首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Activin A has been shown to induce hemoglobin production in various hematopoietic cells. Such activities of three structurally distinct activins (activin A, activin AB, and activin B) were compared using F5-5 mouse erythroleukemia cells. Activin A and AB had similarly potent inducing activities whereas that of activin B was much lower. The erythroid inducing activity of activins was suppressed by follistatin, an activin-binding protein but not by inhibin A and inhibin B. Retinoic acids (both all-trans and 13-cis) had weak erythroid differentiation activity. In addition, clear synergistic erythroid induction occurred when retinoic acid and activin A were mixed together. These results indicate that retinoic acid may modulate activin-induced erythropoiesis in vivo.  相似文献   

2.
Control of digit formation by activin signalling   总被引:10,自引:0,他引:10  
Major advances in the genetics of vertebrate limb development have been obtained in recent years. However, the nature of the signals which trigger differentiation of the mesoderm to form the limb skeleton remains elusive. Previously, we have obtained evidence for a role of TGFbeta2 in digit formation. Here, we show that activins A and B and/or AB are also signals involved in digit skeletogenesis. activin betaA gene expression correlates with the initiation of digit chondrogenesis while activin betaB is expressed coincidently with the formation of the last phalanx of each digit. Exogenous administration of activins A, B or AB into the interdigital regions induces the formation of extra digits. follistatin, a natural antagonist of activins, is expressed, under the control of activin, peripherally to the digit chondrogenic aggregates marking the prospective tendinous blastemas. Exogenous application of follistatin blocks physiological and activin-induced digit formation. Evidence for a close interaction between activins and other signalling molecules, such as BMPs and FGFs, operating at the distal tip of the limb at these stages is also provided. Chondrogenesis by activins is mediated by BMPs through the regulation of the BMP receptor bmpR-1b and in turn activin expression is upregulated by BMP signalling. In addition, AER hyperactivity secondary to Wnt3A misexpression or local administration of FGFs, inhibits activin expression. In correlation with the restricted expression of activins in the course of digit formation, neither activin nor follistatin treatment affects the development of the skeletal components of the stylopod or zeugopod indicating that the formation of the limb skeleton is regulated by segment-specific chondrogenic signals.  相似文献   

3.
Activins are multifunctional growth factors belonging to the transforming growth factor-beta superfamily. Isolation of activins from natural sources requires many steps and only produces limited quantities. Even though recombinant preparations have been used in recent studies, purification of recombinant activins still requires multiple steps. To purify recombinant activin A, we have developed a simple method using the second follistatin domain of an activin-binding protein follistatin-related gene (FLRG). An affinity column was prepared with a partial FLRG fusion protein. The partial FLRG protein contained the second follistatin domain and the C-terminus acidic domain, and was tagged with six histidine residues at its N-terminus. The fusion protein was expressed in Escherichia coli and purified with nickel affinity column. Thereafter, the purified fusion protein was coupled to NHS-activated column. Recombinant activin A was produced in Chinese hamster ovary (CHO) cells, which were stably transfected with rat inhibin/activin betaA-subunit cDNA. After 48-h suspension culture of the cells in a serum free medium, the culture media was recovered and passed through the FLRG-coupled column. After washing with phosphate-buffered saline, bound protein was eluted out with an acidic buffer. Any significant contaminations were not detected when the purified protein was analyzed by SDS-PAGE. Apparent sizes of the protein were 14 and 28 kDa under the reduced and non-reduced conditions, respectively. Western blot analysis confirmed that the purified protein was activin A. The purified recombinant activin stimulated p3TP-lux reporter activity in CHO cells and follicle-stimulating hormone secretion from rat pituitary cells.  相似文献   

4.
Activin uptake into Xenopus oocytes was studied by several complementary methods. Immunocytochemistry of adult ovary localized activin and follistatin in the cytoplasm of vitellogenic oocytes and surrounding follicle cells. Surface plasmon resonance analysis of protein interaction kinetics indicated that while follistatin or a complex of activin-follistatin bound to yolk vitellogenin, activin alone did not. Radioactive tracer analysis measured specific incorporation of activin by viable oocytes in vitro. Together, the results suggest that vitellogenic oocytes can import activins from follicle cells and that follistatin may act as a chaperone for binding activin to vitellogenin in yolk platelets.  相似文献   

5.
6.
7.
Follistatin, a secreted glycoprotein, has been shown to act as a potent neural inducer during early amphibian development. The function of this protein during embryogenesis in higher vertebrates is unclear, and to further our understanding of its role we have cloned, sequenced, and performed an in-depth expressional analysis of the chick homologue of follistatin. In addition we also describe the expression pattern of activin βA and activin β B, proteins that have previously been shown to be able to interact with follistatin. In this study we show that the expression of follistatin and the activins do not always overlap. Follistatin was first detected in Hensen's node and subsequently in the region described by Spratt [1952] as the neuralising area. In older embryos it was also expressed in a highly dynamic manner in the hind-brain as well as in the somites. We also present evidence that follistatin may have a later role in the resegmentation of the somites. We were unable to detect the expression of activin βA during early embryogenesis, whereas activin βB was first expressed in the extending primitive streak and subsequently in the neural folds. The results from this study are consistent with a role for follistatin in neural induction but suggest it has additional functions unrelated to its inhibitory actions on activins. © 1995 Wiley-Liss, Inc.  相似文献   

8.
Ventral prostate development occurs by branching morphogenesis and is an androgen-dependent process modulated by growth factors. Many growth factors have been implicated in branching morphogenesis including activins (dimers of beta(A) and beta(B) subunits); activin A inhibited branching of lung and kidney in vitro. Our aim was to examine the role of activins on prostatic development in vitro and their localization in vivo. Organ culture of day 0 rat ventral prostates for 6 days with activin A (+/- testosterone) inhibited prostatic branching and growth without increasing apoptosis. The activin-binding protein follistatin increased branching in vitro in the absence (but not presence) of testosterone, suggesting endogenous activins may reduce prostatic branching morphogenesis. In vivo, inhibin alpha subunit was not expressed until puberty, therefore inhibins (dimers of alpha and beta subunits) are not involved in prostatic development. Activin beta(A) was immunolocalized to developing prostatic epithelium and mesenchymal aggregates at ductal tips. Activin beta(B) immunoreactivity was weak during development, but was upregulated in prostatic epithelium during puberty. Activin receptors were expressed throughout the prostatic epithelium. Follistatin mRNA and protein were expressed throughout the prostatic epithelium. The in vitro evidence that activin and follistatin have opposing effects on ductal branching suggests a role for activin as a negative regulator of prostatic ductal branching morphogenesis.  相似文献   

9.
The activin receptor protein was isolated from the mouse embryonal carcinoma (EC) cell line P19 by three cycles of affinity chromatography on an activin A-immobilized column. The purified receptor had a specific and high affinity for activins A, AB, and B (Kd = 345 pM), but not for transforming growth factor beta. The purified activin receptor was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and ligand blotting analysis as a single protein of 70 kDa. The amino acid sequence of the first 18 NH2-terminal residues revealed that the receptor is a member of the activin receptor family. The purified receptor phosphorylated itself and exogenous substrate proteins on serine, threonine, and tyrosine residues, indicating that the activin receptor is a transmembrane serine/threonine/tyrosine protein kinase. These results suggest that signal transduction of activin employs a novel pathway via a new class of cellular receptor in EC P19 cells.  相似文献   

10.
Activins and inhibins, which belong to the TGF beta family, are composed of different combinations of alpha-, betaA-, and betaB-subunits, resulting in inhibin A (alphabetaA), inhibin B (alphabetaB), activin A (betaAbetaA), activin B (betaBbetaB), and activin AB (betaAbetaB). They regulate several cell functions, acting as paracrine/autocrine factors. Their actions, which depend on binding to specific receptors, are also modulated by follistatin. Gastroenteropancreatic (GEP) endocrine cells and endocrine tumors (ETs) produce several growth factors, but it is not well known whether they express follistatin and the various inhibin/activin subunits. We studied their expression in 65 GEP ETs using immunohistochemistry (IHC) and in situ hybridization (ISH). The alpha-subunit and follistatin were not identified in normal GEP endocrine cells and were poorly expressed in ETs. A betaA-subunit immunoreactivity (IR) was detected in A-, G-, EC-, and GIP-cells, while betaB-chain IR was present only in D-cells. The mRNAs encoding for these molecules were poorly expressed in normal tissues. BetaA- and betaB-subunits were identified in several ETs by both IHC and ISH: betaA-subunit mainly in G-cell and A-cell ETs, and betaB-subunit in D-cell, A-cell, and EC-cell ETs. Our results demonstrate a differential expression of activin/inhibin subunits among different types of GEP endocrine cells and related tumors, suggesting a role in modulation of biological functions of these normal and neoplastic endocrine cells.  相似文献   

11.
Site-specific mutagenesis of human follistatin   总被引:1,自引:0,他引:1  
Follistatin is a monomeric protein originally discovered in ovarian follicular fluid as a suppressor of pituitary follicle-stimulating hormone (FSH) secretion, and later identified as a binding protein for activin. To explore the role of the Asn-linked carbohydrate chains on the follistatin molecule in regard to the inhibition of FSH secretion and activin binding ability, site-specific mutations were introduced at either or both of the two potential Asn-linked glycosylation sites of human follistatin with 315 amino acids (hFS-315). The three types of follistatin mutants were expressed individually in Chinese hamster ovary cells. When tested for their ability to inhibit FSH secretion and to bind activin, each mutant was found to have a similar property as the non-mutated recombinant hFS-315, suggesting that glycosylation of the follistatin molecule has no effect in these functions. However, a two amino acid insertion in between the second and the third amino acid residues in hFS-315 caused the resulting compound to lose completely its inhibitory activity on FSH secretion from the pituitary as well as its binding ability to activin. This finding suggests that the amino-terminal region of the follistatin molecule is critical for both of these functions.  相似文献   

12.
13.
Activin A is a pluripotent growth factor with important roles in development, erythropoiesis and the local regulation of many tissues. At the post-translational level, the amount of activin A produced by cells may be modulated through the diversion of activin A subunits into the formation of inhibin or other activins containing heterodimeric forms. Once assembled, activin interacts with various low- and high-affinity binding proteins, such as follistatin and alpha(2)-macroglobulin, that have consequences for receptor availability. In common with other TGFbeta family members, activin signals through pairs of type I and II receptor kinases and the Smad intracellular signalling cascade. Other checkpoints have been identified such as the recently identified pseudoreceptor, BAMBI. These emerging findings point to a tightly coordinated regulation of the exposure of a cell or tissue to activin, consistent with the low amounts of this potent factor that are necessary to modulate cellular responses.  相似文献   

14.
Follistatin is a specific activin-binding protein and is supposed to control activin functions. During Xenopus embryonic development, activin is thought to act as a natural mesoderm-inducing factor. We isolated here the Xenopus follistatin cDNA from Xenopus ovary cDNA library and studied the expression of Xenopus follistatin gene during the course of early embryonic development. The Xenopus follistatin has an 84% homology at the level of deduced amino acid sequence with human and porcine follistatin. Its 3.5 kb mRNA is first expressed at the gastrula stage, when the expression of activin mRNA becomes first detectable, and increased thereafter. Another species of 2 kb mRNA become detectable from early neurula and also increased dramatically in tadpole. These results suggest that the follistatin acts also as a regulator of activin in inductive interactions during amphibian embryonic development.  相似文献   

15.
17beta-Hydroxysteroid dehydrogenase type 1 (17HSD type 1) catalyzes the reduction of estrone (E(1)) to biologically more active estradiol (E(2)). In the present study, the effect of activin, inhibin, and follistatin on 17HSD activity and 17HSD type 1 expression in cultured, unluteinized rat granulosa cells was examined. Furthermore, the effects of these hormones on 17HSD type 1 expression were compared with the expression of P450 aromatase (P450arom). Rat granulosa cells were pre-incubated in serum-free media for 3 days, followed by a 2-day treatment with activin, inhibin, follistatin and 8-Br-cAMP. Activin in increasing concentrations appeared to effect a dose-dependent increase in 17HSD activity. In addition, increasing concentrations of activin also increased 17HSD type 1 mRNA expression. Addition of 8-Br-cAMP at concentrations of 0.25 and 1.5 mmol/l together with activin significantly augmented the stimulatory effects of activin alone in the cultured cells. Neither inhibin, nor follistatin, either alone or in combination with 8-Br-cAMP, had any notable effects on 17HSD activity and 17HSD type 1 expression. Preincubation of activin with increasing concentrations of follistatin significantly diminished the stimulatory effect of activin. In the presence of follistatin, activin did not significantly increase the 8-Br-cAMP-induced 17HSD activity and 17HSD type 1 expression. The culturing of granulosa cells in the presence or the absence of inhibin or follistatin with or without 8-Br-cAMP did not alter the effect of these peptides on P450arom expression in rat granulosa cells as judged by Northern blot analysis of total RNA. However, cAMP-induced P450arom expression was enhanced by activin treatment, except when follistatin was present. This is in line with the suggested role of follistatin as an activin-binding protein, which limits the bioavailability of activin to its membrane receptors. Thus, the results support the notion of a paracrine/autocrine role of activin in follicular steroidogenesis of growing follicles.  相似文献   

16.
17β-Hydroxysteroid dehydrogenase type 1 (17HSD type 1) catalyzes the reduction of estrone (E1) to biologically more active estradiol (E2). In the present study, the effect of activin, inhibin, and follistatin on 17HSD activity and 17HSD type 1 expression in cultured, unluteinized rat granulosa cells was examined. Furthermore, the effects of these hormones on 17HSD type 1 expression were compared with the expression of P450 aromatase (P450arom). Rat granulosa cells were pre-incubated in serum-free media for 3 days, followed by a 2-day treatment with activin, inhibin, follistatin and 8-Br-cAMP. Activin in increasing concentrations appeared to effect a dose-dependent increase in 17HSD activity. In addition, increasing concentrations of activin also increased 17HSD type 1 mRNA expression. Addition of 8-Br-cAMP at concentrations of 0.25 and 1.5 mmol/l together with activin significantly augmented the stimulatory effects of activin alone in the cultured cells. Neither inhibin, nor follistatin, either alone or in combination with 8-Br-cAMP, had any notable effects on 17HSD activity and 17HSD type 1 expression. Preincubation of activin with increasing concentrations of follistatin significantly diminished the stimulatory effect of activin. In the presence of follistatin, activin did not significantly increase the 8-Br-cAMP-induced 17HSD activity and 17HSD type 1 expression. The culturing of granulosa cells in the presence or the absence of inhibin or follistatin with or without 8-Br-cAMP did not alter the effect of these peptides on P450arom expression in rat granulosa cells as judged by Northern blot analysis of total RNA. However, cAMP-induced P450arom expression was enhanced by activin treatment, except when follistatin was present. This is in line with the suggested role of follistatin as an activin-binding protein, which limits the bioavailability of activin to its membrane receptors. Thus, the results support the notion of a paracrine/autocrine role of activin in follicular steroidogenesis of growing follicles.  相似文献   

17.
 Mesoderm induction requires interaction between cells of the animal and vegetal hemispheres of the embryo. Several molecules have been proposed as candidates for mesoderm-inducing signals, with activin a particularly strong candidate. However, it has not been possible to inhibit mesoderm formation in vivo by specifically blocking activin action. Follistatin is able to inhibit the action of activin but not that of the mature region of Vg1, a member of the transforming growth factor β family. Follistatin therefore provides a useful tool for distinguishing between signalling by these two factors. We have overexpressed Xenopus follistatin mRNA and analysed the expression of several mesodermal markers. Our results show an inhibition of mesodermal formation by follistatin in a concentration-dependent manner, showing the requirement of activin for mesodermal induction. Received: 22 August 1997 / Accepted: 16 January 1998  相似文献   

18.
The activins, as members of the transforming growth factor-β superfamily, are pleiotrophic regulators of cell development and function, including cells of the myeloid and lymphoid lineages. Clinical and animal studies have shown that activin levels increase in both acute and chronic inflammation, and are frequently indicators of disease severity. Moreover, inhibition of activin action can reduce inflammation, damage, fibrosis and morbidity/mortality in various disease models. Consequently, activin A and, more recently, activin B are emerging as important diagnostic tools and therapeutic targets in inflammatory and fibrotic diseases. Activin antagonists such as follistatin, an endogenous activin-binding protein, offer considerable promise as therapies in conditions as diverse as sepsis, liver fibrosis, acute lung injury, asthma, wound healing and ischaemia–reperfusion injury.  相似文献   

19.
A transfilter apparatus is described, which is suitable for neutralization experiments on embryonic induction, and it is used to investigate the sensitivity of the Xenopus mesoderm-inducing signal to various inhibitors. The vegetal (inducing) tissue is placed on one side of a membrane sandwich and the animal (responding) tissue on the other side. The sandwich consists of a nylon gauze in between two Nucleopore filters and enables inhibitors in the solution to have effective access to the gap between the tissues. Control experiments show a high proportion of positive inductions of a ventral character. Using this apparatus, it is shown that the protein follistatin, which effectively inhibits activin A and B in vitro, has little or no effect on the natural signal. Likewise, antibodies to basic fibroblast growth factor, which inhibit in vitro, do not inhibit the natural signal. The two inhibitors together have a slight effect. It is concluded that neither activin nor bFGF are major components of the signal emitted by the vegetal cells of the Xenopus blastula and transmitted across the liquid gap, although they might have some other role to play in the process. Two agents of lower specificity do inhibit the transfilter induction: heparin and suramin. Suramin will also inhibit induction in animal-vegetal combinations with no intervening membranes while heparin does not. This suggests that the heparin inhibition can only occur when there is a liquid gap between the tissues, presumably because it can neutralize the signal in solution but cannot penetrate the explants themselves. The endogenous mesoderm-inducing factor(s) should therefore be sensitive to heparin in vitro.  相似文献   

20.
Investigations of the signalling between epithelial and mesenchymal compartments of skin during hair follicle initiation in utero and hair cycling have revealed the importance of the TGFβ superfamily in ectodermal organogenesis and morphogenesis. In particular the activins, their receptors and binding proteins such as follistatin, have been shown to be important regulators of cell proliferation, differentiation and apoptosis in hair follicle initiation, hair cycling, normal skin homeostasis and wound healing. Transgenic mice lacking various components of the activin signalling pathways display varying ectodermal pathologies including altered pelage hair follicle initiation. This review summarises the activin signal transduction pathways and the interactions between activins and other TGFβ signalling systems during hair follicle formation, hair growth cycling, skin function and wound healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号