首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nogo-66 receptor at cerebellar cortical glia gap junctions in the rat   总被引:5,自引:0,他引:5  
Liu X  Liu YY  Jin WL  Liu HL  Ju G 《Neuro-Signals》2005,14(3):96-101
Nogo-A is a myelin inhibitor of neurite outgrowth that accounts for the difficulty in fiber regeneration in the central nervous system. Its 66-amino-acid extracellular domain (Nogo-66) contributes to the inhibitory activity of Nogo-A. The Nogo-66 receptor is widely distributed in neurons of the central nervous system, including the cerebellum. In our study on the distribution of Nogo-66 receptor in the cerebellar cortex in the rat, we unexpectedly found Nogo-66 receptor immunoreactivity in the glia cells, particularly abundant beneath the Purkinje cells. The presence of Nogo-66 receptor in glia cells has not been reported before. A detailed study was thus conducted. Immunoelectron microscopic investigation clearly demonstrated that the Nogo-66 receptor immunoreactivity could be ascertained at the gap junction between glia cells, indicating that the Nogo-66 receptor may modulate the communication between glia cells through gap junctions.  相似文献   

2.
The high level of intercellular communication mediated by gap junctions between astrocytes indicates that, besides individual astrocytic domains, a second level of organization might exist for these glial cells as they form communicating networks. Therefore,the contribution of astrocytes to brain function should also be considered to result from coordinated groups of cells. To evaluate the shape and extent of these networks we have studied the expression of connexin 43, a major gap junction protein in astrocytes, and the intercellular diffusion of gap junction tracers in two structures of the developing brain, the hippocampus and the cerebral cortex. We report that the shape of astrocytic networks depends on their location within neuronal compartments ina defined brain structure. Interestingly, not all astrocytes are coupled, which indicates that connections within these networks are restricted. As gap junctional communication in astrocytes is reported to contribute to several glial functions, differences in the shape of astrocytic networks might have consequences on neuronal activity and survival.  相似文献   

3.
S Finkbeiner 《Neuron》1992,8(6):1101-1108
Stimulus-evoked cellular responses are sometimes organized in the form of propagating waves of cytoplasmic Ca2+ increase. Ca2+ waves can be elicited in cultured astrocytes by the neurotransmitter glutamate; however, the propagation mechanism is unknown. Here, qualitative and quantitative features of propagation suggest that astrocytic Ca2+ waves are mediated by an intracellular signal that crosses intercellular junctions. The role of gap junctions in cell-cell Ca2+ wave propagation was specifically tested. Functional gap junctions were demonstrated using a noninvasive fluorescence recovery method and the gap junction blockers halothane and octanol. Gap junction closure prevented intracellular waves from propagating between cells without affecting the velocity of the intracellular wave itself. The pivotal role played by the gap junction creates the potential for dynamic changes in glial connectivity and long-range glial signaling.  相似文献   

4.
Abstract: The role of oleic acid in the modulation of gap junction permeability was studied in cultured rat astrocytes by the scrape-loading/Lucifer yellow transfer technique. Incubation with oleic acid caused a dose-dependent inhibition of gap junction permeability by 79.5% at 50 µ M , and no further inhibition was observed by increasing the oleic acid concentration to 100 µ M . The oleic acid-mediated inhibition of gap junction permeability was reversible and was prevented by bovine serum albumin. The potency of oleic acid-related compounds in inhibiting gap junction permeability was arachidonic acid > oleic acid > oleyl alcohol > palmitoleic acid > stearic acid > octanol > caprylic acid > palmitic acid > methyloleyl ester. Oleic acid and arachidonic acid, but not methyloleyl ester, increased glucose uptake by astrocytes. Neither oleic acid nor arachidonic acid increased glucose uptake in the poorly coupled glioma C6 cells. These results support that the inhibition of gap junction permeability is associated with the increase in glucose uptake. We suggest that oleic acid may be a physiological mediator of the transduction pathway leading to the inhibition of intercellular communication.  相似文献   

5.
Aquaporin-4 (AQP4) water channels and gap junction proteins (connexins) are two classes of astrocytic membrane proteins critically involved in brain water and ion homeostasis. AQP4 channels are anchored by α1-syntrophin to the perivascular astrocytic endfoot membrane domains where they control water flux at the blood-brain interface while connexins cluster at the lateral aspects of the astrocytic endfeet forming gap junctions that allow water and ions to dissipate through the astrocyte syncytium. Recent studies have pointed to an interdependence between astrocytic AQP4 and astrocytic gap junctions but the underlying mechanism remains to be explored. Here we use a novel transgenic mouse line to unravel whether β1-syntrophin (coexpressed with α1-syntrophin in astrocytic plasma membranes) is implicated in the expression of AQP4 isoforms and formation of gap junctions in brain. Our results show that while the effect of β1-syntrophin deletion is rather limited, double knockout of α1- and β1-syntrophin causes a downregulation of the novel AQP4 isoform AQP4ex and an increase in the number of astrocytic gap junctions. The present study highlight the importance of syntrophins in orchestrating specialized functional domains of brain astrocytes.  相似文献   

6.
Glutamate uptake is a main function of astrocytes to keep extracellular glutamate levels low and protect neurons against glutamate-induced excitotoxicity. On the other hand, astrocyte networks formed by gap junctions, which are consisted with connexins and connecting neighboring cells, are reported to play a critical role in maintaining the homeostasis in the brain. In the present study, we examined the effects of gap junction inhibitors on the glutamate uptake activity in cultured rat cortical astrocytes. At first, we confirmed the effects of gap junction inhibitors, 1-octanol and carbenoxolone, on cell–cell communication by the scrape-loading assay using a fluorescent dye Lucifer yellow. Both of 1-octanol and carbenoxolone treatments for 20 min in cultured astrocytes significantly suppressed the cell–cell communication assessed as the distance of dye-spreading. 1-octanol and carbenoxolone increased the glutamate uptake by astrocytes and glutamate aspartate transporter (GLAST) expression on the cell membrane. These results suggest that gap junction inhibitors increase the glutamate uptake activity through the increase of GLAST proteins located on the cell membrane. The regulation of gap junction in astrocytes might protect neurons against glutamate-induced excitotoxicity.  相似文献   

7.
S Lee  N B Gilula  A E Warner 《Cell》1987,51(5):851-860
The ability of gap junction antibodies to block dye transfer and electrical coupling was examined in the compacted 8-cell mouse zygote. In control zygotes, Lucifer yellow injected into 1 cell transferred to the rest of the embryo. When antibodies raised against the major protein extracted from gap junctions were co-injected with Lucifer yellow, dye transfer failed in 86% of the zygotes tested and electrical coupling was almost completely inhibited. Subsequently, the antibody-containing cells were extruded. When the antibodies were injected into 1 cell at the 2-cell stage, 82% of the zygotes divided normally to the 8-cell stage. Cells containing gap junction antibodies were uncompacted, but continued to divide. We conclude that these antibodies inhibit gap junctional communication in the early mouse zygote and that communication through gap junctions may be involved in the maintenance of compaction.  相似文献   

8.
Gap junctional communication during neuromuscular junction formation   总被引:1,自引:0,他引:1  
F Allen  A Warner 《Neuron》1991,6(1):101-111
We have tested whether gap junctions form between nerve and muscle during their initial contact, before establishing the chemical synapse. Embryonic Xenopus stage 18-20 myotomes and neural tubes were permeabilized with DMSO to load appropriate reagents, dissociated, and cocultured. When myotomes, loaded with Lucifer yellow, were cocultured with unlabeled neural tube cells, 23% of the neurons contained dye after 24 hr. Affinity-purified gap junction antibodies loaded into myocytes or neurons reduced neuronal labeling significantly to 5%. [3H]uridine nucleotide transfer was observed in both directions between myocytes and neurons. Again gap junction antibodies substantially reduced recipient label. In all cases preimmune IgGs did not reduce transfer. When acetylcholine receptor clustering was examined in cultures containing gap junction antibodies, no difference in the number of neuronally induced AChR clusters was observed. This suggests that the cluster-inducing signal between nerve and muscle does not pass through gap junctions.  相似文献   

9.
A polarity in gap junctional permeability normally exists in 32-cell stage Xenopus embryos, in that dorsal cells are relatively more coupled than ventral cells, as measured by transfer of Lucifer yellow dye. The current study extends our analysis of whether gap junctional permeability at this stage can be modulated by secreted factors, and whether the polarity in gap junctional permeability correlates with the effects of ectopic expression of these secreted factors on the subsequent phenotype of the developing embryo. Following ectopic expression of activin B or Wnt-1, but not bFGF, the transfer of Lucifer yellow between ventral animal pole cells is detected in a greater percentage of 32-cell stage embryos. This increased incidence of dye transfer between ventral cells correlates with axial duplications later in development. However, there are differences in the extent of Lucifer yellow transfer between animal and vegetal hemisphere blastomeres which is dependent on whether activin B or Wnt-1 RNA had previously been injected. These results suggest that enhanced gap junctional permeability between ventral cells of 32-cell Xenopus embryos correlates with subsequent defects in the dorsoventral axis, although there are at present no direct data demonstrating a role for gap junctions in establishment or maintenance of this axis. Moreover, while both activin B and bFGF are mesoderm-inducing growth factors, only activin B has effects on gap junctional permeability in 32-cell embryos following ectopic expression, demonstrating an interesting difference in physiological responses to expression of these factors.  相似文献   

10.
The following two processes related to astrocytes are thought to depend on intercellular coupling through gap junctions: the spatial buffering of K+o and the spread of calcium waves in the astrocytic syncytium. We have used the following two independent methods to measure the open state of gap junctions: injection of lucifer yellow, and optical calcium imaging of calcium waves in response to probing the cells with a micropipette. The spread of lucifer yellow and calcium waves was inhibited if the cells were treated with either phorbol 12-myristate 13-acetate (PMA) or a synthetic diacylglycerol that activates protein kinase C. Down-regulation of protein kinase C by a 24-h treatment with PMA inhibited the uncoupling effect of PMA, supporting a direct involvement of protein kinase C in the regulation of astroglial gap junctions. Purinergic P2Y receptors, which are coupled to the inositol phospholipid pathway, are expressed by most astroglia in culture. Activation of the P2Y purinergic receptor with the selective agonist 2-methylthio-ATP uncoupled astroglia in a manner similar to the effect of treatment with PMA. Modulation of gap junctional conductance could isolate specific pathways within the astrocytic syncytium to form an extraneuronal information transfer network in brain.  相似文献   

11.
Cultured myometrial cells establish communicating gap junctions   总被引:5,自引:0,他引:5  
Myometrial cells were isolated and cultured from term rat uterus. The myometrial origin of the cultures was verified by antibody staining of cellular desmin and alpha-smooth muscle actin. The presence of functional gap junctions was indicated by transfer of radiolabeled nucleotide and microinjected Lucifer yellow dye. The cultured cells expressed mRNA recognized by a connexin43 gap junction cDNA probe. To our knowledge, this is the first report that isolated myometrial cells form gap junctions in culture.  相似文献   

12.
We have identified cells expressing Cx26, Cx30, Cx32, Cx36 and Cx43 in gap junctions of rat central nervous system (CNS) using confocal light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling (FRIL). Confocal microscopy was used to assess general distributions of connexins, whereas the 100-fold higher resolution of FRIL allowed co-localization of several different connexins within individual ultrastructurally-defined gap junction plaques in ultrastructurally and immunologically identified cell types. In >4000 labeled gap junctions found in >370 FRIL replicas of gray matter in adult rats, Cx26, Cx30 and Cx43 were found only in astrocyte gap junctions; Cx32 was only in oligodendrocytes, and Cx36 was only in neurons. Moreover, Cx26, Cx30 and Cx43 were co-localized in most astrocyte gap junctions. Oligodendrocytes shared intercellular gap junctions only with astrocytes, and these heterologous junctions had Cx32 on the oligodendrocyte side and Cx26, Cx30 and Cx43 on the astrocyte side. In 4 and 18 day postnatal rat spinal cord, neuronal gap junctions contained Cx36, whereas Cx26 was present in leptomenigeal gap junctions. Thus, in adult rat CNS, neurons and glia express different connexins, with "permissive" connexin pairing combinations apparently defining separate pathways for neuronal vs. glial gap junctional communication.  相似文献   

13.
We have developed a simple dye transfer method, which allows the gap junction permeability of lens fiber cells to be quantified. Two fixable fluorescent dyes (Lucifer yellow and rhodamine-dextran) were introduced into peripheral lens fiber cells via mechanical damage induced by removing the lens capsule. After a defined incubation period, lenses were fixed, sectioned, and the distribution of the dye recorded using confocal microscopy. Rhodamine-dextran and Lucifer yellow both labeled the extracellular space between fiber cells and the cytoplasm of fiber cells that had been damaged by capsule removal. For the gap junctional permeable dye Lucifer yellow, however, labeling was not confined to the damaged cells and exhibited intercellular diffusion away from the damaged cells. The extent of dye diffusion was quantified by collecting radial dye intensity profiles from the confocal images. Effective diffusion coefficients (D eff ) for Lucifer yellow were then calculated by fitting the profiles to a series of model equations, which describe radial diffusion in a sphere. D eff is the combination of dye diffusion through the cytoplasm and through gap junction channels. To calculate the gap junctional permeability (P j ) an estimate of the cytoplasmic diffusion coefficient (D cyt = 0.7 × 10−6 cm2/sec) was obtained by observing the time course of dye diffusion in isolated elongated fiber cells loaded with Lucifer yellow via a patch pipette. Using this approach, we have obtained a value for P j of 31 × 10−5 cm/sec for fiber-fiber gap junctions. This value is significantly larger than the value of P j of 4.4 × 10−6 cm/sec reported by Rae and coworkers for epithelial-fiber junctions (Rae et al., 1996. J. Membrane Biol. 150:89–103), and most likely reflects the high abundance of gap junctions between lens fiber cells. Received: 1 December 1998/Revised: 22 February 1999  相似文献   

14.
Cell-cell communication through gap junctions was examined in Xenopus laevis embryos between the 16-cell and early blastula stages using Lucifer Yellow, Fluorescein, lead EDTA and dicyanoargentate as probes of junctional permeability. Injections were made into cells whose position was identified with respect to the primary cleavage axis and the grey crescent. FITC dextrans revealed cytoplasmic bridges between the injected cell and its sister only. In the animal pole at the 16-cell stage at the future dorsal side of the embryo, Lucifer Yellow was frequently and extensively transferred between cells through gap junctions. At the future ventral side gap junctional transfer of Lucifer Yellow was significantly less frequent and less extensive. The asymmetry of transfer between future dorsal and ventral sides of the animal pole was more marked at the 32-cell stage. In the vegetal pole also at the 32-cell stage, a dorsoventral difference in junctional permeability to Lucifer Yellow was observed. At the 64-cell stage the transfer of Lucifer Yellow was relatively frequent between cells lying in the same radial segment in the animal pole; transfer into cells outside each segment was infrequent, except at the grey crescent. At the 128-cell stage, Lucifer transfer between future dorsal or future ventral cells in the equatorial region was infrequent. A high incidence of transfer was restored at the future dorsal side at the 256-cell stage. At the 32-cell stage, fluorescein was infrequently transferred between animal pole cells although lead EDTA moved from cell to cell with high, comparable frequency in future dorsal and ventral regions. Dicyanoargentate always transferred extensively, both at the 32- and 64-cell stages. Treatment of embryos with methylamine raised intracellular pH by 0.15 units, increased the electrical conductance of the gap junction and produced a 10-fold increase in the frequency of Lucifer Yellow transfer through gap junctions in future ventral regions of the animal pole at the 32-cell stage.  相似文献   

15.
Abstract: Nitric oxide (?NO) synthase (NOS) was induced in cultured rat astrocytes by incubation with lipopolysaccharide (LPS) for 18 h and gap junction permeability was assessed by the scrape-loading/Lucifer yellow transfer technique. Induction of NOS was confirmed by determining either the NG-methyl-l -arginine (NMMA)-inhibitable production of nitrites and nitrates or the conversion of l -[3H]arginine to l -[3H]citrulline. Incubation with LPS dose-dependently inhibited gap junction permeability to 63.3% at 0.05 µg/ml LPS and no further inhibition was observed on increasing the LPS concentration up to 0.5 µg/ml. LPS-mediated gap junction inhibition was irreversible but was prevented by incubation with the NOS inhibitor NMMA and with the superoxide anion (O2??) scavenger superoxide dismutase. Incubation of the cells with both the ?NO donor S-nitroso-N-acetylpenicillamine and the O2??-generating system xanthine/xanthine oxidase inhibited gap junction permeability. These results suggest that the in situ reaction between ?NO and O2??, to form the peroxynitrite anion (ONOO?), may be responsible for the inhibition of gap junction permeability. Scavenging the ONOO? derivative hydroxyl radical (?OH) with either dimethyl sulfoxide or mannitol prevented the LPS-mediated inhibition of gap junction permeability. Finally, exposure of astrocytes to authentic ONOO? caused a dose-dependent inhibition of gap junction permeability (65.7% of inhibition at 0.5 mM ONOO?). The pathophysiological relevance of ONOO?-mediated inhibition of gap junctional communication in astrocytes after NOS induction by LPS is discussed, stressing the possible role played by this mechanism in some neurodegenerative diseases.  相似文献   

16.
We have identified cells expressing Cx26, Cx30, Cx32, Cx36 and Cx43 in gap junctions of rat central nervous system (CNS) using confocal light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling (FRIL). Confocal microscopy was used to assess general distributions of connexins, whereas the 100-fold higher resolution of FRIL allowed co-localization of several different connexins within individual ultrastructurally-defined gap junction plaques in ultrastructurally and immunologically identified cell types. In >4000 labeled gap junctions found in >370 FRIL replicas of gray matter in adult rats, Cx26, Cx30 and Cx43 were found only in astrocyte gap junctions; Cx32 was only in oligodendrocytes, and Cx36 was only in neurons. Moreover, Cx26, Cx30 and Cx43 were co-localized in most astrocyte gap junctions. Oligodendrocytes shared intercellular gap junctions only with astrocytes, and these heterologous junctions had Cx32 on the oligodendrocyte side and Cx26, Cx30 and Cx43 on the astrocyte side. In 4 and 18 day postnatal rat spinal cord, neuronal gap junctions contained Cx36, whereas Cx26 was present in leptomenigeal gap junctions. Thus, in adult rat CNS, neurons and glia express different connexins, with “permissive” connexin pairing combinations apparently defining separate pathways for neuronal vs. glial gap junctional communication.  相似文献   

17.
Cell migration is an essential process in organ development, differentiation, and wound healing, and it has been hypothesized that gap junctions play a pivotal role in these cell processes. However, the changes in gap junctions and the capacity for cell communication as cells migrate are unclear. To monitor gap junction plaques during cell migration, adrenocortical cells were transfected with cDNA encoding for the connexin 43-green fluorescent protein. Time-lapse imaging was used to analyze cell movements and concurrent gap junction plaque dynamics. Immunocytochemistry was used to analyze gap junction morphology and distribution. Migration was initiated by wounding the cell monolayer and diffusional coupling was demonstrated by monitoring Lucifer yellow dye transfer and fluorescence recovery after photobleaching (FRAP) in cells at the wound edge and in cells located some distance from the wound edge. Gap junction plaques were retained at sites of contact while cells migrated in a "sheet-like" formation, even when cells dramatically changed their spatial relationship to one another. Consistent with this finding, cells at the leading edge retained their capacity to communicate with contacting cells. When cells detached from one another, gap junction plaques were internalized just prior to cell process detachment. Although gap junction plaque internalization clearly was a method of gap junction removal during cell separation, cells retained gap junction plaques and continued to communicate dye while migrating.  相似文献   

18.
《The Journal of cell biology》1994,127(6):1895-1905
The effect of 12-O-tetradeconylphorbol-13-acetate (TPA) on gap junction assembly between Novikoff hepatoma cells was examined. Cells were dissociated with EDTA to single cells and then reaggregated to form new junctions. When TPA (25 nM) was added to the cells at the onset of the 60-min reaggregation, dye transfer was detected at only 0.6% of the cell-cell interfaces compared to 72% for the untreated control and 74% for 4-alpha TPA, an inactive isomer of TPA. Freeze-fracture electron microscopy of reaggregated control cells showed interfaces containing an average of more than 600 aggregated intramembranous gap junction particles, while TPA-treated cells had no gap junctions. However, Lucifer yellow dye transfer between nondissociated cells via gap junctions was unaffected by 60 min of TPA treatment. Therefore, TPA dramatically inhibited gap junction assembly but did not alter channel gating nor enhance disassembly of preexisting gap junction structures. Short term TPA treatment (< 30 min) increased phosphorylation of the gap junction protein molecular weight of 43,000 (Cx43), but did not change the cellular level of Cx43. Cell surface biotinylation experiments suggested that TPA did not substantially reduce the plasma membrane concentration of Cx43. Therefore, the simple presence of Cx43 in the plasma membrane is not sufficient for gap junction assembly, and protein kinase C probably exerts an effect on assembly of gap junctions at the plasma membrane level.  相似文献   

19.
20.
Wang B  Xiao Z  Chen B  Han J  Gao Y  Zhang J  Zhao W  Wang X  Dai J 《PloS one》2008,3(3):e1856

Background

Neural stem/progenitor cells (NPCs) can differentiate into neurons, astrocytes and oligodendrocytes. NPCs are considered valuable for the cell therapy of injuries in the central nervous system (CNS). However, when NPCs are transplanted into the adult mammalian spinal cord, they mostly differentiate into glial lineage. The same results have been observed for endogenous NPCs during spinal cord injury. However, little is known about the mechanism of such fate decision of NPCs.

Methodology/Principal Findings

In the present study, we have found that myelin protein and Nogo-66 promoted the differentiation of NPCs into glial lineage. NgR and mTOR-Stat3 pathway were involved in this process. Releasing NgR from cell membranes or blocking mTOR-STAT3 could rescue the enhanced glial differentiation by Nogo-66.

Conclusions/Significance

These results revealed a novel function of Nogo-66 in the fate decision of NPCs. This discovery could have profound impact on the understanding of CNS development and could improve the therapy of CNS injuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号