首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stroma of spinach chloroplasts contains ascorbic acid and glutathione at millimolar concentrations. [Reduced glutathione]/[oxidized glutathione] and [ascorbate]/[dehydroascorbate] ratios are high under both light and dark conditions and no evidence for a role of oxidized glutathione or dehydroascorbate in the dark-deactivation of fructose bisphosphatase could be obtained. Addition of H2O2 to chloroplasts in the dark decreases the above ratios, an effect that is reversed on illumination. Addition of Paraquat to illuminated chloroplasts caused a rapid oxidation of reduced glutathione and ascorbate, and apparent loss of dehydroascorbate. Paraquat rapidly inactivated fructose bisphosphatase activity, as assayed under physiological conditions.  相似文献   

2.
Luwe M  Takahama U  Heber U 《Plant physiology》1993,101(3):969-976
Both reduced and oxidized ascorbate (AA and DHA) are present in the aqueous phase of the extracellular space, the apoplast, of spinach (Spinacia oleracea L.) leaves. Fumigation with 0.3 [mu]L L-1 of ozone resulted in ozone uptake by the leaves close to 0.9 pmol cm-2 of leaf surface area s-1. Apoplastic AA was slowly oxidized by ozone. The initial decrease of apoplastic AA was <0.1 pmol cm-2 s-1. The apoplastic ratio of AA to (AA + DHA) decreased within 6 h of fumigation from 0.9 to 0.1. Initially, the concentration of (AA + DHA) did not change in the apoplast, but when fumigation was continued, DHA increased and AA remained at a very low constant level. After fumigation was discontinued, DHA decreased very slowly in the apoplast, reaching control level after 70 h. The data show that insufficient AA reached the apoplast from the cytosol to detoxify ozone in the apoplast when the ozone flux into the leaves was 0.9 pmol cm-2 s-1. The transport of DHA back into the cytosol was slower than AA transport into the apoplast. No dehydroascorbate reductase activity could be detected in the apoplast of spinach leaves. In contrast to its extracellular redox state, the intracellular redox state of AA did not change appreciably during a 24-h fumigation period. However, intracellular glutathi-one became slowly oxidized. At the beginning of fumigation, 90% of the total glutathione was reduced. Only 10% was reduced after 24-h exposure of the leaves to 0.3 [mu]L L-1 of ozone. Necrotic leaf damage started to become visible when fumigation was extended beyond a 24-h period. A close correlation between the extent of damage, on the one hand, and the AA content and the ascorbate redox state of whole leaves, on the other, was observed after 48 h of fumigation. Only the youngest leaves that contained high ascorbate concentrations did not exhibit necrotic leaf damage after 48 h.  相似文献   

3.
Antioxidant defences of the apoplast   总被引:1,自引:0,他引:1  
Summary The apoplast of barley and oat leaves contained superoxide dismutase (SOD), catalase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase activities. The activities of these enzymes in the apoplastic extracts were greatly modified 24 h after inoculation with the biotrophic fungal pathogenBlumeria graminis. The quantum efficiency of photosystem II, which is related to photosynthetic electron transport flux, was comparable in inoculated and healthy leaves during this period. Apoplastic soluble acid invertase activity was also modified in inoculated leaves. Inoculation-dependent increases in apoplastic SOD activity were observed in all lines. Major bands of SOD activity, observed in apoplastic protein extracts by activity staining of gels following isoelectric focusing, were similar to those observed in whole leaves but two additional minor bands were found in the apoplastic fraction. The apoplastic extracts contained substantial amounts of dehydroascorbate (DHA) but little or no glutathione (GSH). Biotic stress decreased apoplastic ascorbate and DHA but increased apoplastic GSH in resistant lines. The antioxidant cycle enzymes may function to remove apoplastic H2O2 with ascorbate and GSH derived from the cytoplasm. DHA and oxidized glutathione may be reduced in the apoplast or returned to the cytosol for rereduction.Abbreviations AA reduced ascorbate - APX ascorbate peroxidase - DHA dehydroascorbate (oxidised ascorbate) - DHAR dehydroascorbate reductase - G6PDH glucose-6-phosphate dehydrogenase - GSH reduced glutathione - GSSG glutathione disulphide - GR glutathione reductase - MDHA monodehydroascorbate - MDHAR monodehydroascorbate reductase - SOD superoxide dismutase  相似文献   

4.
Dehydroascorbic acid, the oxidized form of ascorbic acid, is rapidly reduced to ascorbate in living organs (ascorbate recycling). We examined the GSH-dependent dehydroascorbate reductase activity in several tissues of the chicken. The activity was highest in the liver, and second highest in the brain. The activity was localized in the cytosol fraction of the liver. We subsequently examined the dehydroascorbate reduction in separated chicken hepatocytes. The cellular ascorbate concentration was elevated in dehydroascorbate-treated cells. It is thought that hepatocytes incorporated external dehydroascorbate and converted it into ascorbate. These findings suggest that the liver plays an important role in ascorbate recycling by the chicken.  相似文献   

5.
Dehydroascorbic acid, the oxidized form of ascorbic acid, is rapidly reduced to ascorbate in living organs (ascorbate recycling). We examined the GSH-dependent dehydroascorbate reductase activity in several tissues of the chicken. The activity was highest in the liver, and second highest in the brain. The activity was localized in the cytosol fraction of the liver. We subsequently examined the dehydroascorbate reduction in separated chiken hepatocytes. The cellular ascorbate concentration was elevated in dehydroascorbate-treated cells. It is thought that hepatocytes incorporated external dehydroascorbate and converted it into ascorbate. These findings suggest that the liver plays an important role in ascorbate recycling by the chicken.  相似文献   

6.
A reconstituted spinach chloroplast system containing thylakoids, stroma and 0.1 mM NADPH supported O2 evolution in the presence of oxidised glutathione (GSSG). The properties of the reaction were consistent with light-coupled GSSG-reductase activity involving H2O as eventual electron donor. The reconstituted system also supported dehydroascorbate-dependent O2 evolution in the presence of 0.6 mM reduced glutathione (GSH) and 0.1 mM NADPH with the concomitant production of ascorbate. The GSSG could replace GSH in which case the production of GSH preceded the accumulation of ascorbate. The data are consistent with the light-dependent reduction of dehydroascorbate using H2O as eventual electron donor via the sequence H2O→NADP→GSSG→dehydroascorbate. Approximately 30% of the GSH-dehydrogenase activity of spinach leaf protoplasts is localised in chloroplasts: this could not be attributed to contamination of chloroplasts by activity from the extrachloroplast compartment. Washed intact chloroplasts supported the uptake of ascorbate but the uptake mechanism had a very low affinity for ascorbate (Km approximately 20 mM). The rate of uptake of ascorbate was less than the rate of light-dependent reduction of dehydroascorbate and too slow to account for the rate of H2O2 reduction by washed intact chloroplasts.  相似文献   

7.
The intracellular recycling of ascorbic acid from dehydroascorbic acid by the glutathione–glutathione reductase system has been well‐characterized. We propose that extracellular recycling of ascorbic acid is performed in a similar manner by cysteine‐rich, glutathione‐like regions of the first and second extracellular loops of some aminergic receptors including adrenergic, histaminergic, and dopaminergic receptors. Previous research in our laboratory demonstrated that ascorbic acid binds to these receptors at a site on their first or second extracellular loops, significantly enhancing ligand activity, and apparently recycling hundreds of times their own concentration of ascorbate in an enzymatic fashion. In this study, we have synthesized 25 peptides from the first and second extracellular loops of aminergic and insulin receptors and compared them directly to glutathione for their ability to prevent the oxidation of ascorbate and to regenerate ascorbate from dehydroascorbic acid. Peptide sequences that mimic glutathione in containing a cysteine and a glutamic acid‐like amino acid also mimic glutathione activity in effects and in kinetics. Some (but not all) peptide sequences that contain one or more methionines instead of cysteine can significantly retard the oxidation of ascorbic acid but do not recycle it from dehydroascorbate into ascorbate. Peptides lacking both cysteines and methionines uniformly failed to alter significantly ascorbate or dehydroascorbate oxidation or reduction. We believe that this is the first proof that receptors may carry out both ligand binding and enzymatic activity extracellularly. Our results suggest the existence of a previously unknown extracellular system for recycling ascorbate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The effect of ascorbic acid on the conversion of dopamine to norepinephrine was investigated in isolated chromaffin granules from bovine adrenal medulla. Ascorbic acid was shown to double the rate of [3H]norepinephrine formation from [3H]dopamine, despite no demonstrable accumulation of ascorbic acid into chromaffin granules. The enhancement of norepinephrine biosynthesis by ascorbic acid was dependent on the external concentrations of dopamine and ascorbate. The apparent Km of the dopamine beta-hydroxylation system for external dopamine was approximately 20 microM in the presence or absence of ascorbic acid. However, the apparent maximum velocity of norepinephrine formation was nearly doubled in the presence of ascorbic acid. By contrast, the apparent Km and Vmax of dopamine uptake into chromaffin granules were not affected by ascorbic acid. Norepinephrine formation was increased by ascorbic acid when the concentration of ascorbate was 200 microM or higher; a concentration of 2 mM appeared to induce the maximal effect under the experimental conditions used here. The effect of ascorbic acid on conversion of dopamine to norepinephrine required Mg-ATP-dependent dopamine uptake into chromaffin granules. In contrast to ascorbic acid, other reducing agents such as NADH, glutathione, and homocysteine were unable to enhance norepinephrine biosynthesis. These data suggest that ascorbic acid provides reducing equivalents for hydroxylation of dopamine despite the lack of ascorbate accumulation into chromaffin granules. These findings imply the functional existence of an electron carrier system in the chromaffin granule which transfers electrons from external ascorbic acid for subsequent intragranular norepinephrine biosynthesis.  相似文献   

9.
10.
Recently, the presence of a carrier‐mediated transport system for ascorbate was demonstrated in the plant plasma membrane. To investigate the possible physiological importance of this system in apoplastic ascorbate metabolism we further characterized this carrier. Transport of Asc was measured by incubating freshly‐purified plasma membrane vesicles from hypocotylar hooks of Phaseolus vulgaris together with [14C]‐labelled Asc. In this paper we show that ascorbate transport is detectable over a relatively broad pH range (6 to 7.5) and is not affected by protonophore addition. [14C]‐Ascorbate is not taken up into vesicle fractions consisting of sealed inside‐out oriented vesicles, suggesting that it is transported only from the apoplast to the cytoplasm. Asc uptake into vesicles previously loaded with ascorbate was also tested. Surprisingly, uptake of radioactive molecules was up to 3‐fold higher in the ascorbate‐loaded vesicles compared to non‐loaded control vesicles ( P < 0.001). The uptake of [14C]‐ascorbate in both the ascorbate‐loaded as the non‐loaded membrane vesicles was inhibited by addition of DTT and not by glutathione or ferricyanide. Based on various observations such as cis ‐inhibition, trans ‐stimulation and insensitivity towards proton gradients, a facilitated uptake mechanism is suggested. Our results strongly indicate that dehydroascorbate is the preferred transported species from the apoplastic to the cytoplasmic side of the membrane. This transport system is possibly involved in the regeneration of apoplastic ascorbate.  相似文献   

11.
The changes of ascorbic acid, dehydroascorbic acid, and glutathione content and related enzyme activities were studied in apple buds during dormancy and thidiazuron-induced bud break. An increase in ascorbic acid, reduced form of glutathione (GSH), total glutathione, total non-protein thiol (NPSH) and non-glutathione thiol (RSH) occurred as a result of induction by thidiazuron during bud break, whereas dehydroascorbic acid and oxidized glutathione (GSSG) decreased during the same period. Thidiazuron also enhanced the ratio of GSH/GSSG, and activities of ascorbate free radical reductase (AFR; EC 1.6.5.4), ascorbate peroxidase (EC 1.11.1.11). dehydroascorbate reductase (DHAR; EC 1.8.5.1) and glutathione reductase (GR; EC 1.6.4.2). The ascorbic acid content and the activities of AFR, ascorbate peroxidase, and DHAR peaked when buds were in the side green or green tip stage just prior to the start of rapid expansion, and declined thereafter. The GSH, NPSH, RSH, ratio of GSH/GSSG, and activities of GR increased steadily during bud development.  相似文献   

12.
Summary The uptake of ascorbate into protoplasts isolated from aNicotiana tabacum Bright Yellow-2 (BY-2) cell suspension culture was investigated. Addition of14C-labelled ascorbate to freshly isolated protoplasts resulted in a time- and substrate-dependent association of radioactive molecules with the protoplasts. The kinetic characterisation of this presumptive uptake revealed kinetics of Michaelis-Menten type with an apparent maximal uptake activity of 24 pmol/min·106 protoplasts and an apparent affinity constant of 139 M. The amount of ascorbate molecules transported intoN. tabacum protoplasts decreased when nonlabelled dehydroascorbate or iso-ascorbate were added but was not affected by addition of 5,6-o-cyclohexylidene ascorbate or ascorbate-2-sulfate. These data indicate a carrier-mediated uptake of ascorbate into the protoplasts that shows a high structural specificity. To investigate which redox status of ascorbate is preferentially taken up by theN. tabacum protoplasts, transport was tested in the presence of various compounds that can affect the redox status of ascorbate. Testing uptake in the presence of a reductant, dithiothreitol, resulted in a significant and concentration-dependent inhibition of the amount of ascorbate molecules transported into the protoplasts. On the other hand, ascorbate uptake was significantly stimulated in the presence of the enzyme ascorbate oxidase. Ferricyanide did not affect ascorbate transport. Inhibition studies revealed that ascorbate uptake in the protoplasts is sensitive to addition of sulfhydryl reagents N-ethyl maleimide andp-chloro-mercuribenzenesulfonic acid and to a disruption of the proton gradient by the protonophore carbonylcyanide-3-chlorophenylhydrazone. The uptake of ascorbate was also inhibited by addition of cytochalasin B but not sensitive to addition of phloretin or sulfinpyrazone. Taken together these data indicate the presence of an ascorbate transport system in the plasma membrane ofN. tabacum protoplasts and suggest dehydroascorbate as the preferentially transported redox species. The putative presence of different carriers for reduced and oxidised ascorbate in the plasma membrane is discussed.Abbreviations Asc ascorbate - BY-2 Bright Yellow 2 - CCCP carbonylcyanide-3-chlorophenylhydrazone - DHA dehydroascorbate - DTT dithiothreitol - MS medium Murashige and Skoog medium - NEM N-ethylmaleimide - pCMBS p-chloromercuribenzenesulfonic acid  相似文献   

13.
In order to clarify the response of antioxidant systems in various cellular organelles to photo-oxidative stress, the activities of superoxide dismutase (SOD) and enzymes of the ascorbate–glutathione (AsA-GSH) cycle were investigated in chloroplasts, mitochondria and cytosol of cucumber leaves subjected to methyl viologen (MV) treatment. Photo-oxidation by MV resulted in significant reductions in net photosynthetic rate (Pn) and increases in the ratio of the quantum efficiency of photosystem II (PSII), ΦPSII to that of the quantum efficiency of CO2 fixation (ΦCO2), followed by increased activities of SOD, and a general increase of AsA-GSH cycle enzymes in chloroplasts, mitochondria and cytosol. These increases were however, most significant in chloroplasts. There were also significant increases in dehydroascorbate (DHA), reduced glutathione (GSH), and oxidized glutathione (GSSG) except that the content of ascorbate (AsA) in chloroplasts and cytosol was slightly decreased and little effected, respectively. However, GSSG in mitochondria and GSH in cytosol were little influenced by the MV treatment. The activity of ascorbate oxidase (AO) in these organelles was independent of the MV treatment while the activity of l-galactono-1,4- lactone dehydrogenase (GLDH) in mitochondria was slightly inhibited by MV treatment. These results indicate that disturbance of electron transport in chloroplasts by MV influenced the metabolism of whole cell by a crosstalk signaling system and that the AsA-GSH cycle played a primary role in sustaining the levels of AsA.  相似文献   

14.
This study investigated the effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress. The results showed that pretreatment with sodium hydrosulfide (NaHS), hydrogen sulfide donor, increased the activities of ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase and gamma-glutamylcysteine synthetase, and the contents of reduced ascorbic acid, reduced glutathione, total ascorbate and total glutathione under water stress, compared to control and water stress without NaHS. Meanwhile, pretreatment with NaHS decreased the malondialdehyde content and electrolyte leakage induced by water stress in plants, compared to control and water stress without NaHS. Our results suggested that exogenous hydrogen sulfide alleviated oxidative damage by regulating the ascorbate and glutathione metabolism in wheat seedlings under water stress.  相似文献   

15.
In order to study the accumulation and transport of rosmarinic acid in suspension cells of Coleus blumei we established an efficient method to isolate protoplasts and vacuoles. Protoplasts were disrupted by an osmotic shock in a medium with basic pH containing ethylenediamine tetraacetic acid. The resulting vacuoles were purified on a two-step Ficoll gradient. The comparison of the rosmarinic acid contents of cells, protoplasts and vacuoles showed that the depside is localized in the vacuole. Data concerning the yield and purity of the vacuoles are presented. In addition we show that at the physiological pH of the cytoplasm rosmarinic acid is present almost exclusively as an anion and cannot pass a membrane by simple diffusion. We therefore propose a carrier system for the transport of rosmarinic acid into the vacuole.Abbreviations EDTA ethylenediamine tetraacetic acid - HEPES 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethane sulfonic acid - HPLC high performance liquid chromatography - MES morpholinoethane sulfonic acid - NADP+ ß-nicotinamide adenine dinucleotide phosphate - PEG polyethylene glycol - RA rosmarinic acid - Tris Tris(hydroxymethyl)aminomethane  相似文献   

16.
Ascorbate transport from the apoplast to the symplast in intact leaves   总被引:4,自引:0,他引:4  
Infiltration of reduced ascorbate (ASC) into the leaves of Betula pendula Roth and subsequent measurement of its loss therein after incubation allowed us to follow ascorbate transport from apoplast to symplast in intact leaves. All of the ascorbate extracted from the native apoplast was in fully oxidized form, dehydroascorbate (DHA). When 5 m M of ASC was infiltrated into the leaves, its intense decay occurred, but only 55% of ASC lost was recovered in apoplast as DHA. When ASC was added to the freshly extracted intercellular washing fluid (IWF), ASC oxidation occurred as well. However, all oxidized ASC was recovered as DHA, indicating that further decomposition of DHA did not occur. Similarly, all of the ASC infiltrated into the leaves was found therein either as ASC or DHA after incubation of leaves for up to 60 min. On this base the ascorbate infiltrated into the leaves and not recovered in the IWF was interpreted as ascorbate taken up into the symplast. The calculated uptake rates of ascorbate at different ASC concentrations followed saturation kinetics with the maximum uptake rate of 300 nmol m−2 plasma membrane (PM) area min−1 and Michaelis constant of 12.8 m M . The uptake of ascorbate was significantly inhibited by the addition of dithiothreitol or by PM H+ ATPase inhibitor erythrosin B. Thus, our results support the previous observations that DHA is preferably transported from the apoplastic to the cytoplasmic side of the membrane and show that this process is dependent upon PM proton gradient.  相似文献   

17.
Transport and action of ascorbate at the plant plasma membrane   总被引:11,自引:0,他引:11  
The plasmalemma is both a bridge and a barrier between the cytoplasm and the outside world. It is a dynamic interface that perceives and transmits information concerning changes in the environment to the nucleus to modify gene expression. In plants, ascorbate is an essential part of this dialogue. The concentration and ratio of reduced to oxidized ascorbate in the apoplast, for example, possibly modulates cell division and growth. The leaf apoplast contains millimolar amounts of ascorbate that protect the plasmalemma against oxidative damage. The apoplastic ascorbate-dehydroascorbate redox couple is linked to the cytoplasmic ascorbate-dehydroascorbate redox couple by specific transporters for either or both metabolites. Although evidence about the mechanisms driving ascorbate or dehydroascorbate transport remains inconclusive, these carrier proteins potentially regulate the level and redox status of ascorbate in the apoplast. The redox coupling between compartments facilitated by these transport systems allows coordinated control of key physiological responses to environmental cues.  相似文献   

18.
Factors that affect leaf extracellular ascorbic acid content and redox status   总被引:12,自引:0,他引:12  
Leaf ascorbic acid content and redox status were compared in ozone-tolerant (Provider) and ozone-sensitive (S156) genotypes of snap bean ( Phaseolus vulgaris L.). Plants were grown in pots for 24 days under charcoal-filtered air (CF) conditions in open-top field chambers and then maintained as CF controls (29 nmol mol−1 ozone) or exposed to elevated ozone (71 nmol mol−1 ozone). Following a 10-day treatment, mature leaves of the same age were harvested early in the morning (06:00–08:00 h) or in the afternoon (13:00–15:00 h) for analysis of ascorbic acid (AA) and dehydroascorbic acid (DHA). Vacuum infiltration methods were used to separate leaf AA into apoplast and symplast fractions. The total ascorbate content [AA + DHA] of leaf tissue averaged 28% higher in Provider relative to S156, and Provider exhibited a greater capacity to maintain [AA + DHA] content under ozone stress. Apoplast [AA + DHA] content was 2-fold higher in tolerant Provider (360 nmol g−1 FW maximum) relative to sensitive S156 (160 nmol g−1 FW maximum) regardless of sampling period or treatment, supporting the hypothesis that extracellular AA is a factor in ozone tolerance. Apoplast [AA + DHA] levels were significantly higher in the afternoon than early morning for both genotypes, evidence for short-term regulation of extracellular ascorbate content. Total leaf ascorbate was primarily reduced with AA/[AA + DHA] ratios of 0.81–0.90. In contrast, apoplast AA/[AA + DHA] ratios were 0.01–0.60 and depended on genotype and ozone treatment. Provider exhibited a greater capacity to maintain extracellular AA/[AA + DHA] ratios under ozone stress, suggesting that ozone tolerance is associated with apoplast ascorbate redox status.  相似文献   

19.
Effect of high intracellular concentrations of the antioxidants ascorbate and glutathione on the extractable activity of the reducting enzymes dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase were investigated with spinach cells ( Spinacia oleracea ). An elevated ascorbate concentration was obtained by treatment with the ascorbate biosynthesis precursor L-galactono-1,4-lactone (GAL). To increase the intracellular level of glutathione, cells were treated with the 5-oxo-L-proline analog L-2-oxothiazolidin-4-carboxylate (OTC), or with the peroxidative herbicide acifluorfen (sodium 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid). Extractable monodehydroascorbate reductase activity increased in the presence of a high level of ascorbate or glutathione, and enzyme activity was at maximum when cells were treated with acifluorfen + OTC, or acifluorfen + GAL. Extractable dehydroascorbate reductase activity decreased when the intracellular concentration of glutathione was high and non-enzymatic reduction of dehydroascorbate by glutathione was the dominant reaction. Maximal decrease of enzyme activity was found in cells treated with acifluorfen + OTC. Extractable activity of glutathione reductase (GR) increased after treatment of cells with acifluorfen alone, or acifluorfen + OTC, but enzyme activity was unaffected by a high intracellular concentration of glutathione obtained by treatment of cells with OTC alone, or by treatment with acifluorfen + GAL. The degree of GR activation seemed to be controlled by several factors including inhibition by a high concentration of glutathione and possibly oxidative damage to the enzyme. Overall, the enzymes tested in this study, which provide the reduced forms of ascorbate and glutathione, were differently affected by high antioxidant levels.  相似文献   

20.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity in microsomes isolated from cultured lymphoid (IM-9) cells or freshly isolated human leukocytes was markedly decreased by either ascorbic acid or its oxidized derivative, dehydroascorbate. Inhibition of IM-9 leukocyte HMG-CoA reductase activity was log linear between 0.01 and 10 mM ascorbic acid (25 and 81% inhibition, respectively) and 0.1 and 10 mM dehydroascorbate (5 and 75% inhibition, respectively). Inhibition was noncompetitive with respect to HMG-CoA (Km = 10.2 microM (RS); ascorbic acid, Ki = 6.4 mM; dehydroascorbate, Ki = 15 mM) and competitive with respect to NADPH (Km = 16.3 microM; acetic acid, Ki = 6.3 mM; dehydroascorbate, Ki = 3.1 mM). Ascorbic acid and dehydroascorbate are interconverted through the free radical intermediate monodehydroascorbate. Reducing agents are required to convert dehydroascorbate to monodehydroascorbate, but prevent formation of the free radical from ascorbate. In microsomes from IM-9 cells, the reducing agent, dithiothreitol, abolished HMG-CoA reductase inhibition by ascorbate but enhanced inhibition by dehydroascorbate. In addition, the concentration of monodehydroascorbate present in ascorbate solutions was directly proportional to the degree of HMG-CoA reductase inhibition by 1.0 mM ascorbate. Fifty per cent inhibition of enzyme activity occurred at a monodehydroascorbate concentration of 14 microM. These data indicate that monodehydroascorbate mediates inhibition of HMG-CoA reductase by both ascorbate and dehydroascorbate. This effect does not appear to be due to free radical-induced membrane lipid modification, however, since both ascorbate and dehydroascorbate inhibited the protease-solubilized, partially purified human liver enzyme. Since inhibition of HMG-CoA reductase occurs at physiological concentrations of ascorbic acid in the human leukocyte (0.2-1.72 mM), this vitamin may be important in the regulation of endogenous cholesterol synthesis in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号