首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Recent work has shown that plasmid DNA can be efficiently encapsulated in well-defined "stabilized plasmid-lipid particles" (SPLP) that have potential as systemic gene therapy vehicles [Gene Ther. 6 (1999) 271]. In this work, we examine the influence of ligands that enhance cellular uptake on the transfection potency of SPLP. The ligand employed is a cationic poly(ethylene glycol) (PEG) lipid (CPL) consisting of a lipid anchor and a PEG(3400) spacer chain with four positive charges at the end of the PEG (CPL(4)). It is shown that up to 4 mol% CPL(4) can be inserted into preformed SPLP, resulting in up to 50-fold enhancements in uptake into baby hamster kidney (BHK) cells. The addition of Ca(2+) to SPLP-CPL(4) (CPL(4)-incorporated SPLP) results in up to 10(6)-fold enhancements in transgene expression, as compared to SPLP in the absence of either CPL(4) or Ca(2+). These transfection levels are comparable to those observed for plasmid DNA-cationic lipid complexes (lipoplexes) but without the cytotoxic effects noted for lipoplex systems. It is concluded that in the presence of Ca(2+) and appropriate ligands to stimulate uptake, SPLP are highly potent transfection agents.  相似文献   

2.
The synthesis, physical properties, and transfection potencies of two representives of a new class of divalent, tetraalkyl cationic lipids is described. These cationic lipids are dimers of N,N-Dioleyl-N,N-dimethylammonium chloride (DODAC) joined by a hydrocarbon tether three or six carbons in length (TODMAC3 and TODMAC6, respectively). It is shown that TODMAC6 can display improved transfection properties in comparison to DODAC when formulated into plasmid DNA-cationic lipid complexes. These improved transfection potencies are observed at cationic lipid to DNA charge ratios of two or higher. It is also shown that TODMAC6 exhibits equivalent or improved ability (as compared to DODAC) to induce nonbilayer structure in mixtures with anionic lipid. This is consistent with the hypothesis that the ability of cationic lipids to induce nonbilayer structures when mixed with anionic lipids is correlated to their transfection potency. Complexes containing TODMAC3 on the other hand exhibit lower transfection potencies than achieved with DODAC, behavior that is consistent with steric effects limiting the formation of ion pairs with anionic lipids. It is concluded that TODMAC6 exhibits potential as a transfection agent for in vitro and in vivo use and that the design of cationic lipids according to their ability to induce nonbilayer structure provides a useful guide for synthesis of new cationic lipids.  相似文献   

3.
Previous work from this laboratory has shown that plasmid DNA can be encapsulated in small (70-nm-diameter) stabilized plasmid-lipid particles (SPLP) that consist of a single plasmid encapsulated within a bilayer lipid vesicle. SPLP preferentially transfect tumor tissue following intravenous administration. Although the levels of transgene expression in vivo are greater for SPLP than can be achieved with naked DNA or complexes, they are lower than may be required for therapeutic benefit. In the present work we examine whether Ca2+ can enhance the transfection potency of SPLP. It is shown that Ca2+ can enhance SPLP transfection potency in bovine hamster kidney cells by 60- to 100-fold when treated in serum containing medium and an additional 60-fold when serum is absent for the initial 10 min of the transfection period. When cells are treated with SPLP in the presence of Ca2+, there is a fivefold increase in intact plasmid in the cell. It is also shown that this Ca2+ effect involves the formation of calcium phosphate precipitates; however, these precipitates are not directly associated with the SPLP plasmid DNA. The ability of calcium phosphate to facilitate delivery of other macromolecules without direct association is also demonstrated by the release of large-molecular-weight dextrans from endosomal/lysosomal compartments in the presence of calcium phosphate. Finally, it is shown that, unlike naked DNA, SPLP transfection potency in the presence of calcium phosphate is not affected by nuclease activity.  相似文献   

4.
The structural and fusogenic properties of large unilamellar vesicles (LUVs) composed of the cationic lipid N-[2,3-(dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) and 1,2-dioleoyl-3-phosphatidylethanotamine (DOPE) have been examined in the presence of pCMV5 plasmid and correlated with transfection potency. It is shown, employing lipid mixing fusion assays, that pCMV5 plasmid strongly promotes fusion between DOTMA/DOPE (1:1) LUVs and DOTMA/1,2-dioleoyl-3-phosphatidylcholine (DOTMA/DOPC) (1:1) LUVs such that at a cationic lipid-to-DNA charge ratio of 3.0, approximately 80% fusion is observed. The anions citrate and chloride can also trigger fusion, but at much higher concentrations. Freeze-fracture electron microscopy studies demonstrate the tendency of cationic vesicles to form clusters at low pCMV5 content, whereas macroscopic fused aggregates can be observed at higher plasmid levels. 31P NMR studies of the fused DNA-DOTMA/DOPE (1:1) complexes obtained at high plasmid levels (charge ratio 1.0) reveal narrow "isotropic" 31P NMR resonances, whereas the corresponding DOPC containing systems exhibit much broader "bilayer" 31P NMR spectra. In agreement with previous studies, the transfection potency of the DOPE-containing systems is dramatically higher than for the DOPC-containing complexes, indicating a correlation between transfection potential and the motional properties of endogenous lipids. Interestingly, it was found that the complexes could be separated by centrifugation into a pellet fraction, which exhibits superior transfection potencies, and a supernatant fraction. Again, the pellet fraction in the DOPE-containing system exhibits a significantly narrower 31P NMR resonance than the corresponding DOPC-containing system. It is suggested that the 31P NMR characteristics of complexes exhibiting higher transfection potencies are consistent with the presence of nonbilayer lipid structures, which may play a direct role in the fusion or membrane destabilization events vital to transfection.  相似文献   

5.
Previous work has shown that plasmid DNA can be encapsulated in small 'stabilized plasmid-lipid particles' (SPLP) composed of 1, 2-dioleyl-3-phosphatidylethanolamine (DOPE), the cationic lipid N, N-dioleyl-N,N-dimethylammonium chloride (DODAC) and poly(ethylene glycol) (PEG) conjugated ceramides (PEG-Cer), employing a detergent dialysis procedure. These SPLP have potential as vectors for in vivo gene therapy. This study is aimed at characterizing the influence of the cationic lipid and PEG-Cer species on SPLP formation and in vitro transfection properties. It is shown that the transfection potency of SPLP is sensitive to the cationic lipid species employed, the size of the PEG polymer incorporated in the PEG-ceramide and the length of the acyl chain contained in the ceramide anchor. With regard to the influence of cationic lipid, the transfection levels achieved were highest for SPLP containing N-[2, 3-(dioleyloxy)propyl]-N,N-dimethyl-N-cyanomethylammonium chloride (DODMA-AN) and lowest for SPLP containing 3-beta-[N-(N', N'-dimethylaminoethyl)carbamoyl]-cholesterol (DC-CHOL), according to the series DODMA-AN>N-[2,3-(dioleyloxy)propyl]-N,N, N-trimethylammonium chloride (DOTMA)>DODAC>N,N-distearyl-N, N-dimethylammonium chloride (DSDAC)>DC-CHOL. Incorporation of short (PEG(750)) PEG polymers in the PEG-ceramide components resulted in modest improvements in transfection levels over PEG(2000) and PEG(5000) polymers, however variation of the length of the acyl chain contained in the hydrophobic ceramide anchor from octanoyl (PEG-CerC(8)) to myristoyl (PEG-CerC(14)) to arachidoyl (PEG-CerC(20)) had the most dramatic effects. Transfection levels achieved for SPLP containing PEG-CerC(8) were substantially larger than observed for SPLP containing PEG-CerC(14) or PEG-CerC(20), consistent with a requirement for the PEG-ceramide to dissociate from the SPLP surface for maximum transfection potency. It is also shown that the ability of SPLP to be accumulated into cells is a dominant factor influencing transfection potency, and that the transfection potency of SPLP that are accumulated is at least equivalent to that of cationic lipid-plasmid DNA complexes.  相似文献   

6.
In the procedure for cationic liposome-mediated transfection, the cationic lipid is usually mixed with a "helper lipid" to increase its transfection potency. The importance of helper lipids, including dioleoylphosphatidylcholine (DOPC) and phosphatidylethanolamine (dioleoyl PE), DO was examined. Freeze-fracture electron microscopy of DNA:cationic complexes containing the pSV-beta-GAL plasmid DNA, the cationic lipid dioleoyl trimethylammonium propane, and these helper lipids showed that the most efficient mixtures were aggregates of ensheathed DNA and fused liposomes. PE-containing complexes aggregated rapidly when added to culture media containing polyanions, whereas PC-containing complexes did not. However, more granules of PC-containing complexes were formed on cell surfaces after the complexes were added to Chinese hamster ovary (CHO) cells in transfection media. Pronase treatment inhibited transfection, whereas dilute poly-L-lysine enhanced transfection, indicating that the attachment of DNA:liposome complexes to cell surfaces was mediated by electrostatic interaction. Fluorescence spectroscopy studies confirmed that more PC-containing complexes than PE-containing complexes were associated with CHO cells, and that more PC-containing complexes were located in a low pH environment (likely to be within endosomes) with time. Cytochalasin-B had a stronger inhibitory effect on PC-containing liposome-mediated than on PE-containing liposome-mediated transfection. Confocal microscopic recording of the fluorescently label lipid and DNA uptake process indicated that many granules of DNA:cationic liposome complexes were internalized as a whole, whereas some DNA aggregates were left out on the cell surfaces after liposomes of the complexes fused with the plasma membranes. For CHO cells, endocytosis seems to be the main uptake pathway of DNA:cationic liposome complexes. More PC-containing granules than PE-containing granules were formed on cell surfaces by cytoskeleton-directed membrane motion, after their respective DNA:liposome complexes attached to cell surfaces by electrostatic means. Formation of granules on the cell surface facilitated and/or triggered endocytosis. Fusion between cationic liposomes and the cell membrane played a secondary role in determining transfection efficiency.  相似文献   

7.
Formation of liposome/polynucleotide complexes (lipoplexes) involves electrostatic interactions, which induce changes in liposome structure. The ability of these complexes to transfer DNA into cells is dependent on the physicochemical attributes of the complexes, therefore characterization of binding-induced changes in liposomes is critical for the development of lipid-based DNA delivery systems. To clarify the apparent lack of correlation between membrane fusion and in vitro transfection previously observed, we performed a multi-step lipid mixing assay to model the sequential steps involved in transfection. The roles of anion charge density, charge ratio and presence of salt on lipid mixing and liposome aggregation were investigated. The resonance-energy transfer method was used to monitor lipid mixing as cationic liposomes (DODAC/DOPE and DODAC/DOPC; 1:1 mole ratio) were combined with plasmid, oligonucleotides or Na(2)HPO(4). Cryo-transmission electron microscopy was performed to assess morphology. As plasmid or oligonucleotide concentration increased, lipid mixing and aggregation increased, but with Na(2)HPO(4) only aggregation occurred. NaCl (150 mM) reduced the extent of lipid mixing. Transfection studies suggest that the presence of salt during complexation had minimal effects on in vitro transfection. These data give new information about the effects of polynucleotide binding to cationic liposomes, illustrating the complicated nature of anion induced changes in liposome morphology and membrane behavior.  相似文献   

8.
BACKGROUND: The successful application of gene therapy depends on the availability of carriers to efficiently deliver genetic material into target cells. Such efficacy is strongly related to key parameters including serum resistance and protection of DNA. METHODS: The complexes were tested in terms of their biological activity, in the absence or presence of serum, by following transfection activity. Interaction with plasma proteins was evaluated by immunoblotting, while cytotoxicity was assessed by the Alamar Blue assay. Extent of DNA protection was determined both by using ethidium bromide intercalation and DNase I digestion assays. RESULTS: Our results show that, depending on the charge ratio and on the lipid composition, albumin and protamine can be used (either individually or co-associated) to generate cationic liposome/DNA complexes fulfilling in vivo requirements, while exhibiting high levels of transfection activity. In the present work a novel cationic lipid was tested. It was demonstrated that 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (EPOPC):cholesterol (Chol) liposomes constitute a very promising carrier for gene delivery as illustrated by their enhancing effect on transfection, as compared with DOTAP-containing liposomes. Moreover, the biological activity of EPOPC-containing complexes is significantly improved upon association of albumin, even in the presence of 60% serum (namely for the 4/1 lipid/DNA charge ratio). Nevertheless, our studies also show that transfection activity mediated by DOTAP-containing complexes can be significantly enhanced upon pre-condensation of DNA with protamine. CONCLUSIONS: Co-association of HSA and protamine to lipoplexes ensures a high degree of DNA protection and results in high levels of transfection activity even in the presence of serum.  相似文献   

9.
Cationic lipids-DNA complexes (lipoplexes) have been used for delivery of nucleic acids into cells in vitro and in vivo. Despite the fact that, over the last decade, significant progress in the understanding of the cellular pathways and mechanisms involved in lipoplexes-mediated gene transfection have been achieved, a convincing relationship between the structure of lipoplexes and their in vivo and in vitro transfection activity is still missing. How does DNA affect the lipid packing and what are the consequences for transfection efficiency is the point we want to address here. We investigated the bilayer organization in cationic liposomes by electron spin resonance (ESR). Phospholipids spin labeled at the 5th and 16th carbon atoms were incorporated into the DNA/diC14-amidine complex. Our data demonstrate that electrostatic interactions involved in the formation of DNA-cationic lipid complex modify the packing of the cationic lipid membrane. DNA rigidifies the amidine fluid bilayer and fluidizes the amidine rigid bilayer just below the gel-fluid transition temperature. These effects were not observed with single nucleotides and are clearly related to the repetitive charged motif present in the DNA chain and not to a charge-charge interaction. These modifications of the initial lipid packing of the cationic lipid may reorient its cellular pathway towards different routes. A better knowledge of the cationic lipid packing before and after interaction with DNA may therefore contribute to the design of lipoplexes capable to reach specific cellular targets.  相似文献   

10.
Transient transfection of Chinese hamster ovary or baby hamster kidney cells expressing the Group I metabotropic glutamate receptor mGlu1alpha with green fluorescent protein-tagged pleckstrin homology domain of phospholipase Cdelta1 allows real-time detection of inositol 1,4,5-trisphosphate. Loading with Fura-2 enables simultaneous measurement of intracellular Ca(2+) within the same cell. Using this technique we have studied the extracellular calcium sensing property of the mGlu1alpha receptor. Quisqualate, in extracellular medium containing 1.3 mm Ca(2+), increased inositol 1,4,5-trisphosphate in all cells. This followed a typical peak and plateau pattern and was paralleled by concurrent increases in intracellular Ca(2+) concentration. Under nominally Ca(2+)-free conditions similar initial peaks in inositol 1,4,5-trisphosphate and Ca(2+) concentration occurred with little change in either agonist potency or efficacy. However, sustained inositol 1,4,5-trisphosphate production was substantially reduced and the plateau in Ca(2+) concentration absent. Depletion of intracellular Ca(2+) stores using thapsigargin abolished quisqualate-induced increases in intracellular Ca(2+) and markedly reduced inositol 1,4,5-trisphosphate production. These data suggest that the mGlu1alpha receptor is not a calcium-sensing receptor because the initial response to agonist is not sensitive to extracellular Ca(2+) concentration. However, prolonged activation of phospholipase C requires extracellular Ca(2+), while the initial burst of activity is highly dependent on Ca(2+) mobilization from intracellular stores.  相似文献   

11.
Evaluation of lipid-based reagents to mediate intracellular gene delivery   总被引:3,自引:0,他引:3  
We characterized different cationic lipid-based gene delivery systems consisting of both liposomes and nonliposomal structures, in terms of their in vitro transfection activity, resistance to the presence of serum, protective effect against nuclease degradation and stability under different storage conditions. The effect of lipid/DNA charge ratio of the resulting complexes on these properties was also evaluated. Our results indicate that the highest levels of transfection activity were observed for complexes prepared from nonliposomal structures composed of FuGENE 6. However, their DNA protective effect was shown to be lower than that observed for cationic liposome formulations when prepared at the optimal (+/-) charge ratio. Our results suggest that lipoplexes are resistant to serum up to 30% when prepared at a 2:1 lipid/DNA charge ratio. However, when they were prepared at higher (+/-) charge ratios, they become sensitive to serum for even lower concentrations (10%). Replacement of dioleoyl-phosphatidylethanolamine (DOPE) by cholesterol enhanced the resistance of the complexes to the inhibitory effect of serum. This different biological activity in the presence of serum was attributed to different extents of binding of serum proteins to the complexes, as evaluated by the immunoblotting assay. Studies on the stability under storage show that lipoplexes maintain most of their biological activity when stored at -80 degrees C, following their fast freezing in liquid nitrogen.  相似文献   

12.
The successful application of gene therapy depends highly on understanding the properties of gene carriers and their correlation with the ability to mediate transfection. An important parameter that has been described to improve transfection mediated by cationic liposomes involves association of ligands to cationic liposome–DNA complexes (lipoplexes). In this study, ternary complexes composed of 1,2-dioleoyl-3-(trimethylammonium) propane:cholesterol, plasmid DNA and transferrin (Tf, selected as a paradigm of a ligand) were prepared under various conditions, namely, in medium with different ionic strengths (HEPES-buffered saline [HBS] or dextrose), at different lipid/DNA (+/–) charge ratios and using different modes for component addition. We investigated the effect of these formulation parameters on transfection (in the absence and presence of serum), size of the complexes, degree of DNA protection and extent of their association with cells (in terms of both lipid and DNA). Our results show that all the tested parameters influenced to some extent the size of the complexes and their capacity to protect the carried genetic material, as well as the levels of cell association and transfection. The best transfection profile was observed for ternary complexes (Tf-complexes) prepared in high ionic strength solution (HBS), at charge ratios close to neutrality and according to the following order of component addition: cationic liposomes–Tf–DNA. Interestingly, in contrast to what was found for dextrose–Tf-complexes, transfection mediated by HBS-Tf-complexes in the presence of serum was highly enhanced.  相似文献   

13.
Novel N,N'-diacyl-1,2-diaminopropyl-3-carbamoyl[bis-(2-dimethylaminoethane)] bivalent cationic lipids were synthesized and evaluated for in vitro transfection activity against a murine melanoma cell line. In the absence of the helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), only the dioleoyl derivative 22 (1,2lb5) elicited transfection activity. The transfection activity of this lipid was reduced when formulated with DOPE. Contrary to that, the dimyristoyl derivative 19 (1,2lb2) mediated no activity when used alone but induced the highest levels of marker gene expression in the presence of DOPE. In an effort to correlate the transfection activity with cationic lipid structures, the physicochemical properties of cationic lipids in isolation and of lipoplexes were studied with surface tensiometry, photon correlation spectroscopy, gel electrophoresis mobility shift assay, and fluorescence techniques. In regard to the lipoplex properties, gel electrophoresis mobility shift assay and EtBr exclusion fluorescence assay revealed that the 1,2lb5 was the only lipid to associate and condense plasmid DNA, respectively. Photon correlation spectroscopy analysis found that 1,2lb5/DNA complexes were of relatively small size compared to all other lipoplexes. With respect to the properties of isolated lipids, Langmuir monolayer studies and fluorescence anisotropy on cationic lipid dispersions verified high two-plane elasticity and increased fluidity of the transfection competent dioleoyl derivative 1,2lb5, respectively. The results indicate that high transfection activity is mediated by cationic lipids characterized by an expanded mean molecular area, high molecular elasticity, and increased fluidity.  相似文献   

14.
The effect on exocytosis of La(3+), a known inhibitor of plasma membrane Ca(2+)-ATPases and Na(+)/Ca(2+) exchangers, was studied using cultured bovine adrenal chromaffin cells. At high concentrations (0.3-3 mM), La(3+) substantially increased histamine-induced catecholamine secretion. This action was mimicked by other lanthanide ions (Nd(3+), Eu(3+), Gd(3+), and Tb(3+)), but not several divalent cations. In the presence of La(3+), the secretory response to histamine became independent of extracellular Ca(2+). La(3+) enhanced secretion evoked by other agents that mobilize intracellular Ca(2+) stores (angiotensin II, bradykinin, caffeine, and thapsigargin), but not that due to passive depolarization with 20 mM K(+). La(3+) still enhanced histamine-induced secretion in the presence of the nonselective inhibitors of Ca(2+)-permeant channels SKF96365 and Cd(2+), but the enhancement was abolished by prior depletion of intracellular Ca(2+) stores with thapsigargin. La(3+) inhibited (45)Ca(2+) efflux from preloaded chromaffin cells in the presence or absence of Na(+). It also enhanced and prolonged the rise in cytosolic [Ca(2+)] measured with fura-2 during mobilization of intracellular Ca(2+) stores with histamine in Ca(2+)-free buffer. The results suggest that the efficacy of intracellular Ca(2+) stores in evoking exocytosis is enhanced dramatically by inhibiting Ca(2+) efflux from the cell.  相似文献   

15.
基因治疗是未来临床医学最具潜力的治疗方式,目前阻碍临床基因治疗发展的主要因素是缺乏安全和高效的基因载体,因此研究理想的非病毒转基因载体具有重要的意义.构建了由质粒DNA(D)-抗DNA抗体(A)-阳离子脂质体(C)组成的三元复合纳米基因载体(DAC),研究表明,三组分在磷酸缓冲液中可通过分子组装形成复合纳米胶束,DAC在细胞培养中表现出显著高效的基因表达,DAC在血管平滑肌细胞中的基因转染效率比不含抗DNA抗体的二元组合(DC)高4倍,比不含阳离子脂质体的二元组合(DA)约高11倍.激光共聚焦荧光显微观察证明,DAC细胞摄取量和DNA进入细胞核的量均明显高于对照组,而DC二元组合(不含抗DNA抗体)的DNA很少进入细胞核,细胞在DAC存在下生长正常.未发现细胞毒性.研究结果提示,DAC的作用机理主要是三元复合胶束中DNA的装载量比二元载体大得多,抗DNA抗体与阳离子脂质体的协同作用明显有利于DNA被细胞摄取和胞吞,从而提高了基因的转染和表达.  相似文献   

16.
Aortic valve (AV) disease is often characterized by the formation of calcific nodules within AV leaflets that alter functional biomechanics. In vitro, formation of these nodules is associated with osteogenic differentiation and/or increased contraction and apoptosis of AV interstitial cells (AVICs), leading to growth of calcium phosphate crystal structures. In several other cell types, increased intracellular Ca(2+) has been shown to be an important part in activation of osteogenic differentiability. However, elevated intracellular Ca(2+) is known to mediate cell contraction, and has also been shown to lead to apoptosis in many cell types. Therefore, a rise in intracellular Ca(2+) may precede cellular changes that lead to calcification, and fibroblasts similar to AVICs have been shown to exhibit increases in intracellular Ca(2+) in response to mechanical strain. In this study, we hypothesized that strain induces intracellular Ca(2+) accumulation through stretch-activated calcium channels. We were also interested in assessing possible correlations between intracellular Ca(2+) increases and apoptosis in AVICs. To test our hypothesis, cultured porcine AVICs were used to assess correlates between strain, intracellular Ca(2+), and apoptosis. Ca(2+) sensitive fluorescent dyes were utilized to measure real-time intracellular Ca(2+) changes in strained AVICs. Ca(2+) changes were then correlated with AVIC apoptosis using flow cytometric Annexin V apoptosis assays. These data indicate that strain-dependent accumulation of intracellular Ca(2+) is correlated with apoptosis in AVICs. We believe that these findings indicate early mechanotransductive events that may initiate AV calcification pathways.  相似文献   

17.
The effect of beta-endorphin on 2-, 4- and 8-cell embryo development in vitro was studied. It is shown, that hormone has no effect on 2-cell embryos development, but it has enhanced viability of 4- and 8-cell mouse embryos. The number ofblastocyst formation increases in presence of 0.1 microM beta-endorphin in embryo cultured medium but the number of blastocyst with abnormal structure decreases. The effect of hormone on the change of intracellular concentration of Ca2+ ion in 2-, 4- and 8-cell mouse embryo has been studied with the help of fluorescent microscopy. The effect of adenylate cyclase, and phospholipase activity blockers and opioid blocker naloxone on the change of intracellular concentration of Ca2+ ion in early mouse embryo in the presence of beta-endorphin have been also studied. It is shown that 2-cell embryo has opioid and nonopioid beta-endorphin receptors, whereas 4- and 8-cell mouse embryos have only nonopoioid beta-endorphin receptors. It is also shown that the effect of beta-endorphin in the early mouse embryo through a nonopioid receptors occurs with the participation of intracellular Ca2+ and adenylate cyclase signaling system.  相似文献   

18.
The formation of complexes of DNA with dodecylamine, dodecyltrimethylammonium, tetradecyltrimethylammonium, and hexadecyltrimethylammonium was studied using a fluorescent probe pyrene. The dependences of the spectral parameters of the hydrophobic pyrene probe on the concentration of the cationic amphiphile in the presence and absence of DNA were obtained and analyzed. It is shown that, in the absence of DNA, these dependences exhibit only one S-shaped region, which corresponds to the micelle formation of the amphiphile, whereas in the presence of DNA there are two S-shaped regions, which indicates the cooperative formation of two types of DNA-cationic amphiphile complexes. For each of the four cationic amphiphiles, the critical concentrations for the micelle formation in the absence of DNA (C0) and the concentrations at which the first (Cd1) and the second complex with DNA are formed were determined. It was found that the Cd1 value is 15-40 times lower than C0. The Cd1 value does not depend on DNA concentration and is determined only by the length of the hydrocarbon chain and the structure of the amphiphile ionic fragment. The Cd1 value increases as the length of the aliphatic chain decreases and upon replacement of mobile hydrogen atoms in the ammonium fragment by methyl groups. It was shown that hydrophobic clusters of amphiphile arising upon complex formation with DNA play the role of cross-links promoting DNA aggregation, or DNA compactization in the case of dilute solution of high-molecular weight DNA. The structures of the first and second DNA-cationic amphiphile complexes are proposed, and the mechanism and nature of interactions that determine their formation are discussed.  相似文献   

19.
A novel series of N,N'-diacyl-1,2-diaminopropyl-3-carbamoyl-(dimethylaminoethane) cationic derivatives was synthesized and screened for in vitro transfection activity at different charge ratios in the presence and absence of the helper lipids DOPE and cholesterol. Physicochemical properties of lipid-DNA complexes were studied by gel electrophoresis, fluorescence spectroscopy and dynamic light scattering. The interfacial properties of the lipids in isolation were studied using the Langmuir film balance technique at 23 degrees C. It was found that only lipoplexes formulated with the dioleoyl derivative, 1,2lmt[5], mediated significant in vitro transfection activity. Optimum activity was obtained with 1,2lmt[5]/DOPE mixture at a +/-charge ratio of 2. In agreement with the transfection results, 1,2lmt[5] was the only lipid found to complex and retard DNA migration as verified by gel electrophoresis. Despite the efficient complexation, no significant condensation of plasmid DNA was observed as indicated by fluorescence spectroscopy measurements. Monolayer studies showed that the dioleoyl derivative 1,2lmt[5] was the only lipid that existed in an all liquid-expanded state with a collapse area and collapse pressure of 59.5 A2 and 38.7 mN/m, respectively. This lipid was also found to have the highest elasticity with a compressibility modulus at monolayer collapse of 80.4 mN/m. In conclusion, increased acyl chain fluidity and high molecular elasticity of cationic lipids were found to correlate with improved transfection activity.  相似文献   

20.
A novel development has allowed for the direct observation of single, pairwise interactions of linear DNA with cationic vesicles and of DNA-cationic lipid complexes with anionic vesicles. A new cationic phospholipid derivative, l,2-dioleoyl-sn-glycero-3-ethylphosphocholine, was used to prepare giant bilayer vesicles and to form DNA-cationic lipid complexes (lipoplexes). The cationic vesicles were electrophoretically maneuvered into contact with DNA, and similarly, complexes were brought into contact with anionic phospholipid vesicles composed of dioleoylphosphatidylglycerol (DOPG; 100%), DOPG/dioleoylphosphatidylethanolamine (DOPE; 1:1) or DOPG/dioleoylphosphatidylcholine (DOPC; 1:1). Video fluorescence microscopy revealed that upon contact with phospholipid anionic vesicles, lipoplexes exhibited four different types of behavior: adhesion, vesicle rupture, membrane perforation (manifested as vesicle shrinkage and/or content loss), and expansion of DNA (which was always concomitant with membrane perforation.) In one instance, the lipoplex was injected into the target vesicle just prior to DNA expansion. In all other instances, the DNA expanded over the outer surface of the vesicle, and expansion was faster, the larger the area of vesicle over which it expanded. Given the likelihood of incorporation of cellular anionic lipids into lipoplexes, the expansion of the DNA could be important in DNA release during cell transfection. Upon contact with naked DNA, giant cationic vesicles usually ruptured and condensed the DNA into a small particle. Contact of cationic vesicles that were partially coated with DNA usually caused the DNA to wrap around the vesicle, leading to vesicle rupture, vesicle fusion (with other attached vesicles or lipid aggregates), or simply cessation of movement. These behaviors clearly indicated that both DNA and vesicles could be partly or fully covered by the other, thus modifying surface charges, which, among others, allowed adhesion of DNA-coated vesicles with uncoated vesicles and of lipid-coated DNA with uncoated DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号