首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Monoclonal antibodies to rabbit skeletal muscle phosphorylase kinase were produced by the conventional hybridoma cell technique. 90 out of 600 hybridomas were found to produce phosphorylase kinase binding antibodies from which only five secreted also phosphorylase kinase activity affecting antibodies. Three of them were cloned; two hybridomas resisted all cloning efforts. Employing immunoblot technique all monoclonal antibodies show cross-reactivity with the alpha, beta, and gamma subunits of phosphorylase kinase indicating that similar, if not identical, epitopes are present on these three subunits. No cross-reactivity with delta is observed. Monoclonal antibodies secreted by two clones which bind to the alpha subunit stimulate the Ca2+-independent A0 activity of phosphorylase kinase more than 30-fold, whereas all other monoclonal antibodies obtained are ineffective in this respect. Monoclonal antibodies binding to the beta subunit inhibit the Ca2+-dependent activities significantly. Antibody produced by one hybridoma binds to the alpha, beta, and gamma subunits with approximately the same affinity. Based on the dual function of calmodulin in phosphorylase kinase (Hessová, Z., Varsányi, M., and Heilmeyer, L.M.G., Jr. (1985) Eur. J. Biochem. 146, 107-115) we conclude that binding of anti-alpha monoclonal antibodies to a regulatory domain in the alpha subunit results in an uncoupling of the inhibitory function of the Ca2+-free delta from the holoenzyme which leads to a concomitant increase in A0 activity. Furthermore, binding of anti-beta monoclonal antibodies to the beta subunit prevents a signal transfer from the Ca2+-saturated delta to the catalytic site of the holoenzyme which inhibits the Ca2+-dependent activities.  相似文献   

2.
We report that the rat pituitary cell line GH3 contains a Ca2(+)- and calmodulin-dependent protein kinase with properties characteristic of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) from rat brain. The GH3 kinase exhibits the hallmark of authentic CaM kinase: conversion from Ca2(+)-dependent to Ca2(+)-independent activity following a brief initial phosphorylation in vitro. This phosphorylation occurs at a site which is similar or identical to that of the "autonomy" site of the rat brain enzyme and thus may be an autophosphorylation event. GH3 CaM kinase is phosphorylated and becomes Ca2(+)-independent in situ. Depolarization of intact cells with K+ opens calcium channels and leads to the phosphorylation of CaM kinase at the autonomy site, and the kinase becomes significantly and persistently Ca2(+)-independent. Treatment of cells with thyrotropin-releasing hormone (TRH), which activates the phosphatidylinositol signaling pathway, also generates a Ca2(+)-independent CaM kinase in situ. The primary effect of TRH on CaM kinase activity is transient and correlates with the spike of Ca2+ released from intracellular stores and the rapid phase of prolactin release from GH3 cells. This study demonstrates that CaM kinase is able to detect and respond to both calcium that enters the cell through voltage-sensitive Ca2+ channels and calcium released from internal stores via the phosphatidylinositol pathway. We find that TRH, a hormone that causes release of prolactin and was previously believed to activate primarily protein kinase C, also significantly activates CaM kinase in intact cells.  相似文献   

3.
A cDNA clone for the alpha subunit of mouse brain Ca2+/CaM-dependent protein kinase II (CaM-kinase II) was transcribed in vitro and translated in a rabbit reticulocyte lysate system. Inclusion of [35S]methionine in the translation system yielded a single 35S-polypeptide of about 50 kDa. When the translation system was assayed for CaM-kinase II activity, there was a 5-10-fold enrichment of kinase activity which was totally dependent on Ca2+/calmodulin (CaM). Both the 50-kDa 35S-polypeptide and the Ca2+/CaM-dependent protein kinase activity were quantitatively immunoprecipitated by rat brain CaM-kinase II antibody. When the translated wild-type kinase was subjected to autophosphorylation conditions in the presence of Ca2+, CaM, Mg2+, and ATP, the Ca2+-independent activity (assayed in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid) increased from 5.8 +/- 0.7 to 26.5 +/- 2.1% of total activity (assayed in the presence of Ca2+/CaM). These properties confirm the identity of the kinase translated in vitro as CaM-kinase II. The role of Thr-286 autophosphorylation in formation of the Ca2+-independent activity was investigated by site-directed mutation of Thr-286 to Ala (Ala-286 kinase) and to Asp (Asp-286 kinase). The Ala-286 kinase was completely dependent on Ca2+/CaM for activity prior and subsequent to autophosphorylation. The Asp-286 kinase exhibited 21.9 +/- 0.8% Ca2+-independent activity, and this was not increased by autophosphorylation. These results establish that introduction of negative charge(s) at residue 286, either by autophosphorylation of Thr or by mutation to Asp, is sufficient and necessary to generate the partially Ca2+-independent form of CaM-kinase II.  相似文献   

4.
A synergistic activation of phosphorylase kinase by Ca2+ plus Mg2+ was found to be the primary cause of the hysteresis, or lag, in the phosphorylase kinase reaction. Preincubation of the enzyme for short times with Ca2+ plus Mg2+ resulted in an approximately 7-fold increase in the kinase activity in subsequent assays with phosphorylase b or phosphorylase kinase as substrates, whereas preincubation with each metal ion by itself had no effect. Maximal activation through preincubation with Ca2+ plus Mg2+ occurred in 1 min 45 s and was readily reversed by chelation of both metal ions. As a result of the activation, the progress curve of phosphorylase b conversion at pH 6.8 was found to be nearly linear. Activation by Ca2+ plus Mg2+ was not apparent when subsequent assays were carried out at pH 8.2, or when previously autophosphorylated enzyme was used. Furthermore, the synergistic activation was found to occur significantly slower and/or to decrease in the presence of ATP, phosphorylase b, beta-glycerophosphate, and inorganic phosphate. How the synergistic activation by Ca2+ plus Mg2+ relates to autophosphorylation and the lag in the phosphorylase kinase reaction is discussed.  相似文献   

5.
We have previously found that treatment of quiescent mammalian fibroblast cells with several mitogenic factors activates in common a Ca2+-sensitive serine/threonine-specific protein kinase activity toward microtubule-associated protein 2 (MAP2) [Hoshi, M., Nishida, E. and Sakai, H. (1988) J. Biol. Chem. 263, 5396-5401]. Here, we characterized the mitogen-activated MAP2 kinase activity in rat 3Y1 cells. The activated kinase activity was detected in the cytosolic fraction but not in the membrane fraction. The inhibitory effect of Ca2+ on the kinase activity was reversible. Kinetic analyses revealed that the apparent Km values of the kinase activity for MAP2 and ATP were 1.6 microM and 30 microM, respectively. Free Ca2+ at 4 microM decreased apparent Vmax values for MAP2 and ATP without changing the apparent Km values. The MAP2 kinase had an apparent molecular mass of about 40 kDa as determined by gel filtration and by sucrose density gradient centrifugation. Myelin basic protein as well as MAP2 could serve as good substrates for this kinase, but 40S ribosomal protein S6, casein, histone, phosphorylase b, protamine, tubulin, actin and tau could not. These properties of the enzyme indicate that the Ca2+-sensitive MAP2 kinase may be a previously unidentified enzyme. Down-regulation of protein kinase C by prolonged phorbol ester treatment abolished the MAP2 kinase activation by phorbol ester, but did not prevent the MAP2 kinase activation by epidermal growth factor (EGF) or fresh serum. This suggests that the Ca2+-sensitive MAP2 kinase could be activated through protein-kinase-C-dependent and -independent pathways. Activation of the MAP2 kinase occurred shortly after the addition of EGF or phorbol ester even in the presence of protein synthesis inhibitors (cycloheximide, puromycin and emetin). Moreover, treatment of the EGF- or phorbol-ester-activated MAP2 kinase with acid phosphatase inactivated the kinase activity. Thus, the MAP2 kinase may be activated through phosphorylation.  相似文献   

6.
The dephosphorylated form of phosphorylase kinase was purified 700-fold from rabbit heart extract. The purified enzyme had a pH 6.8/pH 8.2 activity ratio of 0.04-0.08 and was completely dependent on Ca2+ with an apparent Ka value for Ca2+ of 2.59 microM at pH 6.8. At free Ca2+ concentrations between 0.057 microM and 400 microM, 1.5 microM rabbit heart troponin complex had no significant effect on the reaction. However, 1.5 microM rabbit skeletal muscle troponin complex stimulated the reaction 1.5-2-fold with a concomitant decrease in the Ka value for Ca2+ to 1.40 microM. No differences in the effects of these troponin complexes were observed when heart-type and skeletal muscle-type phosphorylase b isoenzymes from either rabbit or pig were used as substrate. Similar effects of heart and skeletal muscle troponin complexes were observed on the Ca2+-dependent reaction of the dephosphorylated form of phosphorylase kinase partially purified from rabbit skeletal muscle. A saturating concentration (1.36 microM) of bovine brain calmodulin stimulated 2-5-fold the Ca2+-dependent reaction of skeletal muscle phosphorylase kinase, but not the reaction of heart phosphorylase kinase. Heart troponin complex (12 microM) suppressed 80-100% the stimulatory effect of skeletal muscle troponin complex on the reactions of phosphorylase kinase isoenzymes, but had no significant effect on the stimulation by calmodulin of skeletal muscle phosphorylase kinase reaction.  相似文献   

7.
Incubation of purified rat brain Ca2+/calmodulin-dependent protein kinase II for 2 min in the presence of Ca2+, calmodulin (CaM), Mg2+, and ATP converted the kinase from a completely Ca2+-dependent kinase to a substantially Ca2+-independent form with little loss of total activity. Subsequent addition of EGTA to the autophosphorylation reaction enhanced further autophosphorylation of the kinase which was associated with a suppression of total kinase activity to the Ca2+-independent value. Protein phosphatase 1 rapidly increased the suppressed total activity back to the control value and slowly decreased the Ca2+-independent activity. Kinetic analysis showed that the kinase not previously autophosphorylated had a Km for the synthetic peptide syntide-2 of 7 microM and Vmax of 9.8 mumol/min/mg when assayed in the presence of Ca2+ and CaM. The partially Ca2+-independent species, assayed in the presence of EGTA, had a Km of 21 microM and Vmax of 6.0. In the presence of Ca2+ and CaM the Km decreased and the Vmax increased to approximately control nonphosphorylated values. The completely Ca2+-independent form generated by sequential autophosphorylation first in the presence of Ca2+ and then EGTA had similar kinetic parameters to the partially independent species when assayed in the presence of EGTA, but addition of Ca2+ and CaM (up to 1 mg/ml) had little effect. These results suggest that separate autophosphorylation sites in the Ca2+/CaM-dependent protein kinase II are associated with formation of Ca2+-independent activity and suppression of total activity.  相似文献   

8.
Autophosphorylation of phosphorylase kinase from rabbit skeletal muscle was stimulated by acidic phospholipids such as phosphatidic acid (PA), phosphatidylinositol, and phosphatidyl-serine. PA stimulated an initial velocity of autophosphorylation 3.8-fold. When fully autophosphorylated, about 11 mol of phosphate per tetramer (alpha beta gamma delta) were incorporated in the presence of PA and about 6.5 mol in the absence of PA. In the presence of PA (100 micrograms/ml), there was a concomitant enhancement of its kinase activity about 25-fold at pH 6.8. PA (100 micrograms/ml) sharply decreased an apparent Ka for Ca2+ on autophosphorylation from 4.0 X 10(-5) M to 1.0 X 10(-6) M. Available evidence indicates that the Ca2+-activated, PA-dependent autophosphorylation of phosphorylase kinase shows an ability to stimulate glycogen breakdown.  相似文献   

9.
K A Ocorr  H Schulman 《Neuron》1991,6(6):907-914
In vitro phosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) converts it to a form that is independent of Ca2+. We demonstrate that significant Ca(2+)-independent CaM kinase activity is present in untreated hippocampal slices. Two manipulations that produce a long-lasting enhancement of neuronal activity in hippocampal slices, elevated extracellular Ca2+ or depolarization with high K+, generate additional Ca(2+)-independent activity. This increase is dependent on extracellular Ca2+ and is correlated with an increased phosphorylation of CaM kinase. In contrast, CaM kinase in posterior pituitary, a brain structure that is not thought to be involved in memory-related processes, is not modulated by depolarization. These results suggest that the Ca(2+)-independent form of CaM kinase may modulate neuronal activity in the hippocampus.  相似文献   

10.
Calmodulin from phosphorylase kinase (the delta subunit) was obtained as a homogeneous protein in a spectroscopically pure form, and its interaction with Ca2+ and Mg2+ was studied. 1. Determination of the binding of Ca2+ to calmodulin in a buffer of low ionic strength (0.001 M) show that it contained six binding sites for this divalent cation. 2. Employment of a buffer of high ionic strength (0.18 M) allowed two Ca2+/Mg2+-binding sites (KdCa2+ = 4.0 microM), which showed Ca2+ - Mg2+ competition (KdMg2+ = 0.75 mM), to be distinguished from two Ca2+-specific binding sites (KdCa2+ = 40 microM). The remaining two Ca2+-binding sites are not observed under these conditions and are probably Mg2+-specific binding sites. Thus, the binding sites on calmodulin are remarkably similar to those of the homologous Ca2+-binding protein, troponin C [Potter and Gergely (1975) J. Biol. Chem. 250, 4628, 4633]. 3. The conformational states of calmodulin are defined by Ca2+, Mg2+ and salt concentrations, which can be differentiated by their Ca2+ affinity and their relative tyrosine fluorescence intensity. In a buffer of high ionic strength, Mg2+ induces a conformation which enhances the apparent affinity for Ca2+. Addition of Ca2+ leads to an enhancement of the tyrosine fluorescence intensity, which remains enhanced even upon removal of Ca2+ by chelation with EGTA. Only additional chelation of Mg2+ with EDTA reduces the tyrosine fluorescence intensity. 4. Comparison of the Ca2+-binding parameters of phosphorylase kinase, which were previously determined under identical experimental conditions [Kilimann and Heilmeyer (1977) Eur. J. Biochem. 73, 191-197], with those reported here on calmodulin isolated from this enzyme, allows the conclusion that Ca2+ binding to the holoenzyme occurs by binding to the delta subunit exclusively. 5. Ca2+ binding and Ca2+ activation of phosphorylase kinase are compared and discussed in relation to the Ca2+ and Mg2+-induced conformation changes of calmodulin.  相似文献   

11.
The binding of phosphorylase kinase to thin filaments and their effects on the enzyme activity as well as the contribution of the enzyme to contractile protein phosphorylation have been studied. The data obtained suggest that the kinase binding to thin filaments is controlled by the regulatory proteins, troponin and tropomyosin. The bulk of the enzyme is bound to the F-actin-tropomyosin-troponin complex which activates the enzyme in a far greater degree than each of its constituent components. Ca2+ and ATP control the kinase binding to F-actin. ATP increases the enzyme binding 6-fold; Ca2+ decrease the S0.5 value for F-actin 5-fold. In acetone powder extracts phosphorylase kinase phosphorylates thin filament-bound phosphorylase b, troponin T and troponin I as well as 51-58 kDa and 114 kDa proteins. These results suggest that phosphorylase kinase plays a role in the mechanism of synchronization of glycogenolysis and muscle contraction rates.  相似文献   

12.
Regulation of Ca2+-dependent glycogen phosphorylase activity by alpha 1-adrenergic and H1-histamine receptors has been examined in BC3H-1 muscle cells. Stimulation by either norepinephrine or histamine elevates the phosphorylase activity ratio within 5 s from a resting value of 0.37 +/- 0.03 to maximal values of 0.8-0.9. Phosphorylase activation by alpha-adrenergic agonists is sustained over 20-30 min of agonist exposure, whereas histamine exposure only transiently activates phosphorylase during the initial 5 min of stimulation. The initial activation of phosphorylase by either receptor is not attenuated by treated cells with Ca2+-deficient and [ethylenebis(oxyethylenenitrilo)]tetraacetic acid-supplemented buffer, whereas the response to sustained adrenergic stimulation depends largely, but not totally, upon extracellular Ca2+. The involvement of protein kinase C in agonist responses was tested by treating cells with phorbol 12-myristate 13-acetate. Phorbol 12-myristate 13-acetate inhibits receptor-mediated mobilization of intracellular Ca2+ (IC50 = 3.6 nM) yet activates phosphorylase independently of agonist. Phorbol 12-myristate 13-acetate has no effect on cellular 45Ca2+ fluxes in the absence of agonist. Thus, the two receptors coordinately regulate intracellular signaling through Ca2+- and protein kinase C-mediated pathways. alpha 1-Adrenergic receptors elicit sustained phosphorylase activation whereas H1-histaminergic receptors desensitize.  相似文献   

13.
Thermodynamics of the Ca2+ binding to bovine alpha-lactalbumin   总被引:1,自引:0,他引:1  
Bovine alpha-lactalbumin contains one strong Ca2+-binding site. The free energy (delta G0), enthalpy (delta H0), and entropy (delta S0) of binding of Ca2+ to this site have been calculated from microcalorimetric experiments. The enthalpy of binding was dependent on the metal-free bovine alpha-lactalbumin concentration. At 0.8 mg ml-1, metal-free bovine alpha-lactalbumin delta H0 was -110 +/- 6 kJ mol-1. At this concentration the binding constant was estimated from a mathematical analysis of the titration curves to be greater than 10(7) M-1. This means that delta G0 is smaller than -40 kJ mol-1 and delta S0 is less negative than -235 J.K-1 mol-1. The binding of Ca2+ is therefore enthalpy-driven. From binding experiments as a function of temperature, a delta Cp value of -4.1 kJ.K-1 mol-1 was calculated. This value is dependent on the protein concentration. A tentative explanation for this large value is given.  相似文献   

14.
1. A parallel dose-dependent activation of histone kinase, phosphorylase kinase and phosphorylase was observed in isolated hepatocytes incubated in the presence of glucagon; the effect of suboptimal concentrations of glucagon was antagonized by insulin. 2. An activation of phosphorylase which was not accompanied by a stable change in the activity of phosphorylase kinase was observed in hepatocytes incubated with phenylephrine, isoproterenol or vasopressin as well as on decapitation of unanesthetized animals. A dissociation of the two enzymic activities was also observed in hepatocytes incubated in the presence of a high concentration of glucose, in which phosphorylase was strongly inactivated with no change in the activity of phosphorylase kinase. 3. The activation of phosphorylase by phenylephrine in isolated hepatocytes was counteracted by insulin, greatly decreased by the absence of Ca2+ from the incubation medium, and completely suppressed by the replacement of Na+ by K+. 4. In a liver extract, phosphorylase kinase could also be activated by trypsin. Control, glucagon-activated or trypsin-activated phosphorylase kinase was inhibited by about 70% by EGTA and the activity was restored by the addition of Ca2+. 5. The mechanisms that control the activity of phosphorylase kinase and of phosphorylase are discussed.  相似文献   

15.
Protein kinase C (PKC), an enzyme playing a central role in signal transduction pathways, is activated in fertilized mouse eggs downstream of the fertilization Ca2+ signal, to regulate different aspects of egg activation. Given the presence of Ca2+-independent PKC isoforms within the egg, we investigated whether fertilization triggers PKC stimulation in mouse eggs by activating Ca2+-independent signalling pathways. An increase in PKC activity was detected as early as 10 min after the beginning of insemination, when about 90% of eggs had fused with sperm and the first Ca2+ rise was evident in most of the eggs. A similar level of activity was found 20 min later, when about 60% of eggs had resumed meiosis. When the Ca2+ increase was buffered by an intracellular Ca2+ chelating agent, PKC stimulation was not blocked but only slightly reduced. Confocal microscopy analysis revealed that the increase in PKC activity at fertilization coincided with the translocation of PKCdelta, a Ca2+-independent and diacylglycerol-dependent PKC isoform, to the meiotic spindle. When, in the absence of the Ca2+ signal, metaphase-anaphase transition was inhibited, PKCdelta moved to the meiotic spindle but still maintained a sustained cytoplasmic distribution. In summary, our results indicate that: 1) PKC activation is an early event of egg activation; 2) both Ca2+-dependent and Ca2+-independent pathways contribute to increased PKC activity at fertilization; 3) PKCdelta is one of the isoforms participating in this signalling process.  相似文献   

16.
The Ca2+-ATPase of dog heart sarcolemma (1, 2) is affected by phosphorylation. As normally prepared, sarcolemmal vesicles are phosphorylated to a high degree, resulting in a relatively low additional incorporation of hydroxylamine resistant [32P]phosphate from [gamma-32P]ATP. The 32P incorporation is increased up to 20-fold by pretreating the vesicles with phosphorylase phosphatase and is inhibited by an inhibitor of cAMP-dependent protein kinases. The phosphatase treatment inhibits markedly the Ca2+-ATPase and the ATP-dependent Ca2+ uptake. The inhibition is more evident at relatively higher levels of free Ca2+ and is reversed by preincubation with ATP. The Ca2+-pumping activity is stimulated markedly by phosphorylase b kinase and inhibited by the (cAMP-dependent) protein kinase inhibitor. Both the protein kinase inhibitor and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid prevent the rephosphorylation of sarcolemmal vesicles, but the effects are not additive. The Ca2+ dependence curve of the Ca2+ uptake in phospho- and dephosphorylated vesicles suggests that the phosphorylation might affect the efficiency of the enzyme (turnover rate) rather than its affinity for Ca2+.  相似文献   

17.
The cDNAs encoding the alpha and beta subunits of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) were ligated into the bacterial expression vector pET and expressed in Escherichia coli. The bacterially expressed alpha and beta subunits exhibited Ca2+/calmodulin-dependent activity and were easily purified to apparent homogeneity from cell extracts. To determine the minimum size required for catalytic activity and the properties of the calmodulin-binding domain, mutated CaM kinase II cDNAs were expressed in E. coli and the enzymatic property of expressed proteins was examined. The replacement of Thr-286 of the alpha subunit with the negatively charged amino acid Asp or that of Arg-283 with the neutral amino acid Gly induced the partially Ca2+ independent activity. The mutant enzymes alpha-I(delta 283-478) and alpha-II(delta 359-478), which truncated the C-terminal region of the alpha subunit, exhibited CaM kinase II activity and the activities of alpha-I(delta 283-478) and alpha-II(delta 359-478) were completely independent of and partially dependent on Ca2+ and calmodulin, respectively. However, the truncated protein alpha(delta 250-478), which was only 33 amino acids shorter than the alpha-I(delta 283-478) protein had no enzymatic activity, indicating that alpha-I(delta 283-478) was close to the minimum size of the active form. The mutant enzyme alpha(delta 291-315), which lacked the calmodulin-binding domain exhibited Ca2+ independent activity. The molecular mass was, however, smaller than that expected from the amino acid sequence. The mutant enzyme alpha(delta 304-315), which lacked the C-terminal half of the calmodulin-binding domain of the alpha subunit, however, exhibited Ca(2+)-independent activity without a reduction in molecular size, indicating that residues 304-315 of the alpha subunit constituted the core calmodulin-binding domain.  相似文献   

18.
1. A dose-dependent activation of phosphorylase and consumption of ATP was observed in isolated hepatocytes incubated in the presence of fructose; histone kinase and phosphorylase kinase activities were unchanged at doses of this sugar that were fully effective on phosphorylase. The activation of phosphorylase by fructose was also observed in cells incubated in a Ca2+-free medium as well as in the livers of rats in vivo. 2. In a liver high-speed supernatant, fructose, tagatose and sorbose stimulated the activity of phosphorylase kinase; this effect was dependent on the presence of K+ ions, which are required for the activity of fructokinase; it was accompanied by the transformation of ATP into ADP. In the presence of hexokinase, glucose also stimulated phosphorylase kinase, both in an Na+ or a K+ medium. 3. The activities of partially purified muscle or liver phosphorylase kinase were unchanged in the presence of fructose. 4. Some properties of liver phosphorylase kinase are described, including a high molecular weight and an inhibition at ATP/Mg ratios above 0.5, as well as an effect of ATP concentration on the hysteretic behaviour of this enzyme. 5. The effect of fructose on the activation of phosphorylase is discussed in relation to the comsumption of ATP.  相似文献   

19.
Phosphorylase b and two peptides with sequences homologous to phosphorylation site 2 (syntide 2) and site 3 (syntide 3) of glycogen synthase were compared as substrates for purified muscle phosphorylase kinase. The substrate specificity of phosphorylase kinase varied according to whether heparin (at pH 6.5) or Ca2+ (at pH 8.2) was used as a stimulator of its activity. Phosphorylase b was preferentially phosphorylated in the presence of Ca2+; the rate of syntide 2 phosphorylation was the same for both stimulators; and the phosphorylation of syntide 3 was completely dependent on the presence of heparin. A kinetic analysis confirmed this stimulator-dependent substrate specificity since both the Vmax and Km for these substrates were affected diversely by heparin and Ca2+. Heparin stimulated phosphorylase kinase maximally at pH 6.5, whereas the effect of Ca2+ was optimal at a pH above 8. However, the stimulator-related substrate specificity could not be explained by the different pH values at which the effects of the stimulators were assessed. Nor did substrate-directed effects by heparin or Ca2+ apparently play a role. No indications were found for a stimulator-dependent specificity in the phosphorylation of sites in protein substrates of phosphorylase kinase (phosphorylase b, the alpha- and beta-subunits of phosphorylase kinase, or glycogen synthase). The diverse substrate specificity of the calcium- and heparin-dependent activities of phosphorylase kinase could be explained in two ways: either by the existence of separate calcium- and heparin-stimulated catalytic sites, or by just one catalytic site with two active conformations. The second possibility is favored by the observation that both calcium and heparin stimulated the isolated gamma-subunit (gamma X calmodulin complex) of phosphorylase kinase.  相似文献   

20.
Long chain unsaturated fatty acids stimulate phosphorylase "a" activity in liver cells. Similar degree of activation was achieved by increasing cellular Ca2+ content or by treatment with agents other than oleate, like 1,2-diolein or phorbol esters, sharing in common their ability to activate protein kinase C. In Ca2+-loaded liver cells only phenylephrine was capable of inducing a further stimulation of phosphorylase "a" activity. It is concluded that: 1) The state of activation of protein kinase C may play a role in the hormonal control of liver glycogen metabolism; 2) alpha 1-agonist-mediated activation of phosphorylase "a" can occur by a mechanism which is not related to a Ca2+-dependent activation of protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号