of inhibitors have indicated that both the benzoyl containing functionality and the N-benzylpiperidine moiety are the key features for binding and inhibition of AChE. In the present study, the interaction of E2020 with cholinesterases (ChEs) with known sequence differences, was examined in more detail by measuring the inhibition constants with Torpedo AChE, fetal bovine serum AChE, human butyrylcholinesterase (BChE), and equine BChE. The basis for particular residues conferring selectivity was then confirmed by using site-specific mutants of the implicated residue in two template enzymes. Differences in the reactivity of E2020 toward AChE and BChE (200- to 400-fold) show that residues at the peripheral anionic site such as Asp74(72), Tyr72(70), Tyr124(121), and Trp286(279) in mammalian AChE may be important in the binding of E2020 to AChE. Site-directed mutagenesis studies using mouse AChE showed that these residues contribute to the stabilization energy for the AChE-E2020 complex. However, replacement of Ala277(Trp279) with Trp in human BChE does not affect the binding of E2020 to BChE. Molecular modeling studies suggest that E2020 interacts with the active-site and the peripheral anionic site in AChE, but in the case of BChE, as the gorge is larger, E2020 cannot simultaneously interact at both sites. The observation that the KI value for mutant AChE in which Ala replaced Trp286 is similar to that for wild-type BChE, further confirms our hypothesis.  相似文献   

16.
Inhibition of thrombin by heparin cofactor (HCII) is accelerated approximately 1000-fold by heparin or dermatan sulfate. We found recently that the mutation Arg189----His decreases the affinity of HCII for dermatan sulfate but not for heparin (Blinder, M. A., Andersson, T. R., Abildgaard, U., and Tollefsen, D. M. (1989) J. Biol. Chem. 264, 5128-5133). Other investigators have implicated Arg47 and Lys125 of anti-thrombin (homologous to Arg103 and Lys185 of HCII) in heparin binding. To investigate the corresponding residues in HCII, we have constructed amino acid substitutions (Arg103----Leu, Gln, or Trp; Lys185----Met, Asn, or Thr) by oligonucleotide-directed mutagenesis of the cDNA and expressed the products in Escherichia coli. The recombinant HCII variants were assayed for binding to heparin-Sepharose and for inhibition of thrombin in the presence of various concentrations of heparin or dermatan sulfate. All of the Arg103 variants bound to heparin with normal affinity. Furthermore, inhibition of thrombin by the Arg103----Leu variant occurred at a normal rate in the absence of a glycosaminoglycan and was accelerated by normal concentrations of heparin and dermatan sulfate. These results indicate that HCII, unlike anti-thrombin, does not require a positive charge at this position for the interaction with heparin or dermatan sulfate. The Arg103----Gln and Arg103----Trp variants inhibited thrombin at about one-third of the normal rate in the absence of a glycosaminoglycan, suggesting that these mutations exert an effect on the reactive site (Leu444-Ser445) of HCII. All of the Lys185 variants bound to heparin with decreased affinity but inhibited thrombin at approximately the normal rate in the absence of a glycosaminoglycan. These variants required greater than 10-fold higher concentrations of heparin to accelerate inhibition of thrombin and were not stimulated significantly by dermatan sulfate, suggesting that heparin and dermatan sulfate interact with Lys185 of HCII. These results provide evidence that the glycosaminoglycan-binding site in HCII includes Lys185 but not Arg103, both of which were predicted to be involved by homology to anti-thrombin.  相似文献   

17.
The principal transport protein for T4 in human blood, thyroxine-binding globulin (TBG), binds T4 with an exceptionally high affinity (Ka = 10(10) M(-1)). Its homology to the superfamily of the serpins has recently been used in the design of chimeric proteins, providing experimental evidence that an eight-stranded beta-barrel domain encompasses the ligand-binding site. We have now characterized the T4 binding site by site-directed mutagenesis. Sequence alignment of TBG from several species revealed a phylogenetically highly conserved stretch of amino acids comprising strands 2B and 3B of the beta-barrel motif. Mutations within this region (Val228Glu, Cys234Trp, Thr235Trp, Thr235Gln, Lys253Ala, and Lys253Asp), designed to impose steric hindrance or restriction of its mobility, had no significant influence on T4 binding. However, binding affinity was 20-fold reduced by introduction of an N-linked glycosylation site at the turn between strands 2B and 3B (Leu246Thr) without compromising the proper folding of this mutant as assessed by immunological methods. In most other serpins, this glycosylation site is highly conserved and has been shown to be crucial for cortisol binding of corticosteroid-binding globulin, the only other member of the serpins with a transport function. The ligand-binding site could thus be located to a highly aromatic environment deep within the beta-barrel. The importance of the binding site's aromatic character was investigated by exchanging phenylalanines with alanines. Indeed, these experiments revealed that substitution of Phe249 in the middle of strand 3B completely abolished T4 binding, while the substitution of several other phenylalanines had no effect.  相似文献   

18.
A model for the complex between E. coli RNase HI and the DNA/RNA hybrid (previously refined by molecular dynamics simulations) was used to determine the impact of the internucleotide linkage modifications (either 3′–O–CH2–P–O–5′ or 3′–O–P–CH2–O–5′) on the ability of the modified-DNA/RNA hybrid to create a complex with the protein. Modified internucleotide linkages were incorporated systematically at different positions close to the 3′-end of the DNA strand to interfere with the DNA binding site of RNase H. Altogether, six trajectories were produced (length 1.5). Mutual hydrogen bonds connecting both strands of the nucleic acids hybrid, DNA with RNase H, RNA with RNase H, and the scissile bond with the Mg++ · 4H2O chelate complex (bound in the active site) were analyzed in detail. Many residues were involved in binding of the DNA (Arg88, Asn84, Trp85, Trp104, Tyr73, Lys99, Asn100, Thr43, and Asn16) and RNA (Gln76, Gln72, Tyr73, Lys122, Glu48, Asn44, and Cys13) strand to the substrate-binding site of the RNase H enzyme. The most remarkable disturbance of the hydrogen bonding net was observed for structures with modified internucleotide linkages positioned in a way to interact with the Trp104, Tyr73, Lys99, and Asn100 residues (situated in the middle of the DNA binding site, where a cluster of Trp residues forms a rigid core of the protein structure).  相似文献   

19.
The leukocyte integrin alpha(M)beta(2) (Mac-1, CD11b/CD18) is a cell surface adhesion receptor for fibrinogen. The interaction between fibrinogen and alpha(M)beta(2) mediates a range of adhesive reactions during the immune-inflammatory response. The sequence gamma(383)TMKIIPFNRLTIG(395), P2-C, within the gamma-module of the D-domain of fibrinogen, is a recognition site for alpha(M)beta(2) and alpha(X)beta(2). We have now identified the complementary sequences within the alpha(M)I-domain of the receptor responsible for recognition of P2-C. The strategy to localize the binding site for P2-C was based on distinct P2-C binding properties of the three structurally similar I-domains of alpha(M)beta(2), alpha(X)beta(2), and alpha(L)beta(2), i.e. the alpha(M)I- and alpha(X)I-domains bind P2-C, and the alpha(L)I-domain did not bind this ligand. The Lys(245)-Arg(261) sequence, which forms a loop betaD-alpha5 and an adjacent helix alpha5 in the three-dimensional structure of the alpha(M)I-domain, was identified as the binding site for P2-C. This conclusion is supported by the following data: 1) mutant cell lines in which the alpha(M)I-domain segments (245)KFG and Glu(253)-Arg(261) were switched to the homologous alpha(L)I-domain segments failed to support adhesion to P2-C; 2) synthetic peptides duplicating the Lys(245)-Tyr(252) and Glu(253)-Arg(261) sequences directly bound the D fragment and P2-C derivative, gamma384-402, and this interaction was blocked efficiently by the P2-C peptide; 3) mutation of three amino acid residues within the Lys(245)-Arg(261) segment, Phe(246), Asp(254), and Pro(257), resulted in the loss of the binding function of the recombinant alpha(M)I-domains; and 4) grafting the alpha(M)(Lys(245)-Arg(261)) segment into the alpha(L)I-domain converted it to a P2-C-binding protein. These results demonstrate that the alpha(M)(Lys(245)-Arg(261)) segment, a site of the major sequence and structure difference among alpha(M)I-, alpha(X)I-, and alpha(L)I-domains, is responsible for recognition of a small segment of fibrinogen, gammaThr(383)-Gly(395), by serving as ligand binding site.  相似文献   

20.
The effects of fresh human serum (FHS) and heat-inactivated human serum (HHS) on the DNA synthesis and proliferation of human diploid fibroblasts were assessed. FHS activated significantly more quiescent fibroblasts to undergo DNA synthesis and proliferation than did HHS. The stimulatory effect occurred consistently over a serum concentration range of 0.1–10%. Using bromodeoxyuridine selective killing techniques, it was shown that this FHS stimulatory effect was on a specific subpopulation of fibroblasts unresponsive to HHS. The involvement of the complement system, and specifically of C1, was shown by the inability of Clq-depleted FHS to support enhanced DNA synthesis whereas Clq-depleted serum reconstituted with purified Clq was effective. Purified Clq did not restore activity when added to heated serum, nor was it mitogenic when tested in basal medium without serum. The addition of purified Clq to fresh serum inhibited the enhancement of DNA synthesis, and at Clq concentrations of 4γ/ml and greater, the fresh serum effects were abrogated. Thus, it appears that binding of the assembled C1 complex to the fibroblast surface was required for FHS-mediated enhancement of fibroblast proliferation, with Clq subcomponent serving as the recognition site. The results from several experiments indicated that antibody was not required for the complement-dependent fibroblast activation. FHS was not cytotoxic, and autologous serum was as effective as allogeneic sera. A 20-fold molar excess of Fab' from pooled human IgG did not alter the FHS effects. FHS from which IgG was more than 99% depleted was still effective. These results suggested an antibody-independent role for complement in the activation of a subpopulation of human diploid fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号