首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hb S Travis is a previously undescribed sickling hemoglobin with two amino acid substitutions in the beta chain: beta6 Glu leads to Val and beta142 Ala leads to Val. The beta6 Glu leads to Val mutation imparts to Hb S Travis the characteristic properties of sickling hemoglobin, namely its association with erythrocyte sickling, the insolubility of the hemoglobin in the reduced form, and a minimum gelling concentration value identical to Hb S. Unlike Hb S, Hb S Travis exhibits an increased oxygen affinity and a decreased affinity for 2,3-bisphosphoglycerate and inositol hexakisphosphate. In addition, the variant hemoglobin's tendency to autoxidize and its mechanical precipitability suggest that there are conformational differences between Hb S and Hb S Travis.  相似文献   

2.
The hemoglobin of Liophis miliaris has unusual properties. The hemoglobin is dimeric in the oxy form, and the cooperativity of O2 binding is very low, but both the Bohr effect and cooperativity are greatly enhanced in the presence of ATP (Matsuura, M. S. A., Ogo, S. H., and Focesi, A., Jr. (1987) Comp. Biochem. Physiol. 86A, 683-687). Four unique chains (2 alpha, 2 beta) can be isolated from the hemolysate. The amino acid sequences of one alpha and one beta chain have been determined in an effort to understand the functional properties. Comparison of the sequences with those of the alpha and beta chains of human Hb shows the following. (i) All 7 of the residues in the beta chain normally conserved in globins are identical to those of the human chain: Gly(B6), Phe(CD1), His(E7), Leu(F4), His(F8), Lys(H10), and Tyr(HC2), except that the distal His(E7) has been replaced by Gln in the alpha chain. (ii) All heme contact residues in the beta chain are identical with those in the human chain, but two differences are present in the alpha chain: the distal His(E7) is replaced by Gln and Met(B13) by Leu. (iii) All residues that form the binding site for organic phosphates are identical to those in human Hb. (iv) The major residues that contribute to the normal Bohr effect in human Hb, Asp-beta 94, His-beta 146, and Val-alpha 1 are conserved. (v) All beta chain residues at the alpha 1 beta 2 interface are identical with those in the human chain except two: Glu(G3)----Val and Glu(CD2)----Thr; these differences in charged residues may explain the dissociation to dimers. (vi) The 23 residues of the alpha chain in the alpha 1 beta 2 contact region are identical with those of the human chain except three: Phe(B14)----Leu, Thr(C3)----Gln and Pro(CD2)----Ser. (vii) A total of 17 differences occur at the alpha 1 beta 1 interface, 11 in the alpha chain and 6 in the beta chain.  相似文献   

3.
Adachi K  Yang Y  Lakka V  Wehrli S  Reddy KS  Surrey S 《Biochemistry》2003,42(34):10252-10259
The role of heterotetramer interaction sites in assembly and autoxidation of hemoglobin is not clear. The importance of beta(116His) (G-18) and gamma(116Ile) at one of the alpha1beta1 or alpha1gamma1 interaction sites for homo-dimer formation and assembly in vitro of beta and gamma chains, respectively, with alpha chains to form human Hb A and Hb F was assessed using recombinant beta(116His)(-->)(Asp), beta(116His)(-->)(Ile), and beta(112Cys)(-->)(Thr,116His)(-->)(Ile) chains. Even though beta chains (e.g., 116 His) are in monomer/tetramer equilibrium, beta(116Asp) chains showed only monomer formation. In contrast, beta(116Ile) and beta(112Thr,116Ile) chains showed homodimer and homotetramer formation like gamma-globin chains which contain 116 Ile. Assembly rates in vitro of beta(116Ile) or beta(112Thr,116Ile) chains with alpha chains were 340-fold slower, while beta(116Asp) chains promoted assembly compared to normal beta-globin chains. These results indicate that amino acid hydrophobicity at the G-18 position in non-alpha chains plays a key role in homotetramer, dimer, and monomer formation, which in turn plays a critical role in assembly with alpha chains to form Hb A and Hb F. These results also suggest that stable dimer formation of gamma-globin chains must not occur in vivo, since this would inhibit association with alpha chains to form Hb F. The role of beta(116His) (G-18) in heterotetramer-induced stabilization of the bond with oxygen in hemoglobin was also assessed by evaluating autoxidation rates using recombinant Hb tetramers containing these variant globin chains. Autoxidation rates of alpha(2)beta(2)(116Asp) and alpha(2)beta(2)(116Ile) tetramers showed biphasic kinetics with the faster rate due to alpha chain oxidation and the slower to the beta chain variants whose rates were 1.5-fold faster than that of normal beta-globin chains. In addition, NMR spectra of the heme area of these two hemoglobin variant tetramers showed similar resonance peaks, which are different from those of Hb A. Oxygen-binding properties of alpha(2)beta(2)(116His)(-->)(Asp) and alpha(2)beta(2)(116His)(-->)(Ile), however, showed slight alteration compared to Hb A. These results suggest that the beta116 amino acid (G18) plays a critical role in not only stabilizing alpha1beta1 interactions but also in inhibiting hemoglobin oxidation. However, stabilization of the bonds between oxygen and heme may not be dependent on stabilization of alpha1beta1 interactions. Tertiary structural changes may lead to changes in the heme region in beta chains after assembly with alpha chains, which could influence stability of dioxygen binding of beta chains.  相似文献   

4.
Chang CK  Simplaceanu V  Ho C 《Biochemistry》2002,41(17):5644-5655
Substitutions of Asn, Glu, and Leu for Gln at the beta131 position of the hemoglobin molecule result in recombinant hemoglobins (rHbs) with moderately lowered oxygen affinity and high cooperativity compared to human normal adult hemoglobin (Hb A). The mutation site affects the hydrogen bonds present at the alpha(1)beta(1)-subunit interface between alpha103His and beta131Gln as well as that between alpha122His and beta35Tyr. NMR spectroscopy shows that the hydrogen bonds are indeed perturbed; in the case of rHb (beta131Gln --> Asn) and rHb (beta131Gln --> Leu), the perturbations are propagated to the other alpha(1)beta(1)-interface H-bond involving alpha122His and beta35Tyr. Proton exchange measurements also detect faster exchange rates for both alpha(1)beta(1)-interface histidine side chains of the mutant rHbs in 0.1 M sodium phosphate buffer at pH 7.0 than for those of Hb A under the same conditions. In addition, the same measurements in 0.1 M Tris buffer at pH 7.0 show a much slower exchange rate for mutant rHbs and Hb A. One of the mutants, rHb (beta131Gln --> Asn), shows the conformational exchange of its interface histidines, and exchange rate measurements have been attempted. We have also conducted studies on the reactivity of the SH group of beta93Cys (a residue located in the region of the alpha(1)beta(2)-subunit interface) toward p-mercuribenzoate, and our results show that low-oxygen-affinity rHbs have a more reactive beta93Cys than Hb A in the CO form. Our results indicate that there is communication between the alpha(1)beta(1)- and alpha(1)beta(2)-subunit interfaces, and a possible communication pathway for the cooperative oxygenation of Hb A that allows the alpha(1)beta(1)-subunit interface to modulate the functional properties in conjunction with the alpha(1)beta(2) interface is proposed.  相似文献   

5.
Our mutational studies on Hb S showed that the Hb S beta73His variant (beta6Val and beta73His) promoted polymerization, while Hb S beta73Leu (beta6Val and beta73Leu) inhibited polymerization. On the basis of these results, we speculated that EF-helix peptides containing beta73His interact with beta4Thr in Hb S and compete with Hb S, resulting in inhibition of Hb S polymerization. We, therefore, studied inhibitory effects of 15-, 11-, 7-, and 3-mer EF-helix peptides containing beta73His on Hb S polymerization. The delay time prior to Hb S polymerization increased only in the presence of the 15-mer His peptide; the higher the amount, the longer the delay time. DIC image analysis also showed that the fiber elongation rate for Hb S polymers decreased with increasing concentration of the 15-mer His peptide. In contrast, the same 15-mer peptide containing beta73Leu instead of His and peptides shorter than 11 amino acids containing beta73His including His alone showed little effect on the kinetics of polymerization and elongation of polymers. Analysis by protein-chip arrays showed that only the 15-mer beta73His peptide interacted with Hb S. CD spectra of the 15-mer beta73His peptide did not show a specific helical structure; however, computer docking analysis suggested a lower energy for interaction of Hb S with the 15-mer beta73His peptide compared to peptides containing other amino acids at this position. These results suggest that the 15-mer beta73His peptide interacts with Hb S via the beta4Thr in the betaS-globin chain in Hb S. This interaction may influence hydrogen bond interaction between beta73Asp and beta4Thr in Hb S polymers and interfere in hydrophobic interactions of beta6Val, leading to inhibition of Hb S polymerization.  相似文献   

6.
The abnormal human hemoglobin Malm? (beta97FG4 His leads to Gln) has been studied and its properties are compared with those of normal adult hemoglobin A. The data presented here show that the ring-current shifted proton resonances of both HbCO and HbO2 Malm? are very different from the corresponding forms of Hb A. The hyperfine shifted proton resonances of deoxy-Hb Malm? do not differ drastically from those of deoxy-Hb A. This result, together with the finding that the exchangeable proton resonances of the deoxy form of the two hemoglobins are similar, suggests that unliganded Hb Malm? can assume a deoxy-like quaternary structure both in the absence and presence of organic phosphates We have also compared the properties of Hb Malm? with those of Hb Chesapeake (alpha92FG4 Arg leads to Leu). This allows us to study the properties of two abnormal human hemoglobins with mutations at homologous positions of the alpha and beta chains in the three-dimenstional structure of the hemoglobin molecule. Our present results suggest that the mutaion at betaFG4 has its greatest effect on the teritiary structure of the heme pocket of the liganded forms of the hemoglobin while the mutation at alphaFG4 alters the deoxy structure of the hemoglogin molecule but does not alter the teriary structure of the heme pockets of the liganded form of the hemoglobin molecule. Both hemoglobins undergo a transition from the deoxy (T) to the oxy (R) quaternary structure upon ligation. The abnormally high oxygen affinities and low cooperativities of these two hemoglobins must therefore be due to either the structural differences which we have observed and/or to an altered transition between the T and R structures.  相似文献   

7.
Adachi K  Ding M  Wehrli S  Reddy KS  Surrey S  Horiuchi K 《Biochemistry》2003,42(15):4476-4484
Hb S (alpha(2)beta(2)(6Glu-->Val)) forms polymers, while Hb C-Harlem (alpha(2)beta(2)(6Glu-->Val,73Asp-->Asn)) forms crystals upon oversaturation. Since the only difference between the two is the beta73 amino acid, it follows that this site is a critical determinant in promoting either polymerization or crystallization. Beta73 Asp in Hb S forms a hydrogen bond with beta4 Thr, while beta73 Asn in Hb C-Harlem may inhibit this interaction as well as increase the hydrophobicity at the EF helix beta6 Val acceptor sites. Two new beta73 Hb S variants (beta73 His and Leu) were constructed and analyzed to define other amino acids facilitating formation of Hb S-like polymers versus Hb C-Harlem-like crystals. The two variants that were chosen were expected to either (1) enhance formation of the beta73-beta4 hydrogen bond (beta73 His) or (2) inhibit it and increase the hydrophobicity of the EF helix beta6 Val acceptor sites (beta73 Leu). beta73 His Hb S formed fibers but at a lower concentration than Hb S, while beta73 Leu Hb S formed crystals but at a higher concentration than Hb C-Harlem. The solubility of beta73 His Hb S was (1)/(7) of that of Hb S, while the solubility of beta73 Leu Hb S was similar to that of Hb C-Harlem. The delay time prior to polymer or crystal formation depended on Hb concentration. The delay time for beta73 His Hb S was 10(5)-fold shorter than that for Hb S, while that for beta73 Leu Hb S was 10(5)-fold longer in 1.0 M phosphate buffer. NMR results indicate beta73 amino acid changes induce alteration in the beta-chain heme pocket region, while CD results indicate no change in the helical content of the variants. These results suggest that enhancing the beta73-beta4 hydrogen bond and/or induced changes in the heme pocket by the beta73 Asp to His change facilitate formation of Hb S-like fibers. Our results also suggest that removal of the beta73-beta4 hydrogen bond and enhancing the hydrophobicity of the EF helix beta6 Val acceptor sites by the beta73 Asp to Leu or Asn changes delay nuclei formation and facilitate formation of Hb C-Harlem-like crystals.  相似文献   

8.
Previous studies showed that CO/H2O oxidation provides electrons to drive the reduction of oxidized hemoglobin (metHb). We report here that Cu(II) addition accelerates the rate of metHb beta chain reduction by CO by a factor of about 1000. A mechanism whereby electron transfer occurs via an internal pathway coupling CO/H2O oxidation to Fe(III) and Cu(II) reduction is suggested by the observation that the copper-induced rate enhancement is inhibited by blocking Cys-beta93 with N-ethylmaleimide. Furthermore, this internal electron-transfer pathway is more readily established at low Cu(II) concentrations in Hb Deer Lodge (beta2His --> Arg) and other species lacking His-beta2 than in Hb A0. This difference is consistent with preferential binding of Cu(II) in Hb A0 to a high affinity site involving His-beta2, which is ineffective in promoting electron exchange between Cu(II) and the beta heme iron. Effective electron transfer is thus affected by Hb type but is not governed by the R left arrow over right arrow T conformational equilibrium. The beta hemes in Cu(II)-metHb are reduced under CO at rates close to those observed for cytochrome c oxidase, where heme and copper are present together in the oxygen-binding site and where internal electron transfer also occurs.  相似文献   

9.
An abnormal human hemoglobin was found in a hemolysate from a 5-year-old healthy child living in Prato (Tuscany, Italy). Strutctural studies demonstrated a previously unreported amino acid substitution, alpha 31 (B12) Arg leads to Ser (this is an alpha 1 beta 1 contact). The new variant has been named Hb Prato. It was unstable in isopropanol and heat-denaturation tests, but has normal functional properties, with respect to whole blood studies. Family studies indicated that the variant had been inherited from the mother, a 39-year-old woman of Sicilian extraction. Hb Prato occurs at 20 and 28% in hemolysates from the boy and woman, respectively.  相似文献   

10.
Hemoglobin Cochin Port-Royal beta 146 (HC3) His yields Arg is the second example in which the beta C-terminal residue is replaced. Owing to the known importance of His beta 146 in the co-operative effects of hemoglobin, the functional properties of this variant were carefully studied. It had a normal Hill coefficient but a reduced alkaline Bohr effect. However, the reduction in Bohr effect is less than the halving predicted from previous mutants and modified hemoglobins.  相似文献   

11.
This study examines the functional and structural effects of amino acid substitution at alpha(1)beta(2) interface of Hb Santa Clara (beta 97His-->Asn). We have characterized the variation by a combination of electrospray ionisation mass spectrometry and DNA sequence analysis followed by oxygen-binding experiments. Functional studies outlined an increased oxygen affinity, reduced effect of organic phosphates and a reduced Bohr effect with respect to HbA. In view of the primary role of this interface in the cooperative quaternary transition from the T to R conformational state, a theoretical three-dimensional model of Hb Santa Clara was generated. Structural investigations suggest that replacement of Asn for His beta 97 results in a significant stabilization of the high affinity R-state of the haemoglobin molecule with respect to the low affinity T-state. The role of beta FG4 position has been further examined by computational models of known beta FG4 variants, namely Hb Malm? (beta 97His-->Gln), Hb Wood (beta 97His-->Leu), Hb Nagoya (beta 97His-->Pro) and Hb Moriguchi (beta 97His-->Tyr). These findings demonstrate that, among the various residues at the alpha(1)beta(2) (and alpha(2)beta(1)) intersubunit interface, His beta FG4 contributes significantly to the quaternary constraints that are responsible for the low oxygen affinity of human deoxyhaemoglobin.  相似文献   

12.
Cheng Y  Shen TJ  Simplaceanu V  Ho C 《Biochemistry》2002,41(39):11901-11913
To investigate the roles of beta93 cysteine in human normal adult hemoglobin (Hb A), we have constructed four recombinant mutant hemoglobins (rHbs), rHb (betaC93G), rHb (betaC93A), rHb (betaC93M), and rHb (betaC93L), and have prepared two chemically modified Hb As, Hb A-IAA and Hb A-NEM, in which the sulfhydryl group at beta93Cys is modified by sulfhydryl reagents, iodoacetamide (IAA) and N-ethylmaleimide (NEM), respectively. These variants at the beta93 position show higher oxygen affinity, lower cooperativity, and reduced Bohr effect relative to Hb A. The response of some of these Hb variants to allosteric effectors, 2,3-bisphosphoglycerate (2,3-BPG) and inositol hexaphosphate (IHP), is decreased relative to that of Hb A. The proton nuclear magnetic resonance (NMR) spectra of these Hb variants show that there is a marked influence on the proximal heme pocket of the beta-chain, whereas the environment of the proximal heme pocket of the alpha-chain remains unchanged as compared to Hb A, suggesting that higher oxygen affinity is likely to be determined by the heme pocket of the beta-chain rather than by that of the alpha-chain. This is further supported by NO titration of these Hbs in the deoxy form. For Hb A, NO binds preferentially to the heme of the alpha-chain relative to that of the beta-chain. In contrast, the feature of preferential binding to the heme of the alpha-chain becomes weaker and even disappears for Hb variants with modifications at beta93Cys. The effects of IHP on these Hbs in the NO form are different from those on HbNO A, as characterized by (1)H NMR spectra of the T-state markers, the exchangeable resonances at 14 and 11 ppm, reflecting that these Hb variants have more stability in the R-state relative to Hb A, especially rHb (betaC93L) and Hb A-NEM in the NO form. The changes of the C2 proton resonances of the surface histidyl residues in these Hb variants in both the deoxy and CO forms, compared with those of Hb A, indicate that a mutation or chemical modification at beta93Cys can result in conformational changes involving several surface histidyl residues, e.g., beta146His and beta2His. The results obtained here offer strong evidence to show that the salt bridge between beta146His and beta94Asp and the binding pocket of allosteric effectors can be affected as the result of modifications at beta93Cys, which result in the destabilization of the T-state and a reduced response of these Hbs to allosteric effectors. We further propose that the impaired alkaline Bohr effect can be attributed to the effect on the contributions of several surface histidyl residues which are altered because of the environmental changes caused by mutations and chemical modifications at beta93Cys.  相似文献   

13.
14.
Recent studies have suggested that nitric oxide (NO) binding to hemoglobin (Hb) may lead to the inhibition of sickle cell fiber formation and the dissolution of sickle cell fibers. NO can react with Hb in at least 3 ways: 1) formation of Hb(II)NO, 2) formation of methemoglobin, and 3) formation of S-nitrosohemoglobin, through nitrosylation of the beta93 Cys residue. In this study, the role of beta93 Cys in the mechanism of sickle cell fiber inhibition is investigated through chemical modification with N-ethylmaleimide. UV resonance Raman, FT-IR and electrospray ionization mass spectroscopic methods in conjunction with equilibrium solubility and kinetic studies are used to characterize the effect of beta93 Cys modification on Hb S fiber formation. Both FT-IR spectroscopy and electrospray mass spectrometry results demonstrate that modification can occur at both the beta93 and alpha104 Cys residues under relatively mild reaction conditions. Equilibrium solubility measurements reveal that singly-modified Hb at the beta93 position leads to increased amounts of fiber formation relative to unmodified or doubly-modified Hb S. Kinetic studies confirm that modification of only the beta93 residue leads to a faster onset of polymerization. UV resonance Raman results indicate that modification of the alpha104 residue in addition to the beta93 residue significantly perturbs the alpha(1)beta(2) interface, while modification of only beta93 does not. These results in conjunction with the equilibrium solubility and kinetic measurements are suggestive that modification of the alpha104 Cys residue and not the beta93 Cys residue leads to T-state destabilization and inhibition of fiber formation. These findings have implications for understanding the mechanism of NO binding to Hb and NO inhibition of Hb S fiber formation.  相似文献   

15.
Hemoglobin (Hb) Chico (Lys beta 66----Thr at E10) has a diminished oxygen affinity (Shih, D. T.-b., Jones, R. T., Shih, M. F.-C., Jones, M. B., Koler, R. D., and Howard, J. (1987) Hemoglobin 11, 453-464). Our studies show that its P50 is about twice that of Hb A and that its cooperativity, anion, and Bohr effects between pH 7 and 8 are normal. The Bohr effect above pH 8 is somewhat reduced, indicating a small but previously undocumented involvement of the ionic bond formed by Lys beta 66 in the alkaline Bohr effect. Since the oxygen affinity of the alpha-hemes is likely to be normal, that of the beta-hemes in the tetramer is likely to be reduced by the equivalent of 1.2 kcal/mol beta-heme in binding energy. Remarkably, both initial and final stages of oxygen binding to Hb Chico are of lowered affinity relative to Hb A under all conditions examined. The isolated beta chains also show diminished oxygen affinity. In T-state Hb A, Lys(E10 beta) forms a salt bridge with one of the heme propionates, but comparison with other hemoglobin variants shows that rupture of this bridge cannot be the cause of the low oxygen affinity. X-ray analysis of the deoxy structure has now shown that Thr beta 66 either donates a hydrogen bond to or accepts one from His beta 63 via a bridging water molecule. This introduces additional steric hindrance to ligand binding to the T-state that results in slower rates of ligand binding. We measured the O2/CO partition coefficient and the kinetics of oxygen dissociation and carbon monoxide binding and found that lowered O2 and CO affinity is also exhibited by the R-state tetramers and the isolated beta chains of Hb Chico.  相似文献   

16.
Arg-47 of human beta 1 beta 1 alcohol dehydrogenase has been replaced with Lys, His, Gln, and Gly by site-directed mutagenesis. The mutated enzymes were expressed in Escherichia coli and purified to homogeneity. The recombinant enzymes with Arg and His at position 47 exhibit kinetic constants and stability which are similar to beta 1 beta 1 and beta 2 beta 2, respectively. The substitution of Lys, His, or Gln for Arg-47 resulted in active enzymes with lower affinity for coenzyme and higher Vmax values than beta 1 beta 1. The substitution of Gln at position 47 resulted in an enzyme with the highest Vmax for ethanol oxidation of any mammalian alcohol dehydrogenase. In this series of enzymes, the affinity for coenzyme decreases with decreasing pKa of the substituted amino acid side chains. The substitution of Gly at position 47 resulted in an enzyme with a Vmax that was one-half that of the low activity beta 1 beta 1 and coenzyme affinities that are lower than beta 1 beta 1, but are equal to or greater than the affinities exhibited by the His-47 or Gln-47 enzymes. Product inhibition studies indicated a change in mechanism from ordered Bi Bi for beta 1 beta 1 to rapid equilibrium random Bi Bi for the Gly-47 enzyme. The kinetic properties of the Gly-47 enzyme are substantially different from human liver alpha alpha which also has Gly at position 47.  相似文献   

17.
In order to inquire into the molecular mechanism underlying the cooperative ligand binding to hemoglobin (Hb), conformational interaction at the interfaces between subunits are investigated on the basis of the atomic coordinates of human deoxy and human carbonmonoxy Hbs. Hypothetical intermediate structures are used, each of which is obtained from the procedure where one or more subunits in deoxy Hb are replaced by the corresponding CO-liganded subunits in carbonmonoxy Hb using the method of superimposition of two sets of atomic coordinates. When either alpha or beta subunit is substituted with the corresponding subunit in carbonmonoxy Hb, serious steric hindrances are produced between alpha 1FG4(92)Arg and beta 2C3(37)Trp or between alpha 1C6(41)Thr and beta 2FG4(97)His, all of which belong to the allosteric core affected directly by ligand binding. These steric hindrances become more serious when both alpha 1(alpha 2) and beta 2(beta 1) subunits are substituted. Therefore the change in the relative distance between iron atom and porphyrin by ligation results in strain in the C-terminal residues as an effect of the steric hindrance between the FG and C segments. However, no steric hindrance can be seen between subunits when the subunits in carbonmonoxy Hb are substituted with the corresponding subunits in deoxy Hb. The nature of the quaternary structural change from liganded to deoxy Hb seems to be different from that from deoxy to liganded Hb.  相似文献   

18.
M Naiki  D M Marcus 《Biochemistry》1975,14(22):4837-4841
The erythrocyte PK and P blood group antigens have been identified as ceramide trihexoside (CTH), Gal-(alpha, 1 leads to 4)Gal(beta, 1 leads to 4)Glc-Cer, and globoside, GalN-Ac(beta, 1 leads to 3)Gal(alpha, 1 leads to 4)Gal(beta, 1 leads to 4)Glc-Cer, respectively, and the following structure has been proposed for the P1 antigen: Gal(alpha, 1 leads to 4)Gal(beta, 1 leads to 4)GlcNAc(beta, 1 leads to 3)Gal(beta, 1 leads to 4)Glc-Cer. Although the P1 and PK determinants have identical terminal disaccharides, CTH did not inhibit anti-P1. The P1 glycolipid and hydatid cyst glycoprotein inhibited the agglutination of P1K erythrocytes by anti-P1 and unabsorbed anti-P1PPK sera, but neither antigen inhibited a specific anti-PK serum. The P1 and PK glycolipids were equally effective in inhibiting the hemagglutinating activity of a lectin with alpha-galactosyl specificity obtained from ova of Salmo trutta. Anti-P sera were inhibited most effectively by human erythrocyte globoside, and to a lesser extent by Forssman glycolipid and rat kidney globoside. In the latter glycolipid the linkage between the internal galactosyl residues is alpha, 1 leads to 3, rather than alpha, 1 leads to 4, as in erythrocyte globoside. No cross-reactions between P and P1 or PK antigens were detected. New hypotheses are offered to explain the genetic regulation and biosynthesis of the P1, P, and PK antigens.  相似文献   

19.
The characterization of hemoglobin Wood (beta97(FG4) His replaced by Leu), a high oxygen affinity hemoglobin with reduced Hill constant is described. The amino acid substitution occurs at the alpha1beta2 interface, in the same position as in hemoglobin Malm? (beta97(FG4) His replaced by Gln) and in an homologous position when compared with hemoglobins Chesapeake (alpha92(FG4) Arg replaced by Leu) and J. Capetown (alpha92(fg4) arg replaced by Gln).  相似文献   

20.
In order to clarify the functional and structural role of intra- and intersubunit hydrogen bonds in human hemoglobin (Hb A), we prepared two artificial beta chain mutant hemoglobins by site-directed mutagenesis. The mutant Hb Phe-37 beta, in which Trp-37 beta is replaced by Phe to remove the intersubunit hydrogen bond between Asp-94 alpha and Trp-37 beta at the alpha 1-beta 2 interface in deoxy Hb A, showed a markedly increased oxygen affinity and almost completely diminished Bohr effect and cooperativity. However, 1H-NMR data indicated that the structure of deoxy Hb Phe-37 beta is rather similar to that of deoxy Hb A. The enhanced tetramer-to-dimer dissociation previously observed in Hb Hirose (Trp-37 beta----Ser) together with our observation of the effects of organic phosphate on the structure and function of Hb Phe-37 beta suggested that a large part of the abnormal properties of Hb Phe-37 beta observed for dilute solutions appears to result from partial dissociation into alpha beta dimers rather than direct destabilization of the T-quaternary structure in the deoxygenated state. Thus, the primary and direct role of the hydrogen bond between Asp-94 alpha and Trp-37 beta is to stabilize the tetrameric assembly, and thereby this hydrogen bond indirectly contributes to stabilization of the T-quaternary structure. The other mutant Hb Phe-145 beta has a Phe residue at the 145 beta site and lacks the intrasubunit hydrogen bond formed between Tyr-145 beta and the carbonyl group of Val-98 beta in deoxy Hb A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号