首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Signaling property study of adhesion G-protein-coupled receptors   总被引:1,自引:0,他引:1  
Gupte J  Swaminath G  Danao J  Tian H  Li Y  Wu X 《FEBS letters》2012,586(8):1214-1219
Adhesion G-protein-coupled receptors (GPCR) are special members of GPCRs with long N-termini containing multiple domains. We overexpressed our collection of receptors together with G-proteins in mammalian cell lines and measured the concentrations of intracellular signaling molecules, such as inositol phosphate and cAMP. Our results show that a subset of tested adhesion GPCRs has constitutive activities and is capable of coupling to a variety of G-proteins. In addition, we have identified a small molecule compound that specifically activates one of the subfamily members, GPR97, and the activation was confirmed by an independent GTPγS assay. These findings suggest classical GPCR screening assays could be applied to de-orphanize these receptors, and provide pharmacological tools to improve understanding of the physiological functions of these receptors.  相似文献   

2.
Trace amines, such as tyramine, beta-phenylethylamine, tryptamine, and octopamine, are present in trace levels in nervous systems and bind a specific family of G-protein-coupled receptors (GPCR), but the function or origin of this system is not well understood. We searched the genomes of several eukaryotic species for receptors similar to the mammalian trace amine (TA) receptor subfamily. We identified 18 new receptors in rodents that are orthologous to the previously known TA-receptors. Remarkably, we found 57 receptors (and 40 pseudogenes) of this type in the zebrafish (Danio rerio), while fugu (Takifugu rubripes) had only eight receptors (and seven pseudogenes). We mapped 47 of the zebrafish TA-receptors on chromosomes using radiation hybrid panels and meiotic mapping. The results, together with the degree of conservation and phylogenetic relationships displayed among the zebrafish receptors suggest that the family arose through several different mechanisms involving tetraploidization, block duplications, and local duplication events. Interestingly, these vertebrate TA-receptors do not show a close evolutionary relationship to the invertebrate TA-binding receptors in fruitfly (Drosophila melanogaster), indicating that the ability to bind TA have evolved at least twice in animal evolution. We collected in total over 100 vertebrate TA-receptor sequences, and our phylogenetic analysis shows that several TA-receptors have evolved rapidly with remarkable species variation and that the common ancestor of vertebrate TA-receptors arose before the split of the ray-finned and lobe-finned fishes. The evolutionary history of the TA-receptors is more complex than for most other GPCR families and here we suggest a mechanism by which they may have arisen.  相似文献   

3.
4.
Understanding differences in the repertoire of orthologous gene pairs is vital for interpretation of pharmacological and physiological experiments if conclusions are conveyed between species. Here we present a comprehensive dataset for G protein-coupled receptors (GPCRs) in both human and mouse with a phylogenetic road map. We performed systematic searches applying several search tools such as BLAST, BLAT, and Hidden Markov models and searches in literature data. We aimed to gather a full-length version of each human or mouse GPCR in only one copy referring to a single chromosomal position. Moreover, we performed detailed phylogenetic analysis of the transmembrane regions of the receptors to establish accurate orthologous pairs. The results show the identity of 495 mouse and 400 human functional nonolfactory GPCRs. Overall, 329 of the receptors are found in one-to-one orthologous pairs, while 119 mouse and 31 human receptors originate from species-specific expansions or deletions. The average percentage similarity of the orthologue pairs is 85%, while it varies between the main GRAFS families from an average of 59 to 94%. The orthologous pairs for the lipid-binding GPCRs had the lowest levels of conservation, while the biogenic amines had highest levels of conservation. Moreover, we searched for expressed sequence tags (ESTs) and identified more than 17,000 ESTs matching GPCRs in mouse and human, providing information about their expression patterns. On the whole, this is the most comprehensive study of the gene repertoire that codes for human and mouse GPCRs. The datasets are available for downloading.  相似文献   

5.
The Family C G-protein-coupled receptors include the metabotropic glutamate receptors, the gamma-aminobutyric acid, type B (GABAB) receptor, the calcium-sensing receptor (CaSR), which participates in the regulation of calcium homeostasis in the body, and a diverse group of sensory receptors that encompass the amino acid-activated fish 5.24 chemosensory receptor, the mammalian T1R taste receptors, and the V2R pheromone receptors. A common feature of Family C receptors is the presence of an amino acid binding site. In this study, a preliminary in silico analysis of the size and shape of the amino acid binding pocket in selected Family C receptors suggested that some members of this family could accommodate larger ligands such as peptides. Subsequent screening and docking experiments identified GSH as a potential ligand or co-ligand at the fish 5.24 receptor and the rat CaSR. These in silico predictions were confirmed using an [3H]GSH radioligand binding assay and a fluorescence-based functional assay performed on wild-type and chimeric receptors. Glutathione was shown to act as an orthosteric agonist at the 5.24 receptor and as a potent enhancer of calcium-induced activation of the CaSR. Within the mammalian receptors, this effect was specific to the CaSR because GSH neither directly activated nor potentiated other Family C receptors including GPRC6A (the putative mammalian homolog of the fish 5.24 receptor), the metabotropic glutamate receptors, or the GABAB receptor. Our findings reveal a potential new role for GSH and suggest that this peptide may act as an endogenous modulator of the CaSR in the parathyroid gland where this receptor is known to control the release of parathyroid hormone, and in other tissues such as the brain and gastrointestinal tract where the role of the calcium receptor appears to subserve other, as yet unknown, physiological functions.  相似文献   

6.
G-protein-coupled receptors and melanoma   总被引:1,自引:0,他引:1  
G-protein-coupled receptors (GPCR) are the largest family of receptors with over 500 members. Evaluation of GPCR gene expression in primary human tumors identified over-expression of GPCR in several tumor types. Analysis of cancer samples in different disease stages also suggests that some GPCR may be involved in early tumor progression and others may play a critical role in tumor invasion and metastasis. Currently, >50% of drug targets to various human diseases are based on GPCR. In this review, the relationships between several GPCR and melanoma development and/or progression will be discussed. Finally, the possibility of using one or more of these GPCR as therapeutic targets in melanoma will be summarized.  相似文献   

7.

Background

Adhesion G protein-coupled receptors (aGPCRs) are the second largest of the five GPCR families and are essential for a wide variety of physiological processes. Zebrafish have proven to be a very effective model for studying the biological functions of aGPCRs in both developmental and adult contexts. However, aGPCR repertoires have not been defined in any fish species, nor are aGPCR expression profiles in adult tissues known. Additionally, the expression profiles of the aGPCR family have never been extensively characterized over a developmental time-course in any species.

Results

Here, we report that there are at least 59 aGPCRs in zebrafish that represent homologs of 24 of the 33 aGPCRs found in humans; compared to humans, zebrafish lack clear homologs of GPR110, GPR111, GPR114, GPR115, GPR116, EMR1, EMR2, EMR3, and EMR4. We find that several aGPCRs in zebrafish have multiple paralogs, in line with the teleost-specific genome duplication. Phylogenetic analysis suggests that most zebrafish aGPCRs cluster closely with their mammalian homologs, with the exception of three zebrafish-specific expansion events in Groups II, VI, and VIII. Using quantitative real-time PCR, we have defined the expression profiles of 59 zebrafish aGPCRs at 12 developmental time points and 10 adult tissues representing every major organ system. Importantly, expression profiles of zebrafish aGPCRs in adult tissues are similar to those previously reported in mouse, rat, and human, underscoring the evolutionary conservation of this family, and therefore the utility of the zebrafish for studying aGPCR biology.

Conclusions

Our results support the notion that zebrafish are a potentially useful model to study the biology of aGPCRs from a functional perspective. The zebrafish aGPCR repertoire, classification, and nomenclature, together with their expression profiles during development and in adult tissues, provides a crucial foundation for elucidating aGPCR functions and pursuing aGPCRs as therapeutic targets.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1296-8) contains supplementary material, which is available to authorized users.  相似文献   

8.
The amino acid sequences of 369 human nonolfactory G-protein-coupled receptors (GPCRs) have been aligned at the seven transmembrane domain (TM) and used to extract the nature of 30 critical residues supposed--from the X-ray structure of bovine rhodopsin bound to retinal--to line the TM binding cavity of ground-state receptors. Interestingly, the clustering of human GPCRs from these 30 residues mirrors the recently described phylogenetic tree of full-sequence human GPCRs (Fredriksson et al., Mol Pharmacol 2003;63:1256-1272) with few exceptions. A TM cavity could be found for all investigated GPCRs with physicochemical properties matching that of their cognate ligands. The current approach allows a very fast comparison of most human GPCRs from the focused perspective of the predicted TM cavity and permits to easily detect key residues that drive ligand selectivity or promiscuity.  相似文献   

9.
According to the two-state model of G-protein-coupled receptor (GPCR) activation, GPCRs isomerize from an inactive (R) state to an active (R*) state. In the R* state, GPCRs activate G-proteins. Agonist-independent R/R* isomerization is referred to as constitutive activity and results in an increase in basal G-protein activity, i.e. GDP/GTP exchange. Agonists stabilize the R* state and further increase, whereas inverse agonists stabilize the R state and decrease, basal G-protein activity. Constitutive activity is observed in numerous wild-type GPCRs and disease-causing GPCR mutants with increased constitutive activity. The human formyl peptide receptor (FPR) exists in several isoforms (FPR-26, FPR-98 and FPR-G6) and activates chemotaxis and cytotoxic cell functions of phagocytes through G(i)-proteins. Studies in HL-60 leukemia cell membranes demonstrated inhibitory effects of Na(+) and pertussis toxin on basal G(i)-protein activity, suggesting that the FPR is constitutively active. However, since HL-60 cells express several constitutively active chemoattractant receptors, analysis of constitutive FPR activity was difficult. Sf9 insect cells do not express chemoattractant receptors and G(i)-proteins and provide a sensitive reconstitution system for FPR/G(i)-protein coupling. Such expression studies showed that FPR-26 is much more constitutively active than FPR-98 and FPR-G6 as assessed by the relative inhibitory effects of Na(+) and of the inverse agonist cyclosporin H on basal G(i)-protein activity. Site-directed mutagenesis studies suggest that the E346A exchange in the C-terminus critically determines dimerization and constitutive activity of FPR. Moreover, N-glycosylation of the N-terminus seems to be important for constitutive FPR activity. Finally, we discuss some future directions of research.  相似文献   

10.
G-protein-coupled receptors play a key role in cellular signaling networks that regulate various physiological processes, such as vision, smell, taste, neurotransmission, secretion, inflammatory, immune responses, cellular metabolism, and cellular growth. These proteins are very important for understanding human physiology and disease. Many efforts in pharmaceutical research have been aimed at understanding their structure and function. Unfortunately, because they are difficult to crystallize and most of them will not dissolve in normal solvents, so far very few G-protein-coupled receptor structures have been determined. In contrast, more than 1000 G-protein-coupled receptor sequences are known, and many more are expected to become known soon. In view of the extremely unbalanced state, it would be very useful to develop a fast sequence-based method to identify their different types. This would no doubt have practical value for both basic research and drug discovery because the function or binding specificity of a G-protein coupled receptor is determined by the particular type it belongs to. To realize this, a statistical analysis has been performed for 566 G-protein-coupled receptors classified into seven different types. The results indicate that the types of G-protein-coupled receptors are predictable to a considerable accurate extent if a good training data set can be established for such a goal.  相似文献   

11.
In transfected cells and non-neuronal tissues many G-protein-coupled receptors activate p44/42 MAP kinase (ERK), a kinase involved in both hippocampal synaptic plasticity and learning and memory. However, it is not clear to what degree these receptors couple to ERK in brain. G(s)-coupled beta-adrenergic receptor activation of ERK in neurons is critical in the regulation of synaptic plasticity in area CA1 of the hippocampus. In addition, alpha(1)- and alpha(2)-adrenergic receptors, present in CA1, could potentially activate ERK. We find that, like the beta-adrenergic receptor, the G(q)-coupled alpha(1)AR activates ERK in adult mouse CA1. However, activation of the G(i/o)-coupled alpha(2)AR does not activate ERK, nor does activation of a homologous G(i/o)-coupled receptor enriched in adult mouse CA1, the 5HT(1A) receptor. In contrast, the nonhomologous G(i/o)-coupled gamma-aminobutyric acid type B receptor does activate ERK in adult mouse CA1. Surprisingly, activation of alpha(2)ARs in CA1 from immature animals where basal phospho-ERK is low induces ERK phosphorylation. These data suggest that although most G-protein-coupled receptor subtypes activate ERK in non-neuronal cells, the coupling of G(i/o) to ERK is tightly regulated in brain.  相似文献   

12.
Examples of G-protein-coupled receptors that can be biochemically detected in homo- or heteromeric complexes are emerging at an accelerated rate. Biophysical approaches have confirmed the existence of several such complexes in living cells and there is strong evidence to support the idea that dimerization is important in different aspects of receptor biogenesis and function. While the existence of G-protein-coupled-receptor homodimers raises fundamental questions about the molecular mechanisms involved in transmitter recognition and signal transduction, the formation of heterodimers raises fascinating combinatorial possibilities that could underlie an unexpected level of pharmacological diversity, and contribute to cross-talk regulation between transmission systems. Because G-protein-coupled receptors are major pharmacological targets, the existence of dimers could have important implications for the development and screening of new drugs. Here, we review the evidence supporting the existence of G-protein-coupled-receptor dimerization and discuss its functional importance.  相似文献   

13.
The best known family B, or Type II, G-protein-coupled receptors (GPCRs) recognize peptides as ligands. The receptors for corticotrophin-releasing factor, parathyroid hormone and secretin typify this group. However, there are only 15 such GPCRs. Many other receptors share sequence homology and have been assigned to this family. The ten 'Frizzled' and one 'Smoothened' receptors show the lowest sequence homology and are not necessarily G-protein coupled. Drosophila genetics have enabled our understanding of their biology. In contrast, relatively little is known about the largest group with family B, the 33 'large amino termini' or large N-terminal family B seven-transmembrane (LNB 7TM) receptors. This review highlights the similarities found between family B receptors and provides a classification of LNB 7TM receptors.  相似文献   

14.
Poisoning with alpha-latrotoxin, a neurotoxic protein from black widow spider venom, results in a robust increase of spontaneous synaptic transmission and subsequent degeneration of affected nerve terminals. The neurotoxic action of alpha-latrotoxin involves extracellular binding to its high affinity receptors as a first step. One of these proteins, CIRL, is a neuronal G-protein-coupled receptor implicated in the regulation of secretion. We now demonstrate that CIRL has two close homologs with a similar domain structure and high degree of overall identity. These novel receptors, which we propose to name CIRL-2 and CIRL-3, together with CIRL (CIRL-1) belong to a recently identified subfamily of large orphan receptors with structural features typical of both G-protein-coupled receptors and cell adhesion proteins. Northern blotting experiments indicate that CIRL-2 is expressed ubiquitously with highest concentrations found in placenta, kidney, spleen, ovary, heart, and lung, whereas CIRL-3 is expressed predominantly in brain similarly to CIRL-1. It appears that CIRL-2 can also bind alpha-latrotoxin, although its affinity to the toxin is about 14 times less than that of CIRL-1. When overexpressed in chromaffin cells, CIRL-2 increases their sensitivity to alpha-latrotoxin stimulation but also inhibits Ca2+-regulated secretion. Thus, CIRL-2 is a functionally competent receptor of alpha-latrotoxin. Our findings suggest that although the nervous system is the primary target of low doses of alpha-latrotoxin, cells of other tissues are also susceptible to the toxic effects of alpha-latrotoxin because of the presence of CIRL-2, a low affinity receptor of the toxin.  相似文献   

15.
16.
Integrins and growth factor receptors of the ErbB family are involved in the regulation of cellular interactions with the extracellular microenvironment. Cross-talk between these two groups of transmembrane receptors is essential for cellular responses and can be regulated through the formation of multimolecular complexes. Tetraspanins as facilitators and building blocks of specialized microdomains may be involved in this process. In the present study, we demonstrated that, in contrast with previous reports, integrin-mediated adhesion did not stimulate ligand-independent activation of ErbB receptors in epithelial cells. However, integrin-dependent adhesion potentiated ligand-induced activation of EGFR (epidermal growth factor receptor) and ErbB2 and facilitated receptor homo- and hetero-dimerization. The actin cytoskeleton appeared to play a critical role in this phenomenon.  相似文献   

17.
With the use of the binmap method, 154 G-protein-coupled peptide receptors are classified. The binmap coordinates are obtained by using the number of residues between the conserved N residue in TM1 and C in the TM4-TM5 loop, between this C and the conserved P in TM6, and between this P and the last residue of the sequence. The binmap suggests that the cloned fMLP receptor in rabbit belongs in fact to the IL8 receptor type.  相似文献   

18.
Summary With the use of the binmap method, 154 G-protein-coupled peptide receptors are classified. The binmap coordinates are obtained by using the number of residues between the conserved N residue in TM1 and C in the TM4-TM5 loop, between this C and the conserved P in TM6, and between this P and the last residue of the sequence. The binmap suggests that the cloned fMLP receptor in rabbit belongs in fact to the IL8 receptor type.  相似文献   

19.
There is increasing evidence to suggest that 'cross-talk' occurs between G-protein-coupled receptors and their intracellular second messenger pathways. Cross-talk between different pathways may occur at the level of receptors, G-proteins, effectors or second messengers and may serve to fine-tune cell signalling. There is a growing body of evidence to suggest that cellular compartmentalization may play a crucial role in regulating these cross-talk interactions. Understanding the mechanisms of cross-talk may therefore be the key to the design and application of future therapeutics and the development of drug specificity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号