首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unambiguous assignment of the nuclear magnetic resonance (NMR) signals of the alpha-substituents of the haems in the tetrahaem cytochrome isolated from Shewanella frigidimarina NCIMB400, was made using a combination of homonuclear and heteronuclear experiments. The paramagnetic (13)C shifts of the nuclei directly bound to the porphyrin of each haem group were analysed in the framework of a model for the haem electronic structure. The analysis yields g-tensors for each haem, which allowed the assignment of some electron paramagnetic resonance (EPR) signals to specific haems, and the orientation of the magnetic axes relative to each haem to be established. The orientation of the axial ligands of the haems was determined semi-empirically from the NMR data, and the structural results were compared with those of the homologous tetrahaem cytochrome from Shewanella oneidensis MR-1 showing significant similarities between the two proteins.  相似文献   

2.
Flavocytochrome c3 from Shewanella frigidimarina (fcc3) is a tetrahaem periplasmic protein of 64 kDa with fumarate reductase activity. This work reports the first example of NMR techniques applied to the assignment of the thermodynamic order of oxidation of the four individual haems for such large protein, expanding its applicability to a wide range of proteins. NMR data from partially and fully oxidised samples of fcc3 and a mutated protein with an axial ligand of haem IV replaced by alanine were compared with calculated chemical shifts, allowing the structural assignment of the signals and the unequivocal determination of the order of oxidation of the haems. As oxidation progresses the fcc3 haem domain is polarised, with haems I and II much more oxidised than haems III and IV, haem IV being the most reduced. Thus, during catalysis as an electron is taken by the flavin adenosine dinucleotide from haem IV, haem III is eager to re-reduce haem IV, allowing the transfer of two electrons to the active site.  相似文献   

3.
Trihaem cytochrome c3 (also known as cytochrome c551.5 and cytochrome c7) is isolated from the periplasmic space of Desulfuromonas acetoxidans, a sulfur-reducing bacterium. Thermodynamic and kinetic data for the trihaem cytochrome c3 are presented and discussed in the context of the possible physiological implications of its functional properties with respect to the natural habitat of D. acetoxidans, namely as a symbiont with green sulfur bacteria working as a mini-sulfuretum. The thermodynamic properties were determined through the fit of redox titration data, followed by NMR and visible spectroscopy, to a model of four functional centres that describes the network of cooperativities between the three haems and one protolytic centre. The kinetics of trihaem cytochrome c3 reduction by sodium dithionite were studied using the stopped-flow technique and the data were fitted to a kinetic model that makes use of the thermodynamic properties to obtain the rate constants of the individual haems. This analysis indicates that the electrons enter the cytochrome mainly via haem I. The reduction potentials of the haems in this cytochrome show little variation with pH within the physiological range, and the kinetic studies show that the rates of reduction are also independent of pH in the range studied. Thus, although the trihaem cytochrome c3 is readily reduced by hydrogenases from Desulfovibrio sp. and its haem core is similar to that of the homologous tetrahaem cytochromes c3, its physico-chemical properties are quite different, which suggests that these multihaem cytochromes with similar structures perform different functions.  相似文献   

4.
The haem-core architecture in cytochrome c3 isolated from Desulfovibrio baculatus (Norway 4) was probed using two-dimensional 1H NMR. Interhaem connectivities detected in NOE spectroscopy experiments performed at short mixing times are incompatible with the structure of the protein determined by X-ray crystallography, but agree instead with the haem arrangement found in cytochrome c3 from Desulfovibrio vulgaris (Miyazaki). These experiments show unequivocally that the relative orientation of the four haems in the two proteins is the same and does not involve the 180 degrees rotation of haems I and IV indicated in the X-ray structure determined for the cytochrome c3 from D. baculatus (Norway 4).  相似文献   

5.
The proton NMR spectra of the tetrahaem cytochrome c3 from Desulfovibrio gigas were examined while varying the pH and the redox potential. The analysis of the NMR reoxidation pattern was based on a model for the electron distribution between the four haems that takes into account haem-haem redox interactions. The intramolecular electron exchange is fast on the NMR time scale (larger than 10(5) s-1). The NMR data concerning the pH dependence of the chemical shift of haem methyl resonances in different oxidation steps and resonance intensities are not compatible with a non-interacting model and can be explained assuming a redox interaction between the haems. A complete analysis at pH* = 7.2 and 9.6, shows that the haem-haem interacting potentials cover a range from -50 mV to +60 mV. The midpoint redox potentials of some of the haems, as well as some of their interacting potentials, are pH-dependent. The physiological relevance of the modulation of the haem midpoint redox potentials by both the pH and the redox potential of the solution is discussed.  相似文献   

6.
 The trihaem cytochrome c 551.5, formerly known as cytochrome c 7, from the organism Desulfuromonas acetoxidans, has been studied in the reduced state by 2D proton NMR. The haem proton resonances were assigned, and several nuclear Overhauser enhancements (NOEs) between resonances arising from different haems were detected and assigned. The relative orientations of the three haems were calculated by fitting both the intensities of the interhaem NOEs and the magnitudes of the ring current shifts of the haem resonances, following the strategy previously used by the authors to reassess the X-ray structure of the haem core in tetrahaem cytochrome c 3 from Desulfumicrobium baculatum. It is concluded that, although the comparison of the protein sequence with those of the tetrahaem cytochromes c 3 shows that in cytochrome c 551.5 about 40% of the sequence is deleted, including the region involved in the attachment of the second of the four haems, this does not induce any significant rearrangement of the remaining three haems other than a slight decrease in the iron-iron distance between two of the haems, namely those corresponding to haems I and IV of cytochrome c 3. Received: 2 February 1996 / Accepted: 26 March 1996  相似文献   

7.
Two c-type cytochromes were purified and characterized by electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopic techniques, from the sulfate-reducer nitrogen-fixing organism, Desulfovibrio desulfuricans strain Berre-Eau (NCIB 8387). The purification procedures included several chromatographic steps on alumina, carboxymethylcellulose and gel filtration. A tetrahaem and a monohaem cytochrome were identified. The multihaem cytochrome has visible, EPR and NMR spectra with general properties similar to other low-potential bis-histidinyl axially bound haem proteins, belonging to the class of tetrahaem cytochrome c3 isolated from other Desulfovibrio species. The monohaem cytochrome c553 is ascorbate-reducible and its EPR and NMR data are characteristic of a cytochrome with methionine-histidine ligation. Their properties are compared with other homologous proteins isolated from sulfate-reducing bacteria.  相似文献   

8.
 Reduction of the haems in tetrahaem cytochromes c 3 is a cooperative process, i.e., reduction of each of the haems depends on the redox states of the other haems. Furthermore, electron transfer is coupled to proton transfer (redox-Bohr effect). Two of its haems and a strictly conserved nearby phenylalanine residue, F20, in Desulfovibrio vulgaris (Hildenborough) cytochrome c 3 form a structural motif that is present in all cytochromes c 3 and also in cytochrome c oxidase. A putative role for this phenylalanine residue in the cooperativity of haem reduction was investigated. Therefore, this phenylalanine was replaced, with genetic techniques, by isoleucine and tyrosine in D. vulgaris (Hildenborough) cytochrome c 3. Cyclic voltammetry studies revealed a small increase (30 mV) in one of the macroscopic redox potentials in the mutated cytochromes. EPR showed that the main alterations occurred in the vicinity of haem I, the haem closest to residue 20 and one of the haems responsible for positive cooperativities in electron transfer of D. vulgaris cytochrome c 3. NMR studies of F20I cytochrome c 3 demonstrated that the haem core architecture is maintained and that the more affected haem proton groups are those near the mutation site. NMR redox titrations of this mutated protein gave evidence for only small changes in the relative redox potentials of the haems. However, electron/electron and proton/electron cooperativity are maintained, indicating that this aromatic residue has no essential role in these processes. Furthermore, chemical modification of the N-terminal amino group of cytochrome c 3 backbone, which is also very close to haem I, had no effect on the network of cooperativities. Received: 25 June 1996 / Accepted: 26 August 1996  相似文献   

9.
The 300-MHz proton NMR spectra of the tetrahaem cytochrome c3 from Desulfovibrio vulgaris were examined while varying the pH and the redox potential. The analysis of the complete NMR reoxidation pattern was done taking into account all the 16 redox states that can be present in the redox titration of a tetra-redox-center molecule. A network of saturation transfer experiments performed at different oxidation stages, between the fully reduced and the fully oxidized states, allowed the observation of different resonances for some of the haem methyl groups. In the present experimental conditions, some of the haems show a fast intramolecular electron exchange rate, but the intermolecular electron exchange is always slow. In intermediate reoxidation stages, large shifts of the resonances of some haem methyl groups were observed upon changing the pH. These shifts are discussed in terms of a pH dependence of the haem midpoint redox potentials. The physiological relevance of this pH dependence is discussed.  相似文献   

10.
BACKGROUND: Haem-containing proteins are directly involved in electron transfer as well as in enzymatic functions. The nine-haem cytochrome c (9Hcc), previously described as having 12 haem groups, was isolated from cells of Desulfovibrio desulfuricans ATCC 27774, grown under both nitrate- and sulphate-respiring conditions. RESULTS: Models for the primary and three-dimensional structures of this cytochrome, containing 292 amino acid residues and nine haem groups, were derived using the multiple wavelength anomalous dispersion phasing method and refined using 1.8 A diffraction data to an R value of 17.0%. The nine haem groups are arranged into two tetrahaem clusters, with Fe-Fe distances and local protein fold similar to tetrahaem cytochromes c3, while the extra haem is located asymmetrically between the two clusters. CONCLUSIONS: This is the first known three-dimensional structure in which multiple copies of a tetrahaem cytochrome c3-like fold are present in the same polypeptide chain. Sequence homology was found between this cytochrome and the C-terminal region (residues 229-514) of the high molecular weight cytochrome c from Desulfovibrio vulgaris Hildenborough (DvH Hmc). A new haem arrangement in domains III and IV of DvH Hmc is proposed. Kinetic experiments showed that 9Hcc can be reduced by the [NiFe] hydrogenase from D. desulfuricans ATCC 27774, but that this reduction is faster in the presence of tetrahaem cytochrome c3. As Hmc has never been found in D. desulfuricans ATCC 27774, we propose that 9Hcc replaces it in this organism and is therefore probably involved in electron transfer across the membrane.  相似文献   

11.
Two-dimensional NMR has been used to make specific assignments for the four haems in Desulfovibrio vulgaris (Hildenborough) ferrocytochrome c3 and to determine their haem core architecture. The NMR signals from the haem protons were assigned according to type using two-dimensional NMR experiments which led to four sets of signals, one for each of the haems. Specific assignments were obtained by calculating the ring current shifts which arise from other haems and aromatic residues. Observation of interhaem NOEs confirmed the assignments and established that the relative orientation of the haems is identical to that found in the crystal structure of D. vulgaris (Miyazaki F.) ferricytochrome c3. Assignments were also made for all the aromatic residues except for the haem ligands and F20, which is shifted under the main envelope of signals. The NOEs observed between these aromatic protons and haem protons confirm the similarity between the structures in solution and in the crystal. The assignments reported here are the basis for the cross-assignments of the four microscopic haem redox potentials to specific haems in the protein structure [Salgueiro, C. A., Turner, D. L., Santos, H., LeGall, J. and Xavier, A. V. (1992) FEBS Lett., in the press]  相似文献   

12.
A monomeric nine-haem cytochrome c (9Hcc) with 292 amino acid residues was isolated from cells of the sulfate- and nitrate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 grown under both nitrate- and sulfate-respiring conditions. The nucleotide sequence encoding the 292 residues was determined, allowing the correction of about 10% of the previous primary structure, determined from 1.8?Å electron density maps. The refinement at 1.8?Å resolution of the structural model was completed, giving an R-value of 16.5%. The nine haem groups are arranged into two tetrahaem clusters, located at both ends of the molecule, with Fe-Fe distances and local protein fold very similar to tetrahaem cytochromes c 3, and the extra haem is located asymmetrically between the two regions. The new primary sequence determination confirmed the 39% sequence homology found between this cytochrome and the C-terminal region (residues 229–514) of the high-molecular-weight cytochrome c (Hmc) from D. vulgaris Hildenborough, providing strong evidence of structural similarity between 9Hcc and the C-terminal region of Hmc. The interaction between 9Hcc and the tetrahaem cytochrome c 3 from the same organism was studied by modelling methods, and the results suggest that a specific interaction is possible between haem 4 of tetrahaem cytochrome c 3 and haem 1 or haem 2 of 9Hcc, in agreement with previous kinetic experiments which showed the catalytic effect of the tetrahaem cytochrome c 3 upon the reduction of 9Hcc by the [NiFe] hydrogenase from D. desulfuricans ATCC 27774. These studies suggest a role for 9Hcc as part of the assembly of redox proteins involved in recycling the molecular hydrogen released by the cell as a result of substrate oxidation.  相似文献   

13.
14.
A dihaem cytochrome (Mr 37 400) with cytochrome c peroxidase activity was purified from Pseudomonas stutzeri (ATCC 11 607). The haem redox potentials are far apart: one of the haems is completely ascorbate-reducible and the other is only reduced by dithionite. The coordination, spin states and redox properties of the covalently bound haems were probed by visible, NMR and electron paramagnetic resonance (EPR) spectroscopies in three oxidation states. In the oxidized state, the low-temperature EPR spectrum of the native enzyme is a complex superimposition of three components: (I) a low-spin haem indicating a histidinyl-methionyl coordination; (II) a low-spin haem indicating a histidinyl-histidinyl coordination; and (III) a minor high-spin haem component. At room temperature, NMR and optical studies indicate the presence of high-spin and low-spin haems, suggesting that for one of the haems a high-spin to low-spin transition is observed when temperature is decreased. In the half-reduced state, the component I (high redox potential) of the EPR spectrum disappears and induces a change in the g-values and linewidth of component II; the high-spin component II is no longer detected at low temperature. Visible and NMR studies reveal the presence of a high-spin ferric and a low-spin (methionyl-coordinated) ferrous state. The NMR data fully support the haem-haem interaction probed by EPR. In the reduced state, the NMR spectrum indicates that the low-potential haem is high-spin ferrous.  相似文献   

15.
The orientation of the two haems of the Escherichia coli ubiquinol oxidase:O2 reductase, cytochrome bo, has been determined by electron paramagnetic resonance studies on oriented multilayer preparations of cytoplasmic membrane fragments. The enzyme contains a low-spin b-like haem and a high-spin b-like haem, designated cytochromes b and o respectively. Both haems are oriented with their planes perpendicular to the membrane plane, further extending the catalogue of structural and functional similarities between this enzyme and the mammalian cytochrome c oxidase, cytochrome aa3.  相似文献   

16.
N Sone  Y Fujiwara 《FEBS letters》1991,288(1-2):154-158
Thermophilic bacterium PS3 cultured under slightly air-limited conditions showed a mitochondrion-like cytochrome pattern similar to that in vigorously aerated cells, but an o-type cytochrome replaced cytochrome a3 as the CO-binding centre. Cytochrome cao-type oxidase was purified from the cell membranes by almost the same procedure as used for cytochrome caa3. The turnover number of cytochrome cao was higher than that of cytochrome caa3, but the Km's of the two enzymes for cytochrome c and O2 were almost the same. Gel electrophoresis in the presence of sodium dodecyl sulfate gave bands of four subunits at the identical positions both for cytochrome cao and cytochrome caa3. Cytochrome cao contained a novel kind of haem in addition to haems C and A. This novel haem is likely to be haem O, very recently found as the chromophore of the cytochrome bo complex in Escherichia coli. These data suggest that cytochrome cao is an alternative form of cytochrome c oxidase (cytochrome caa3), in which the cytochrome a3 centre of the enzyme is replaced with cytochrome o.  相似文献   

17.
A highly active cytochrome c nitrite reductase from the haloalkaliphilic sulfur-oxidizing non-ammonifying bacterium Tv. nitratireducens strain ALEN 2 (TvNiR) was isolated and purified to apparent electrophoretic homogeneity. The enzyme catalyzes reductive conversion of nitrite and hydroxylamine to ammonia without release of any intermediates, as well as reduction of sulfite to sulfide. TvNiR also possesses peroxidase activity. In solution TvNiR exists as a stable hexamer with molecular mass of about 360kDa. Each TvNiR subunit with molecular mass of 64kDa contains, as defined from spectral properties and sequence analysis, eight c-type haems. Seven of them are coordinated by the characteristic CXXCH motifs for haem c binding, while one is bonded by the unique CXXCK motif. So far, this motif coordinating the catalytic haem was found only in bacterial cytochrome c nitrite reductases (ccNiRs). All the residues essential for catalysis in the known ccNiRs were also identified in TvNiR. However, TvNiR is only distantly related to known bacterial ammonifying dissimilatory ccNiRs, sharing no more than 20% homology.  相似文献   

18.
Haem-containing proteins are directly involved in electron transfer as well as in enzymatic functions. The "split-Soret" cytochrome (SSC) was isolated from the sulfate- and nitrate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 and has no significant nitrate or nitrite reductase activity. The protein received its name due its unusual spectral properties. It is a dimer containing two identical subunits of 26.3 kDa, each with two haem-c groups. A preliminary model for the three-dimensional structure of this cytochrome was derived using the Multiple Wavelength Anomalous Dispersion (MAD) phasing method. This model shows that SSC is indeed a dimer containing four haems at one end of the molecule. In each monomer the two haems have their edges overlapped within van der Waals contacts with an iron-to-iron distance of 9?Å. The polypeptide chain of each monomer supplies the sixth axial ligand to the haems of the other monomer. This work shows that SSC constitutes a new class of cytochrome. The stacking of the two haems in the monomer within van der Waals distances of each other, and also the short (van der Waals) distances between the two monomers in the dimeric molecule are unprecedented in hemoproteins. This particular haem arrangement is an excellent model for the spectral study (undertaken several years ago) of haem-haem interaction using the aggregated haem undecapeptide derived from mammalian cytochrome c.  相似文献   

19.
NMR and visible spectroscopy coupled to redox measurements were used to determine the equilibrium thermodynamic properties of the four haems in cytochrome c3 under conditions in which the protein was bound to ligands, the small anion phosphate and the protein rubredoxin with the iron in the active site replaced by zinc. Comparison of these results with data for the isolated cytochrome shows that binding of ligands causes only small changes in the reduction potentials of the haems and their pairwise interactions, and also that the redox-sensitive acid-base centre responsible for the redox-Bohr effect is essentially unaffected. Although neither of the ligands tested is a physiological partner of cytochrome c3, the small changes observed for the thermodynamic properties of cytochrome c3 bound to these ligands vs. the unbound state, indicate that the thermodynamic properties measured for the isolated protein are relevant for a physiological interpretation of the role of this cytochrome in the bioenergetic metabolism of Desulfovibrio.  相似文献   

20.
Cytochrome cbb(3) is a cytochrome c-oxidising isoenzyme that belongs to the superfamily of respiratory haem/copper oxidases. We have developed a purification method yielding large amounts of pure cbb(3) complex from the soil bacterium Pseudomonas stutzeri. This cytochrome cbb(3) complex consists of three subunits (ccoNOP) in a 1:1:1 stoichiometry and contains two b-type and three c-type haems. The protein complex behaves as a monomer with an overall molecular weight of 114.0+/-8.9 kDa and a s(0)(20,w) value of 8.9+/-0.3 S as determined by analytical ultracentrifugation. Crystals diffracting to 5.0 A resolution have been grown by the vapour diffusion sitting drop method to an average size of 0.1 x 0.1 x 0.3 mm. This is the first crystallisation report of a (cbb(3))-type oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号