首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rfa locus of Escherichia coli K-12 includes a block of about 10 closely spaced genes transcribed in the same direction which are involved in synthesis and modification of the hexose region of the lipopolysaccharide core. We have sequenced the first three genes in this block. The function of the first of these genes is unknown, but we have designated it rfaQ on the basis of its location and similarity to other rfa genes. Complementation of Salmonella typhimurium rfa mutants with E. coli rfa restriction fragments indicated that the second and third genes in the block were rfaG and rfaP. The deduced sizes of the RfaQ, RfaG, and RfaP proteins are 36,298, 42,284, and 30,872 Da, respectively, and the proteins are basic and lack extensive hydrophobic domains. RfaQ shares regions of homology with proteins RfaC and RfaF, which are involved in synthesis of the heptose region of the core. Proteins RfaB, RfaG, and RfaK share a region of homology, which suggests that they belong to a second family of Rfa proteins which are thought to be hexose transferases.  相似文献   

2.
Tn10 insertions were selected on the basis of resistance to the lipopolysaccharide (LPS)-specific bacteriophage U3. The majority of these were located in a 2-kilobase region within the rfa locus, a gene cluster of about 18 kb that contains genes for LPS core biosynthesis. The rfa::Tn10 insertions all exhibited a deep rough phenotype that included hypersensitivity to hydrophobic antibiotics, a reduction in major outer membrane proteins, and production of truncated LPS. These mutations were complemented by a Clarke-Carbon plasmid known to complement rfa mutations of Salmonella typhimurium, and analysis of the insert from this plasmid showed that it contained genes for at least six polypeptides which appear to be arranged in the form of a complex operon. Defects in two of these genes were specifically implicated as the cause of the deep rough phenotype. One of these appeared to be rfaG, which encodes a function required for attachment of the first glucose residue to the heptose region of the core. The other gene did not appear to be directly involved in determination of the sugar composition of the core. We speculate that the product of this gene is involved in the attachment of phosphate or phosphorylethanolamine to the core and that it is the lack of one of these substituents which results in the deep rough phenotype.  相似文献   

3.
4.
The rfp gene of Shigella dysenteriae 1 and the rfa genes of Escherichia coli K-12 and Salmonella typhimurium LT2 have been studied to determine their relationship to lipopolysaccharide (LPS) core heterogeneity and their role in the attachment of O antigen to LPS. It has been inferred from the nucleotide sequence that the rfp gene encodes a protein of 41,864 Da which has a structure similar to that of RfaG protein. Expression of this gene in E. coli K-12 results in the loss of one of the three bands seen in gel analysis of the LPS and in the appearance of a new, more slowly migrating band. This is consistent with the hypothesis that Rfp is a sugar transferase which modifies a subset of core molecules so that they become substrates for attachment of S. dysenteriae O antigen. A shift in gel migration of the bands carrying S. dysenteriae O antigen and disappearance of the Rfp-modified band in strains producing O antigen suggest that the core may be trimmed or modified further before attachment of O antigen. Mutation of rfaL results in a loss of the rough LPS band which appears to be modified by Rfp and prevents the appearance of the Rfp-modified band. Thus, RfaL protein is involved in core modification and is more than just a component of the O-antigen ligase. The products of rfaK and rfaQ also appear to be involved in modification of the core prior to attachment of O antigen, and the sites of rfaK modification are different in E. coli K-12 and S. typhimurium. In contrast, mutations in rfaS and rfaZ result in changes in the LPS core but do not affect the attachment of O antigen. We propose that these genes are involved in an alternative pathway for the synthesis of rough LPS species which are similar to lipooligosaccharides of other species and which are not substrates for O-antigen attachment. All of these studies indicate that the apparent heterogeneity of E. coli K-12 LPS observed on gels is not an artifact but instead a reflection of functional differences among LPS species.  相似文献   

5.
In Escherichia coli, phosphoryl substituents in the lipopolysaccharide core region are essential for outer membrane stability. Mutation of the core glucosyltransferase encoded by waaG (formerly rfaG) resulted in lipopolysaccharide truncated immediately after the inner core heptose residues, which serve as the sites for phosphorylation. Surprisingly, mutation of waaG also destabilized the outer membrane. Structural analyses of waaG mutant lipopolysaccharide showed that the cause for this phenotype was a decrease in core phosphorylation, an unexpected side effect of the waaG mutation.  相似文献   

6.
Analysis of the sequence of a 4.1-kb rfa region downstream from rfaP revealed four genes. The first of these encodes a basic protein of 36,730 Da and does not correspond to any known rfa gene. It has been designated rfaS. The second gene was identified as rfaB on the basis of its ability to complement a Salmonella typhimurium rfaB mutant and encodes a 42,060-Da protein. The third and fourth genes encode proteins of 39,423 and 36,046 Da which are strongly homologous to the RfaI and RfaJ proteins of S. typhimurium. Escherichia coli K-12 restriction fragments carrying these genes complement an S. typhimurium rfaI mutant and, at lower efficiency, an rfaJ mutant. The difference in complementation efficiency suggests that the rfaI and rfaJ genes of E. coli K-12 have sugar and acceptor specificities different from those of S. typhimurium, as predicted from the different lipopolysaccharide (LPS) core structures of the two organisms. Defined mutations affecting all four genes were constructed in vitro and crossed onto the chromosome. The phenotypes of these mutations suggest that extension of the core may require protein-protein interactions between the enzymes involved in core completion as well as the interaction of these enzymes with their specific acceptor molecules. Mutants blocked at rfaI or genes encoding earlier steps in core biosynthesis exhibited a single predominant LPS band on gels while mutants blocked at rfaJ or genes encoding later steps produced multiple strong bands, indicating that one of the processes generating core heterogeneity requires a functional rfaI gene.  相似文献   

7.
Constitutive expression of Pasteurella multocida toxin   总被引:1,自引:0,他引:1  
Abstract The introduction of a plasmid containing skc (streptokinase-coding gene) fused with ompA signal sequence into Escherichia coli K-12 strains, rendered the bacteria mucoid. Measurement of the synthesis of β-galactosidase from a cps-lacZ fusion ( lacZ fusion to a gene necessary for capsule synthesis) showed that the mucoid phenotype was due to induction of the capsular polysaccharide colanic acid synthesis. The introduction of a plasmid carrying skc fused with malE (gene encoding maltose-binding protein) also induced cps-lacZ expression, but intracellular expression of streptokinase in E. coli did not. The cps expression by secretion of streptokinase was diminished to the basal level in a cps-lacZ strain carrying a rcsC mutation. These results show that the secretion of streptokinase in E. coli induces colanic acid synthesis through the RcsC-dependent pathway.  相似文献   

8.
Partial sequencing of the rfa cluster of Salmonella typhimurium LT2 indicated a region of 336 bp between rfaP and rfaB in the site occupied by the rfaS gene in Escherichia coli K-12. This region does not contain a functional rfaS gene, although DNA analysis suggests that the region may have contained an ancestral gene. This conclusion that S. typhimurium LT2 lacks rfaS is supported by its lipopolysaccharide (LPS) gel phenotype, since LT2 does not make the lipooligosaccharide band characteristic of LPS from smooth strains of E. coli K-12.  相似文献   

9.
R-prime plasmids carrying the pyrE-rfa-cysE region of the chromosome of Salmonella typhimurium were isolated by using the vector pULB113 (RP4::mini-Mu). One of the R-prime plasmids was used as a source of DNA to clone the rfa genes for lipopolysaccharide synthesis to pBR322. The following three hybrid plasmids were constructed: pKZ15, with a 4.0-kilobase EcoRI fragment of S. typhimurium DNA, containing the rfaG gene; pKZ27, a 9-kilobase BglII fragment with the rfaG, rfaB, and rfaI genes; and pKZ26, a 7.7-kilobase HindIII fragment with the rfaG, rfaB, rfaI, and rfaJ genes. We propose that these cloned genes code for four glycosyltransferases used for synthesis of the lipopolysaccharide core region (rfaG for glucosyltransferase I; rfaI for galactosyltransferase I; rfaB for galactosyltransferase II; and rfaJ for glucosyltransferase II). For all four genes, mutants which lacked the appropriate enzyme activity were complemented by the plasmids to give completed core lipopolysaccharide with O (somatic) side chains; for rfaG, rfaB, and rfaI, mutants gave restored or even amplified levels of the appropriate glycosyltransferase in in vitro assays. We show that the order of genes in the region is pyrE-rfaG-(rfaB-rfaI)-rfaJ-rfaL-rfaF -cysE.  相似文献   

10.
Certain rough mutants of Salmonella typhimurium LT2 were shown to be temperature sensitive for the production of lipopolysaccharide (LPS). When grown at the restrictive temperature (42 or 45 degrees C), the cells contained LPS deficient in O (somatic) side chains, based on phage-sensitivity data and gel electrophoresis of the LPS. Cells grown at the permissive temperature, 30 degrees C, made LPS resembling that of smooth cells. The mobility of the LPS in gels, the phage sensitivity patterns, and gas chromatographic analysis indicate that LPS of 45 degrees C-grown cells of SA126 (rfaJ3012) is of chemotype Rb2, with one glucose and two galactose units (and thus inferred to be due to a mutation in rfaJ), and LPS of 45 degrees C-grown cells of SA134 (rfa13020) is of chemotype Rb3, with one glucose and one galactose unit (inferred to be rfaI). These inferences were confirmed, for pKZ26 (pBR322-rfaGBIJ) and pKZ27 (pBR322-rfaGBI) both complement rfaI3020, but only pKZ26 complemented rfaJ3012. In addition, pKZ26 carrying a Tn5 insertion resulting in loss of complementation of a known rfaJ mutation, but not of rfaG, B, or I, also resulted in loss of rfaJ3012 complementation. Based on gel analysis, there is a small amount of the LPS containing smooth side chains in cells of SA126 grown at 45 degrees C; following a switch to 30 degrees C, the amount of LPS with O side chains gradually increased, and the amount of core LPS was reduced, though even after 3 h the LPS does not fully resemble that of smooth strains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Genetics of lipopolysaccharide biosynthesis in enteric bacteria.   总被引:43,自引:1,他引:42       下载免费PDF全文
From a historical perspective, the study of both the biochemistry and the genetics of lipopolysaccharide (LPS) synthesis began with the enteric bacteria. These organisms have again come to the forefront as the blocks of genes involved in LPS synthesis have been sequenced and analyzed. A number of new and unanticipated genes were found in these clusters, indicating a complexity of the biochemical pathways which was not predicted from the older studies. One of the most dramatic areas of LPS research has been the elucidation of the lipid A biosynthetic pathway. Four of the genes in this pathway have now been identified and sequenced, and three of them are located in a complex operon which also contains genes involved in DNA and phospholipid synthesis. The rfa gene cluster, which contains many of the genes for LPS core synthesis, includes at least 17 genes. One of the remarkable findings in this cluster is a group of several genes which appear to be involved in the synthesis of alternate rough core species which are modified so that they cannot be acceptors for O-specific polysaccharides. The rfb gene clusters which encode O-antigen synthesis have been sequenced from a number of serotypes and exhibit the genetic polymorphism anticipated on the basis of the chemical complexity of the O antigens. These clusters appear to have originated by the exchange of blocks of genes among ancestral organisms. Among the large number of LPS genes which have now been sequenced from these rfa and rfb clusters, there are none which encode proteins that appear to be secreted across the cytoplasmic membrane and surprisingly few which encode integral membrane proteins or proteins with extensive hydrophobic domains. These data, together with sequence comparison and complementation experiments across strain and species lines, suggest that the LPS biosynthetic enzymes may be organized into clusters on the inner surface of the cytoplasmic membrane which are organized around a few key membrane proteins.  相似文献   

12.
13.
A series of mutants of Escherichia coli K12 resistant to lipopolysaccharide (LPS)-specific bacteriophages were isolated, and examined with regard to their general properties, phage typing, chemical analysis of their LPS, and genetic analysis. Fourteen classes of mutants were distinguished on the basis of phage typing and sensitivity to bile salts. Three of the mutant classes are sensitive to phages to which the parent is resistant. Mutants which are sensitive to bile salts generally lack heptose in their LPS, but two mutant classes are exceptions to this rule. Analyses of the sugars in the purified LPS of all mutant classes indicated that mutants were obtained which are blocked at most stages in core polysaccharide synthesis. On the basis of the chemical analysis, in conjunction with phage typing data and other known properties of the mutants, it is deduced which residue(s) is involved as a receptor for each of the phages used and which residues hinder these receptors. Some of the mutant classes do not seem to be changed in their LPS structure. Many of the mutations map in or near the rfa locus, but some are far removed from this region.  相似文献   

14.
In order to study the regulation of a large block of contiguous genes at the rfa locus of Escherichia coli K-12 which are involved in synthesis and modification of the lipopolysaccharide core, the transposon TnlacZ was used to generate in-frame lacZ fusions to the coding regions of five genes (rfaQ, -G, -P, -B and -J) within this block. The beta-galactosidase activity of strains in which these fusions had been crossed into the chromosomal rfa locus was significantly decreased when the rfaH11 (sfrB11) allele was introduced and was restored to wild-type levels when these strains were lysogenized with a lambda phage carrying wild-type rfaH. This indicates that the positive regulatory function encoded by rfaH is required throughout this block of genes. In addition, expression of the lacZ fusion to rfaJ was reduced by growth at 42 degrees C, and this correlated with a temperature-induced change in the electrophoretic profile of the core lipopolysaccharide.  相似文献   

15.
16.
17.
The region of the Escherichia coli K-12 chromosome encoding the enzymes responsible for the synthesis of responsible for the synthesis of the lipopolysaccharide (LPS) core has been cloned in vivo by using a mini-Mu vector. This region, formerly known as the rfa locus, comprises 18 kb of DNA between the markers tdh and rpmBG. Results of in vitro mutagenesis of this region with MudII1734 indicate the presence of at least 17 open reading frames or genes, a number considerably higher than expected on the basis of genetic and biochemical studies. Specific insertions in different genes have been recombined into the chromosome, and the mutations have been phenotypically characterized. Complementation analysis indicates that these genes are arranged in three different operons transcribed in opposite directions. A detailed physical map of this region has been constructed on the basis of complementation analysis, fusion protein data, and phenotypic characterizations. Additionally, the role of some genes in the synthesis of LPS has been defined by complementation analysis with known Salmonella typhimurium LPS mutants. The genetic organization of this locus seems to be identical in E. coli K-12 and S. typhimurium.  相似文献   

18.
The effects of defined mutations In the lipopolysaccharide (LPS) and the outer membrane protein OmpA of the recipient cell on mating-pair formation in liquid media by the transfer systems of the F-Iike plasmids pOX38 (F), ColB2 and R100-1 were investigated. Transfer of all three plasmids was affected differently by mutations in the rfa (LPS) locus of the recipient cell, the F plasmid being most sensitive to mutations that affected rfaP gene expression which is responslbie for the addition of pyrophosphorylethanolamine (PPEA) to heptose I of the inner core of the LPS. CoIB2 transfer was more strongly affected by mutations in the heptose II-heptose III region of the LPS (rfaF) whereas R100-1 was not strongly affected by any of the rfa mutations tested. ompA but not rfa mutations further decreased the mating efficiency of an F plasmid carrying a mutation in the mating-pair stabilization protein TraN. An F derivative with a chloramphenicol acetyltransferase (CAT) cassette interrupting the traA pilin gene was constructed and pilin genes from F-like plasmids (F, ColB2, R100-1) were used to complement this mutation. Unexpectediy, the results suggested that the differences in the pilin sequences were not responsible for recognizing specific groups in the LPS, OmpA or the TraT surface exclusion protein. Other corroborating evidence is presented suggesting the presence of an adhesin at the F pilus tip.  相似文献   

19.
rfaP mutants of Salmonella typhimurium   总被引:13,自引:0,他引:13  
Salmonella typhimurium rfaP mutants were isolated and characterised with respect to their sensitivity towards hydrophobic antibiotics and detergents, and their lipopolysaccharides were chemically analysed. The rfaP mutants were selected after diethylsulfate mutagenesis or as spontaneous mutants. The mutation in two independent mutants SH7770 (line LT2) and SH8551 (line TML) was mapped by cotransduction with cysE to the rfa locus. The mutants were sensitive to hydrophobic antibiotics (clindamycin, erythromycin and novobiocin) and detergents (benzalkoniumchloride and sodium dodecyl sulfate). Analysis of their lipopolysaccharides by chemical methods and by sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed that their saccharide portion was, to a large extent, of chemotype Rc with small proportions of material containing a more complete core oligosaccharide and O-specific chains. Only 2.5 mol phosphate/mol lipopolysaccharide was found whereas the phosphate content of the lipopolysaccharide of a galE mutant strain was 4.8 mol. Thus the rfaP mutant lipopolysaccharides lacked more than two phosphate residues. Assessment of the location of phosphate groups in rfaP lipopolysaccharides revealed the presence of at least 2 mol phosphate in lipid A, indicating that the core oligosaccharide was almost devoid of phosphate. The chemical, physiological and genetic data obtained for these mutants are in full agreement with those reported earlier for rfaP mutants of Salmonella minnesota.  相似文献   

20.
Kim CH 《Molecules and cells》2003,15(2):226-232
Invasion of host cells is essential for the pathogenicity of Salmonella. The author's group has recently reported the cloning of the rfaE gene of Salmonella typhimurium, previously implicated in biosynthesis of the lipopolysaccharide (LPS)-inner core [Jin et al. (2001); Kim (2002)]. The product of the rfaE gene is involved in ADP-L-glycero-D-manno-heptose biosynthesis. rfaE mutants synthesize heptose-deficient LPS (Re-LPS) consisting only of lipid A and 3-deoxy-D-manno-octulosonic acid (KDO). Mutants that make incomplete LPS are rough mutants and "deep-rough" mutants affected in the heptose region of the inner core have reduced growth rate and increased sensitivity to high temperature. Complementation of S. typhimurium rfaE mutant strain SL1102 (rfaE543) with rfaE demonstrated conclusively that this gene restored the smooth phenotype, and the LPS produced by the complemented strain was indistinguishable from that of wild type smooth strains. In vitro infection experiments showed that complementation with rfaE permitted invasion of human Chang epithelial cells, larynx epidermal carcinoma HEp-2 cells and intestinal epithelial Henle-407 cells. These data imply that the structure of the LPS that is synthesized is critical for Salmonella invasiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号