首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Trifolium repens L. was grown to test the following hypotheses: when P is deficient (i) N2 fixation decreases as a result of the plant's adaptation to the low N demand, regulated by an N feedback mechanism, and (ii) the decrease in the photosynthetic capacity of the leaves does not limit N2 fixation. Severe P deficiency prevented nodulation or stopped nodule growth when the P deficiency occurred after the plants had formed nodules. At low P, the proportion of whole-plant-N derived from symbiotic N2 fixation decreased, whereas specific N2 fixation increased and compensated partially for poor nodulation. Leaf photosynthesis was reduced under P deficiency due to low Vc,max and Jmax. Poor growth or poor performance of the nodules was not due to C limitation, because (i) the improved photosynthetic performance at elevated pCO2 had no effect on the growth and functioning of the nodules, (ii) starch accumulated in the leaves, particularly under elevated pCO2, and (iii) the concentration of WSC in the nodules was highest under P deficiency. Under severe P deficiency, the concentrations of whole-plant-N and leaf-N were the highest, indicating that the assimilation of N exceeded the amount of N required by the plant for growth. This was clearly demonstrated by a strong increase in asparagine concentrations in the roots and nodules under low P supply. This indicates that nodulation and the proportion of N derived from symbiotic N2 fixation are down-regulated by an N feedback mechanism.  相似文献   

2.
Nutrient resorption from senesced leaves as a nutrient conservation strategy is important for plants to adapt to nutrient deficiency, particularly in alpine and arid environment. However, the leaf nutrient resorption patterns of different functional plants across environmental gradient remain unclear. In this study, we conducted a transect survey of 12 communities to address foliar nitrogen (N) and phosphorus (P) resorption strategies of four functional groups along an eastward increasing precipitation gradient in northern Tibetan Changtang Plateau. Soil nutrient availability, leaf nutrient concentration, and N:P ratio in green leaves ([N:P]g) were linearly correlated with precipitation. Nitrogen resorption efficiency decreased, whereas phosphorus resorption efficiency except for sedge increased with increasing precipitation, indicating a greater nutrient conservation in nutrient‐poor environment. The surveyed alpine plants except for legume had obviously higher N and P resorption efficiencies than the world mean levels. Legumes had higher N concentrations in green and senesced leaves, but lowest resorption efficiency than nonlegumes. Sedge species had much lower P concentration in senesced leaves but highest P resorption efficiency, suggesting highly competitive P conservation. Leaf nutrient resorption efficiencies of N and P were largely controlled by soil and plant nutrient, and indirectly regulated by precipitation. Nutrient resorption efficiencies were more determined by soil nutrient availability, while resorption proficiencies were more controlled by leaf nutrient and N:P of green leaves. Overall, our results suggest strong internal nutrient cycling through foliar nutrient resorption in the alpine nutrient‐poor ecosystems on the Plateau. The patterns of soil nutrient availability and resorption also imply a transit from more N limitation in the west to a more P limitation in the east Changtang. Our findings offer insights into understanding nutrient conservation strategy in the precipitation and its derived soil nutrient availability gradient.  相似文献   

3.
The inhibition of photosynthesis by reduced sink demand or low rates of end product synthesis was investigated by supplying detached wheat (Triticum aestivum L. cv. Tauro) leaves with 50 mM sucrose, 50 mM glycerol or water through the transpiration stream for 2 h, either at 23 or 12 °C. Lowering the temperature and sucrose and glycerol feeding decreased photosynthetic oxygen evolution at high irradiance and saturating CO2. The decrease in temperature reduced the pools of sucrose and starch, and the ratio glucose 6-phosphate (G6P)/fructose 6-phosphate (F6P), while it increased the concentrations of G6P and F6P (hexose phosphates). Sucrose feeding, in contrast to glycerol feeding, increased sucrose, glucose and fructose contents and the G6P/F6P ratio. Sucrose and glycerol incubations at 23 °C, as well as decreasing the temperature in leaves incubated in water, increased the concentration of triose-phosphates (glyceraldehyde 3-phosphate and dihydroxyacetone phosphate, TP) and decreased the glycerate 3-phosphate (PGA) content, thus increasing the TP/PGA ratio; they also tended to increase the ribulose 1,5-bisphosphate (RuBP) content and the RuBP/PGA ratio. Sucrose and glycerol feeding at 12 °C and the decrease in temperature of leaves incubated in these solutions decreased TP and RuBP contents and the TP/PGA and RuBP/PGA ratios. The results suggest that the phosphate limitation caused by accumulation of end products, restriction of their synthesis and sequestration of cytosolic phosphate can inhibit photosynthesis through decreased carboxylation of RuBP or, with increased phosphate limitation, through lowered supply of ATP. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Foliar concentrations of starch and major nutrients N, P, K, Ca, and Mg along with specific leaf weight (SLW) were determined in the potato (Solaruan tuberosum L. ) cvs "Denali", "Norland” and "Russet Burbank" grown for 35 days under the CO2 concentrations of 500, 1 000, 1 500 and 2 000 μmol' mol-l at both 16 and 20 ℃ air temperature. The starch concentration, pooled from the three cuhivars, increased with increasing CO2 concentration at both 16 and 20 ℃, and was consistently higher at 16 ℃ than at 20 ℃. The SLW (g·m-2) was positively related to the foliar starch concentration on the basis of leaf area or dry weight. The concentrations of N, P, Ca, and Mg in leaves were negatively related to starch concentration under 14% starch on a dry weight basis. Above 14%, there was no significant relationship between nutrient and starch concentrations. The similar patterns were seen when the SLW and nutrient concentrations were expressed on a starch-free basis. In contrast, the leaf concentration of K was not closely related to the starch concentration. The results indicated that the changes in SLW and concentrations of N, P, Ca, and Mg in potato leaves only partially resulted from the changed starch concentration.  相似文献   

5.
Li  X.-G.  Meng  Q.-W.  Jiang  G.-Q.  Zou  Q. 《Photosynthetica》2003,41(2):259-265
The photoprotection of energy dissipation and water-water cycle were investigated by comparing chilling sensitivity of photosystems 2 (PS2) and 1 (PS1) in two chilling-sensitive plants, cucumber and sweet pepper, upon exposure to 4 °C under low irradiance (100 μmol m−2 s−1) for 6 h. During chilling stress, the maximum photochemical efficiency of PS2 (Fv/Fm) decreased only slightly in both plants, but the oxidisable P700 decreased markedly, which indicated that PS1 was more sensitive to chilling treatment under low irradiance than PS2. Sweet pepper leaves had lower Fv/Fm, higher non-photochemical quenching (NPQ), and higher oxidisable P700 during chilling stress. Activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in cucumber leaves was higher, but APX activity decreased apparently compared to that at room temperature. The productions of active oxygen species (H2O2, O2 ) increased in both plants, faster in cucumber leaves than in sweet pepper leaves. In sweet pepper leaves, a stronger de-epoxidation of the xanthophyll cycle pigments, a higher NPQ could act as a major protective mechanism to reduce the formation of active oxygen species during stress. Thus sensitivity of both plants to chilling under low irradiance was dominated by the protective mechanisms between PS1 and PS2, especially the energy dissipation and the water-water cycle. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Plant growth is typically stimulated at elevated carbon dioxide concentration ([CO2]), but a sustained and maximal stimulation of growth requires acquisition of additional N in proportion to the additional C fixed at elevated [CO2]. We hypothesized that legumes would be able to avoid N limitation at elevated [CO2]. Soybean was grown without N fertilizer from germination to final senescence at elevated [CO2] over two growing seasons under fully open-air conditions, providing a model legume system. Measurements of photosynthesis and foliar carbohydrate content showed that plants growing at elevated [CO2] had a c. 25% increase in the daily integral of photosynthesis and c. 58% increase in foliar carbohydrate content, suggesting that plants at elevated [CO2] had a surplus of photosynthate. Soybeans had a low leaf N content at the beginning of the season, which was a further c. 17% lower at elevated [CO2]. In the middle of the season, ureide, total amino acid and N content increased markedly, and the effect of elevated [CO2] on leaf N content disappeared. Analysis of individual amino acid levels supported the conclusion that plants at elevated [CO2] overcame an early-season N limitation. These soybean plants showed a c. 16% increase in dry mass at final harvest and showed no significant effect of elevated [CO2] on leaf N, protein or total amino acid content in the latter part of the season. One possible explanation for these findings is that N fixation had increased, and that these plants had acclimated to the increased N demand at elevated [CO2].  相似文献   

7.
Most previous studies have ascribed variations in the resorption of a certain plant nutrient to its corresponding environmental availability or level in tissues, regardless of the other nutrients’ status. However, given that plant growth relies on both sufficient and balanced nutrient supply, the nutrient resorption process should not only be related to the absolute nutrient status, but also be regulated by the relative limitation of the nutrient. Here, based on a global woody-plants dataset from literature, we test the hypothesis that plants resorb proportionately more nitrogen (or phosphorus) when they are nitrogen (or phosphorus) limited, or similar proportions of nitrogen (N) and phosphorus (P) when co-limited by both nutrients (the relative resorption hypothesis). Using the N:P ratio in green foliage as an indicator of nutrient limitation, we found an inverse relationship between the difference in the proportionate resorption of N vs P and this foliar N:P ratio, consistent across species, growth-forms, and vegetation-types globally. Moreover, according to the relative resorption hypothesis, communities with higher/lower foliar N:P (more likely P/N limited) tend to produce litter with disproportionately higher/lower N:P, causing a worsening status of P/N availability; this positive feedback may somehow be counteracted by several negative-feedback mechanisms. Compared to N, P generally shows higher variability in resorption efficiency (proportion resorbed), and higher resorption sensitivity to nutrient availability, implying that the resorption of P seems more important for plant nutrient conservation and N:P stoichiometry. Our findings elucidate the nutrient limitation effects on resorption efficiency in woody plants at the global scale, and thus can improve the understanding of nutrient resorption process in plants. This study also suggests the importance of the foliar N:P ratio as a key parameter for biogeochemical modeling, and the relative resorption hypothesis used to deduce the critical (optimal) N:P ratio for a specific plant community.  相似文献   

8.
Drought stress is one of the major factors affecting nitrogen fixation by legume-rhizobium symbiosis. Several mechanisms have been previously reported to be involved in the physiological response of symbiotic nitrogen fixation to drought stress, i.e. carbon shortage and nodule carbon metabolism, oxygen limitation, and feedback regulation by the accumulation of N fixation products. The carbon shortage hypothesis was previously investigated by studying the combined effects of CO2 enrichment and water deficits on nodulation and N2 fixation in soybean. Under drought, in a genotype with drought tolerant N2 fixation, approximately four times the amount of 14C was allocated to nodules compared to a drought sensitive genotype. It was found that an important effect of CO2 enrichment of soybean under drought was an enhancement of photo assimilation, an increased partitioning of carbon to nodules, whose main effect was to sustain nodule growth, which helped sustain N2 rates under soil water deficits. The interaction of nodule permeability to O2 and drought stress with N2 fixation was examined in soybean nodules and led to the overall conclusion that O2 limitation seems to be involved only in the initial stages of water deficit stresses in decreasing nodule activity. The involvement of ureides in the drought response of N2 fixation was initially suspected by an increased ureide concentration in shoots and nodules under drought leading to a negative feedback response between ureides and nodule activity. Direct evidence for inhibition of nitrogenase activity by its products, ureides and amides, supported this hypothesis. The overall conclusion was that all three physiological mechanisms are important in understanding the regulation of N2 fixation and its response of to soil drying.  相似文献   

9.
Symbiotic nitrogen fixation is highly sensitive to drought, which results in decreased N accumulation and yield of legume crops. The effects of drought stress on N2 fixation usually have been perceived as a consequence of straightforward physiological responses acting on nitrogenase activity and involving exclusively one of three mechanisms: carbon shortage, oxygen limitation, or feedback regulation by nitrogen accumulation. The sensitivity of the nodule water economy to the volumetric flow rate of the phloem into the nodule offers a common framework to understand each of these mechanism. As these processes are sensitive to volumetric phloem flow into the nodules, variations in phloem flow as a result of changes in turgor pressure in the leaves are likely to cause rapid changes in nodule activity. This could explain the special sensitivity of N2 fixation to drying soils. It seems likely that N feedback may be especially important in explaining the response mechanism in nodules. A number of studies have indicated that a nitrogenous signal(s), associated with N accumulation in the shoot and nodule, exists in legume plants so that N2 fixation is inhibited early in soil drying. The existence of genetic variation in N2 fixation response to water deficits among legume cultivars opens the possibility for enhancing N2 fixation tolerance to drought through selection and breeding.  相似文献   

10.
Precipitation as a key determinant of forest productivity influences forest ecosystems also indirectly through alteration of the nutrient status of the soil, but this interaction is not well understood. Along a steep precipitation gradient, we studied the consequences of reduced precipitation for the soil and biomass nutrient pools and dynamics in 14 mature European beech (Fagus sylvatica L.) forests on Triassic sandstone. We tested the hypotheses that lowered summer precipitation (1) is associated with less acid soils and (2) a reduced accumulation of organic matter on the forest floor, and (3) reduces nutrient supply from the soil and leads to decreasing foliar and root nutrient concentrations. Soil acidity, the amount of forest floor organic matter, and the associated organic matter N and P pools decreased to about a half from wet to dry sites; the C/P and N/P ratios, but not the C/N ratio, of forest floor organic matter were reduced as well. Net N mineralization and P and K pools in the mineral soil did not change with decreasing precipitation. Foliar P and K concentrations (beech sun leaves) increased while N remained constant, resulting in decreasing foliar N/P and N/K ratios. Estimated N resorption efficiency increased toward the dry sites. We conclude that a reduction in summer rainfall significantly reduces the soil C, N and P pools but does not result in decreasing foliar N and P contents in beech. However, the decreasing foliar N/P ratios towards the dry stands indicate that the importance of P limitation for tree growth declines with decreasing precipitation.  相似文献   

11.
Effects of nitrogen (N) nutrition level on photosynthesis of wheat were studied using method of quick drying of detached leaves, under rapid water stress. The results showed that in the case, leaf water potential (Ψw), net photosynthetic rate (Pn) and stomatal conductance (Gs) of high N (HN) leaves decreased more quickly than that of low N (LN) leaves. Therefore, the difference of Pn between HN and LN leaves became less and less with increasing water stress. Under severe water stress, the Pn of HN leaves were lower than that of LN leaves. The intercellular concentration of CO2 (Ci) of HN leaves were lower than that of LN leaves, and the value of stomatal limitation of photosynthesis (Ls) of HN leaves were higher during rapid water stress. However, the mesophllous conductance of CO2 (Gm) and photosynthetic activity of mesophyll of HN leaves were still higher than that of LN leaves.  相似文献   

12.
Young plants of Panicum bisulcatum (C(3)), Zuloagaea bulbosa [NADP-malic enzyme (ME)-C(4)], P. miliaceum (NAD-ME-C(4)) and Urochloa maxima [phosphoenolpyruvate carboxykinase (PCK)-C(4)] were subjected to drought stress (DS) in soil for 6?days. The C(3) species showed severe wilting symptoms at higher soil water potential (-1.1?MPa) and relative leaf water content (77?%) than in the case of the C(4) species (-1.5 to -1.7?MPa; 58-64?%). DS decreased photosynthesis, both under atmospheric and under saturating CO(2). Stomatal limitation of net photosynthesis (P (N)) in the C(3), but not in the C(4) species was indicated by P (N)/C (o) curves. Chlorophyll fluorescence of photosystem II, resulting from different cell types in the four species, indicated NADPH accumulation and non-stomatal limitation of photosynthesis in all four species, even under high CO(2). In the NAD-ME-C(4) and the PCK-C(4) species, DS plants showed increased violaxanthin de-epoxidase rates. Biochemical analyses of carboxylating enzymes and in vitro enzyme activities of the C(4) enzymes identified the most likely non-stomatal limiting steps of photosynthesis. In P. bisulcatum, declining RubisCO content and activity would explain the findings. In Z. bulbosa, all photosynthesis enzymes declined significantly; photosynthesis is probably limited by the turnover rate of the PEPC reaction. In P. miliaceum, all enzyme levels remained fairly constant under DS, but photosynthesis can be limited by feedback inhibition of the Calvin cycle, resulting in asp inhibition of PEPC. In U. maxima, declines of in vivo PEPC activity and feedback inhibition of the Calvin cycle are the main candidates for non-stomatal limitation of photosynthesis under DS.  相似文献   

13.
Biological nitrogen (N) fixation is the primary source of “new” N to unmanaged ecosystems, and recent analyses suggest that terrestrial N inputs via free-living N fixation may be more important than previously assumed. This may be particularly true in some tropical rain forests, where free-living fixation could outpace symbiotic N fixation to represent the dominant source of new N inputs. However, our understanding of the controls over free-living N fixation in tropical rain forests remains poor, which directly constrains our ability to predict how N cycling will respond to changing environmental conditions. Although both phosphorus (P) and molybdenum (Mo) availability have been shown to limit free-living N fixation rates in the tropics, few studies have simultaneously explored P versus Mo limitation or the potential importance of P × Mo interactions. Here, an archived set of foliar, litter, and soil samples from a Costa Rican tropical rain forest provided an opportunity to simultaneously assess the relative strength of P versus Mo relationships with free-living N fixation rates. We also conducted a short-term, full-factorial (P × Mo) litter incubation experiment to directly assess nutrient limitation, allowing us to explore P and Mo controls over free-living N fixation rates using both observational and experimental approaches. We previously showed that N fixation rates were positively correlated with P concentrations in all substrates and, using the archived samples, we now show that Mo concentrations correlated with N fixation only in canopy leaves (where total Mo concentrations were extremely low). Likewise, fertilization with P alone (and not Mo) stimulated leaf litter N fixation rates. Thus, our results suggest that P availability dominantly controls free-living N fixation at this site, and when taken with data from other studies, our results suggest that attempts to identify “the nutrient” that limits N fixation in “the tropics” may be misguided. Rather, nutrient controls over free-living N fixation appear to be more nuanced—and the true nature of nutrient limitation to N fixation likely varies over a variety of scales across the vast tropical rain forest biome.  相似文献   

14.
Nutrient Dilution by Starch in CO2-enriched Chrysanthemum   总被引:1,自引:0,他引:1  
Increasing growth irradiance and CO2 generally decreases foliarnutrient concentration on a dry weight basis and increases foliarstarch concentration. However, the extent to which starch concentrations‘dilute’ foliar nutrient concentrations when thelatter are expressed on a dry weight basis is not known. Todetermine the importance of differential starch accumulationin calculating nutrient concentrations on a dry weight basis,leaf nutrient and starch concentrations were measured in Chrysanthemum? morifolium ‘Fiesta’ (Ramat.) cuttings grown atthree irradiance levels and two CO2 levels for eight weeks inboth winter and spring. On a dry weight basis, foliar concentrationsof most nutrients were lower in both seasons as a result ofthe elevated CO2 and irradiance levels, and total dry weightswere higher. Per cent starch was greater at the high CO2 levelin both seasons but was only greater at higher irradiances inthe winter experiment. When starch was subtracted from the leafdry weights, the differences between CO2 and irradiance treatmentsdisappeared with respect to N, P, K, Ca, Mg, S, and B but notfor Fe, Mn, Zn, and Cu. Key words: CO2 enrichment, starch, nutrients, irradiance  相似文献   

15.
The starch content of red algae normally increases during nitrogen limitation. Based on this we hypothesized that nutrient deprivation would result in an increased activity of starch‐synthesizing enzymes and a decrease in the activity of starch‐degrading enzymes, with the opposite scenario when nutrients were sufficient. We therefore examined the effect of the nutrient status of Gracilaria tenuistipitata Chang et Xia on the content of starch and floridoside and on the activity of enzymes involved in the allocation of carbon into starch, floridoside, and agar; floridoside phosphate synthase and α‐galactosidase involved in synthesis and degradation of floridoside; starch synthase and starch phosphorylase involved in the metabolism of starch; uridine 5′‐diphosphate (UDP)‐glucose pyrophosphorylase; adenosine 5′‐diphosphate‐glucose pyrophosphorylase; UDP‐glucose 4‐epimerase; and phosphoglucomutase. During the period of nutrient limitation the starch and floridoside content increased, as did dry weight and C/N ratio, whereas growth rate and protein content decreased. A general decrease in the enzyme activities during nutrient limitation was also observed, indicating a decrease in overall cellular metabolism. The addition of nutrients caused an increase in enzyme activities and a decrease in the contents of starch and floridoside. Of the enzymes examined, only the activity of UDP‐glucose pyrophosphorylase increased during nutrient limitation and decreased abruptly after nutrient addition. This implies a regulatory role for this enzyme in the supply of UDP‐glucose for starch synthesis. It also supports our suggestion that UDP‐glucose is the substrate for starch synthesis in red algae. This assertion is further strengthened by the observation that of the potential starch synthases only the UDP‐glucose starch synthase could support the observed rate of starch synthesis.  相似文献   

16.
Leaves of cotton (Gossypium hirsutum L.) accumulate considerable dry mass per unit area during photosynthesis. The percentage of C in that accumulated dry mass was estimated as the regression coefficient (slope) of a linear regression relating C per unit area to total dry mass per unit area. Plants were grown on full nutrients or on N- or P-deficient nutrient solutions. In the fully nourished controls, the mass that accumulated over a 9-hour interval beginning at dawn contained 38.6% C. N and P stress increased the C concentration of accumulated mass to 49.7% and 45.1%, respectively. Nutrient stress also increased the starch concentration of accumulated mass, but starch alone could not account for the differences in C concentration. P stress decreased the estimated rate of C export from source leaves, calculated as the difference between C assimilation and C accumulation. The effect of P stress on apparent export was very sensitive to the C concentration used in the calculation, and would not have been revealed with an assumption of unchanged C concentration in the accumulated mass.  相似文献   

17.
Grange, R. I. 1987. Carbon partitioning in mature leaves ofpepper: Effects of transfer to high or low irradiance.—J.exp. Bot. 38: 77–83. Pepper plants were grown at an irradiance of either 55 W m–2or 90 W m–2 PAR. Changes in net photosynthesis, carbonexport, starch and sugar contents in a single mature leaf weremeasured at intervals for 8 d following transfer of plants betweenthe two irradiances. On transfer from low to high irradiance,the net photosynthesis rate increased immediately but exportrate increased only slowly, to a maximum after 3 d. While assimilationexceeded export more starch and sucrose accumulated in the dayand remained in the leaf at the end of each night. Hexose contentsat the end of night remained low and constant, but the daytimemaximum rose during the first 2 d from transfer, thereafterreturning to pre-transfer contents. Following transfer of leaves from high to low irradiance starchpresent in the leaf provided sufficient reserves to maintainthe rate of export for one day. Subsequently, the sucrose contentfell and the export rate declined to near that in leaves grownin low irradiance. Sucrose and hexose accumulation following transfer from lowto high irradiance suggests a limitation to export ‘downstream’from sucrose synthesis, probably in the loading step from mesophyllto phloem. Key words: Pepper, export, starch, loading  相似文献   

18.
The blue-green alga Synechococcus linearis (Naeg.) Kom. was grown in P- and N-limited chemostats over a range of potentially limiting irradiances in order to determine the combined effects of light and nutrient limitation on some aspects of the composition and metabolism of this alga. Over a narrow range of low irradiances, simultaneous limitation of growth rate by light and either N or P was shown. This simultaneous limitation of growth rate by a nutrient and a physical factor can be explained by the ability of an increased supply of one to compensate in part for a decreased supply of the other. At all irradiances, the internal concentration of the limiting nutrient increased with increasing dilution rate, and the results could be fitted to the Droop relationship. With decreasing irradiance, the internal concentration of the limiting nutrient increased. There appeared to be little or no effect of light on the minimum internal concentration of P but that of N increased with decreasing light. Both chlorophyll a and biliprotein per unit particulate C increased with increasing dilution rate and decreasing irradiance. The critical N/P ratio increased with decreasing light as the N requirement of N-limited cells increased faster than did the P requirement of P-limited cells. The composition of exponentially growing cells in complete medium varied much less with light. Neither dilution rate nor irradiance during growth had a great effect on saturated rates of P or N uptake or alkaline phosphatase activity. Calculated assimilation ratios increased with light and dilution rate. The role of the flexibility of nutrient composition in adaptation to adverse conditions and the implications of the results for the use of physiological indicators of nutrient status are discussed.  相似文献   

19.
NaCl胁迫抑制玉米幼苗光合作用的可能机理   总被引:3,自引:0,他引:3  
用NaCl 100mmol/L处理玉米幼苗,216 h内不同时间分别测叶片光合速率及其它生理指标,结果表明随处理时间的延长,光合速率下降,气孔导度减小,细胞间隙CO2浓度先降低后升高(图1);叶片MDA(图5a)、Cl-、Pi(图4)及可溶性糖(图2b)含量增加;质膜透性增大(图2a);Chla/Chl b(图3b)及Fv/Fm(图5b)减小;MDH、PEPC酶活性降低(图6).细胞间隙CO2浓度的变化,说明光合速率下降的原因短时间内以渗透胁迫产生的气孔限制因素为主,长时间时以非气孔因素为主.Cl-多对细胞产生离子毒害,Pi的增多可竞争性地抑制RuBP羧化酶的活性.MDA的增加表明活性氧增多,活性氧通过使酶失活和膜伤害抑制细胞生长,使细胞内糖利用减少,可溶性糖含量增加,进而反馈性地抑制光合作用.活性氧还可以漂白叶绿素、增强光抑制及使与光合作用有关的酶失活,而抑制光合作用.因此,NaCl胁迫下光合作用降低的原因是多因素共同作用的结果,短时间内以气孔限制因素为主,长时间时以非气孔因素为主,在非气孔因素中活性氧的增加是主导因素.  相似文献   

20.
《Aquatic Botany》2005,82(4):250-268
Lepidium latifolium L. is an invasive exotic crucifer that has spread explosively in wetlands and riparian areas of the western United States. To understand the ecophysiological characteristics of L. latifolium that affect its ability to invade riparian areas and wetlands, we examined photosynthesis, chlorophyll concentration, carbohydrate partitioning and nutrient uptake in L. latifolium in response to soil flooding. Photosynthesis of flooded plants was about 60–70% of the rate of unflooded controls. Chlorophyll concentrations of flooded plants were about 60–70% of the unflooded plants during 15–50 days of flooding. Flooding resulted in an increase in leaf starch concentration, but root starch concentration was not significantly affected. However, concentrations of soluble sugar were significantly higher in both leaves and roots of flooded plants than unflooded controls. On day 50 after initial flooding, the concentrations of N, P, K and Zn in leaves of flooded plants were lower than in control plants. The concentrations of Mn and Fe in leaves of flooded plants were eight and two times those of control plants, respectively. In contrast, N, P, K and Zn concentrations of roots of flooded plants were slightly higher than in unflooded plants. The concentrations of Fe and Mn in roots of flooded plants were 15 and 150 times those of the control plants, respectively. The transport of P, K, and Zn to shoots decreased and that of Mn increased under flooding. The accumulation of N, K and Zn in roots decreased and that of Mn increased in response to flooding. The results suggested that the maintenance of relatively high photosynthesis and the accumulation of soluble sugar in roots of flooded plants are important adaptations for this species in flooded environments. Despite a reduction in photosynthesis and disruption in nutrient and photosynthate allocation in response to flooding, L. latifolium was able to survive 50 days of flooding stress. Overall, L. latifolium performed like a facultative hydrophyte species under flooding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号