首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The asialoglycoprotein (ASGP) receptor on Hep G2 cells undergoes constitutive recycling and ligand endocytosis in the presence of phorbol dibutyrate, at a 50% reduced rate relative to control cells (Fallon, R. J., and Schwartz, A. L. (1986) J. Biol. Chem. 261, 15081-15089). The relevance of receptor phosphorylation to these events was investigated by selective immunoprecipitation of surface receptors with polyclonal anti-human ASGP antiserum and pulse-chase labeling with [32P]orthophosphate to identify subcellular locations of initial receptor phosphorylation events as well as the eventual fate of phosphorylated receptor during recycling. The surface immunoprecipitation method recovers greater than 95% of surface ASGP receptors and only 5% or less of intracellular (brief[35S]methionine pulse-labeled) receptors. With this assay we detected low levels of ASGP receptor phosphorylation at the cell surface in control cells (0.1 mol of P/mol of R) which were rapidly (less than 1 min) stimulated 20-fold by 400 nM phorbol dibutyrate addition (1.7 mol of P/mol of R). Staurosporine, a protein kinase C inhibitor, blocks this stimulation by phorbol. Receptor phosphorylation at early time points in the presence of phorbol esters was restricted to the plasma membrane. Subsequent chase in the presence of excess unlabeled phosphate and phorbol esters lowered [32P] ATPi specific activity by 68% at 1 h. Surface immunoprecipitation during this chase period showed the phosphorylated ASGP receptors were rapidly lost from the cell surface (t1/2 = 20 min). In contrast, examination of intracellular receptor during the pulse-chase experiment in phorbol dibutyrate-treated cells showed the presence of phosphorylated pool(s) of ASGP receptors which were detectable for 6 h of chase. Since no labeled receptor can be detected at the cell surface at this time, the described intracellular phosphorylated receptors are in a non-recycling pool.  相似文献   

2.
Expression levels of the chemokine receptor, CC chemokine receptor 5 (CCR5), at the cell surface determine cell susceptibility to HIV entry and infection. Cellular activation by CCR5 itself, but also by unrelated receptors leads to cross-phosphorylation and cross-internalization of CCR5. This study addresses the underlying molecular mechanisms of homologous and heterologous CCR5 regulation. As shown by bioluminescence resonance energy transfer experiments, CCR5 formed constitutive homo- as well as heterooligomeric complexes together with C5aR but not with the unrelated AT(1a)R in living cells. Stimulation with CCL5 of RBL cells, which co-expressed CCR5 together with an N-terminally truncated CCR5-DeltaNT mutant, resulted in both protein kinase C (PKC)- and G protein-coupled receptor (GPCR) kinase (GRK)-mediated cross-phosphorylation of the mutant unligated receptor, as determined by phosphosite-specific monoclonal antibody. Similarly, both PKC and GRK cross-phosphorylated CCR5 in a heterologous manner after C5a stimulation of RBL-CCR5/C5aR cells, whereas AT(1a)R stimulation resulted only in classical PKC-mediated CCR5 phosphorylation. Co-expression of CCR5-DeltaNT together with a phosphorylation-deficient CCR5 mutant that neither binds beta-arrestin nor undergoes internalization partially restored the CCL5-induced association of beta-arrestin with the homo-oligomeric receptor complex and augmented cellular uptake of (125)I-CCL5. Co-expression of C5aR, but not of AT(1a)R, promoted CCR5 co-internalization upon agonist stimulation by a mechanism independent of CCR5 phosphorylation. Co-internalization of phosphorylated CCR5 was also observed in C5a-stimulated macrophages. Finally, co-expression of a constitutively internalized C5aR-US28(CT) mutant led to intracellular accumulation of CCR5 in the absence of ligand stimulation. These results show that GRKs and beta-arrestin are involved in heterologous receptor regulation by cross-phosphorylating and co-internalizing unligated receptors within homo- or hetero-oligomeric protein complexes.  相似文献   

3.
The C terminus of the human V2 vasopressin receptor contains multiple phosphorylation sites including a cluster of amino acids that when phosphorylated prevents the return of the internalized receptor to the cell surface. To identify the step where the recycling process was interrupted, the trafficking of the V2 receptor was compared with that of the recycling V1a receptor after exposure to ligand. Initially, both receptors internalized in small peripheral endosomes, but a physical separation of their endocytic pathways was subsequently detected. The V1a receptor remained evenly distributed throughout the cytosol, whereas the V2 receptor accumulated in a large aggregation of vesicles in the proximity of the nucleus where it colocalized with the transferrin receptor and Rab11, a small GTP-binding protein that is concentrated in the perinuclear recycling compartment; only marginal colocalization of Rab11 with the V1a receptor was observed. Thus, the V2 receptor was sequestered in the perinuclear recycling compartment. Targeting to the perinuclear recycling compartment was determined by the receptor subtype and not by the inability to recycle, since the mutation S363A in the phosphorylation-dependent retention signal generated a V2 receptor that was recycled via the same compartment. The perinuclear recycling compartment was enriched in beta-arrestin after internalization of either wild type V2 receptor or its recycling mutant, indicating that long term interaction between the receptors and arrestin was not responsible for the intracellular retention. Thus, the fully phosphorylated retention domain overrides the natural tendency of the V2 receptor to recycle and, by preventing its exit from the perinuclear recycling compartment, interrupts its transit via the "long cycle." The data suggest that the inactivation of the domain, possibly by dephosphorylation, triggers the return of the receptor from the perinuclear compartment to the plasma membrane.  相似文献   

4.
Binding of epidermal growth factor (EGF) to cells rapidly induces tyrosine phosphorylation of its receptor which is followed by its internalization and dephosphorylation. The kinetics of these processes differs widely in time from minutes to hours according to cell types. In this paper we analyzed EGF receptor phosphorylation and down-regulation in NIH 3T3 cells transfected with the recombinant hEGF-R cDNA which express 4 X 10(5) receptors/cell. In the presence of EGF receptor phosphorylation reached a maximum after 1 min and was then maintained for about 1 h, while during this time the number of EGF-binding sites was reduced to 40% of the initial number. Detailed analysis of the fate of a population of receptors previously activated and autophosphorylated at 4 degrees C, after warming to 37 degrees C in the absence of the ligand, showed that internalization of the cell surface-associated EGF and dephosphorylation of the receptor were rapid (t1/2 15 min) and followed a similar kinetics. Our data indicate that at any given time only a fraction of the total cell surface receptors is phosphorylated on tyrosine and that dephosphorylation occurs at the cell surface or very rapidly after internalization. In addition the data also suggest that a certain recycling of previously internalized receptors may occur in these cells during EGF treatment.  相似文献   

5.
Examination of the structure of [Arg(8)]-vasopressin receptors (AVPRs) and oxytocin receptors (OTRs) suggests that G protein-coupled receptor kinases (GRKs) and protein kinase C (PKC) are involved in their signal transduction. To explore the physical association of AVPRs and OTRs with GRKs and PKC, wild types and mutated forms of these receptor subtypes were stably expressed as green fluorescent protein fusion proteins and analyzed by fluorescence, immunoprecipitation, and immunoblotting. Addition of a C-terminal GFP tag did not interfere with ligand binding, internalization, and signal transduction. After agonist stimulation, PKC dissociated from the V(1)R, did not associate with the V(2)R, but associated with the V(3)R and the OTR. After AVP stimulation, only GRK5 briefly associated with AVPRs following a time course that varied with the receptor subtype. No GRK associated with the OTR. Exchanging the V(1)R and V(2)R C termini altered the time course of PKC and GRK5 association. Deletion of the V(1)R C terminus resulted in no PKC association and a ligand-independent sustained association of GRK5 with the receptor. Deletion of the GRK motif prevented association and reduced receptor phosphorylation. Thus, agonist stimulation of AVP/OT receptors leads to receptor subtype-specific interactions with GRK and PKC through specific motifs present in the C termini of the receptors.  相似文献   

6.
After agonist-induced internalization, the vasopressin V2 receptor (V2R) does not recycle to the plasma membrane. The ADP-ribosylation factor (ARF) proteins initiate vesicular intracellular traffic by promoting the recruitment of adaptor proteins; thus, we sought to determine whether ARF6 could promote V2R recycling. Neither the agonist-induced internalization nor the recycling of the V2R was regulated by ARF6, but a constitutively active mutant of ARF6 reduced cell-surface V2Rs 10-fold in the absence of agonist treatment. Visualization of the ARF6 mutant-expressing cells revealed a vacuolar-staining pattern of the V2R instead of the normal plasma membrane expression. Analysis of V2R maturation revealed that reduced cell-surface expression was due to the diminished ability of the newly synthesized receptor to migrate from the endoplasmic reticulum to the Golgi network. The same mechanism affected processing of the V1aR and acetylcholine M2 receptors. Therefore, ARF6 controls the exit of the V2 and other receptors from the endoplasmic reticulum in addition to its established role in the trafficking of plasma-membrane-derived vesicles.  相似文献   

7.
We predict some essential interactions between the V2 vasopressin renal receptor (V2R) and its agonists [Arg8]vasopressin (AVP) and [D-Arg8]vasopressin (DAVP), and the non-peptide antagonist OPC-31260. V2R controls antidiuresis and belongs to the superfamily of heptahelical transmembrane (7TM) G-protein-coupled receptors (GPCRs). The receptor was built, the ligands were docked and the structures relaxed using advanced molecular modeling techniques. Docked agonists and antagonists appear to prefer similar V2R compartments. A number of receptor amino acid residues are indicated, mainly in the TM3–TM7 helices, as potentially important in ligand binding. Many of these residues are invariant for either the GPCR superfamily or the subfamily of related (vasopressin V2R, V1aR and V1bR and oxytocin OR) receptors. Moreover, some of the equivalent residues in V1aR have already been found critical for ligand affinity [Mouillac et al., J. Biol. Chem., 270 (1995) 25771].  相似文献   

8.
Summary We predict some essential interactions between the V2 vasopressin renal receptor (V2R) and its agonists [Arg8]vasopressin (AVP) and [D-Arg8]vasopressin (DAVP), and the non-peptide antagonist OPC-31260. V2R controls antidiuresis and belongs to the superfamily of heptahelical transmembrane (7TM) G-protein-coupled receptors (GPCRs). The receptor was built, the ligands were docked and the structures relaxed using advanced molecular modeling techniques. Docked agonists and antagonists appear to prefer similar V2R compartments. A number of receptor amino acid residues are indicated, mainly in the TM3-TM7 helices, as potentially important in ligand binding. Many of these residues are invariant for either the GPCR superfamily or the subfamily of related (vasopressin V2R, V1aR and V1bR and oxytocin OR) receptors. Moreover, some of the equivalent residues in V1aR have already been found critical for ligand affinity [Mouillac et al., J. Biol. Chem., 270 (1995) 25771].  相似文献   

9.
Human CC chemokine receptor 5 (CCR5), a member of the superfamily of G protein-coupled receptors, regulates the activation and directed migration of leukocytes and serves as the main coreceptor for the entry of R5 tropic strains of human immunodeficiency viruses. We have previously shown that RANTES/CCL5 binding to CCR5 induces GPCR kinase (GRK)- and protein kinase C (PKC)-mediated phosphorylation of four distinct C-terminal serine residues. To study these phosphorylation events in vivo, we have generated monoclonal antibodies, which specifically react only with either phosphorylated or nonphosphorylated CCR5. These phosphosite-specific antibodies reveal that following ligand stimulation of the receptor serine 337 is exclusively phosphorylated by a PKC-mediated mechanism, while GRKs phosphorylate serine 349. GRK-mediated receptor phosphorylation proceeds in a regular time-dependent manner (t(12) approximately 2 min) with an apparent EC(50) of 5 nm. In contrast, PKC phosphorylates serine 337 at 50-fold lower concentrations and in a very rapid, albeit transient manner. Protein phosphatases that are active at neutral pH and are inhibited by okadaic acid rapidly dephosphorylate phosphoserine 337, but less efficiently phosphoserine 349, in intact cells and in an in vitro assay. Immunofluorescence microscopy demonstrates that phosphorylated receptors accumulate in a perinuclear compartment, which resembles recycling endosomes. This study is the first to analyze in detail the spatial and temporal dynamics of GRK- versus PKC-mediated phosphorylation of a G protein-coupled receptor and its subsequent dephosphorylation on the level of individual phosphorylation sites.  相似文献   

10.
Guo Q  Subramanian H  Gupta K  Ali H 《PloS one》2011,6(7):e22559

Background

The complement component C3a activates human mast cells via its cell surface G protein coupled receptor (GPCR) C3aR. For most GPCRs, agonist-induced receptor phosphorylation leads to receptor desensitization, internalization as well as activation of downstream signaling pathways such as ERK1/2 phosphorylation. Previous studies in transfected COS cells overexpressing G protein coupled receptor kinases (GRKs) demonstrated that GRK2, GRK3, GRK5 and GRK6 participate in agonist-induced C3aR phosphorylation. However, the roles of these GRKs on the regulation of C3aR signaling and mediator release in human mast cells remain unknown.

Methodology/Principal Findings

We utilized lentivirus short hairpin (sh)RNA to stably knockdown the expression of GRK2, GRK3, GRK5 and GRK6 in human mast cell lines, HMC-1 and LAD2, that endogenously express C3aR. Silencing GRK2 or GRK3 expression caused a more sustained Ca2+ mobilization, attenuated C3aR desensitization, and enhanced degranulation as well as ERK1/2 phosphorylation when compared to shRNA control cells. By contrast, GRK5 or GRK6 knockdown had no effect on C3aR desensitization, but caused a significant decrease in C3a-induced mast cell degranulation. Interestingly, GRK5 or GRK6 knockdown rendered mast cells more responsive to C3a for ERK1/2 phosphorylation.

Conclusion/Significance

This study demonstrates that GRK2 and GRK3 are involved in C3aR desensitization. Furthermore, it reveals the novel finding that GRK5 and GRK6 promote C3a-induced mast cell degranulation but inhibit ERK1/2 phosphorylation via C3aR desensitization-independent mechanisms. These findings thus reveal a new level of complexity for C3aR regulation by GRKs in human mast cells.  相似文献   

11.
Arginine vasotocin (VT) is the ortholog in all nonmammalian vertebrates of arginine vasopressin (AVP) in mammals. We have previously cloned an amphibian V1atype vasotocin receptor (VT1R) that exhibited higher sensitivity for VT than AVP, while the mammalian V1a type receptor (V1aR) responded better to AVP than VT. In the present study, we identified the amino acid residues that confer differential ligand selectivity for AVP and VT between rat V1aR and bullfrog VT1R (bfVT1R). A chimeric rat V1aR having transmembrane domain (TMD) VI to the carboxyl-terminal tail (C-tail) of bfVT1R showed a reverse ligand preference for AVP and VT, whereas a chimeric VT1R with TMD VI to the C-tail of rat V1aR showed a great increase in sensitivity for AVP. A single mutation (Ile(315(6.53)) to Thr) in TMD VI of V1aR increased the sensitivity for VT, while a single mutation (Phe(313(6.51)) to Tyr or Pro(334(7.33)) to Thr) reduced sensitivity toward AVP. Interestingly the triple mutation (Phe(313(6.51)) to Tyr, Ile(6.53) to Thr, and Pro(7.33) to Thr) of V1aR increased sensitivity to VT but greatly reduced sensitivity to AVP, behaving like bfVT1R. Further, like V1aR, a double mutant (Tyr(306(6.51)) to Phe and Thr(327(7.33)) to Pro) of bfVT1R showed an increased sensitivity to AVP. These results suggest that Phe/Tyr(6.51), Ile/Thr(6.53), and Pro/Thr(7.33) are responsible for the differential ligand selectivity between rat V1aR and bfVT1R. This information regarding the molecular interaction of VT/AVP with their receptors may have important implications for the development of novel AVP analogs.  相似文献   

12.
The human C3a anaphylatoxin receptor (C3aR) is a G protein-coupled receptor (GPCR) composed of seven transmembrane alpha-helices connected by hydrophilic loops. Previous studies of chimeric C3aR/C5aR and loop deletions in C3aR demonstrated that the large extracellular loop2 plays an important role in noneffector ligand binding; however, the effector binding site for C3a has not been identified. In this study, selected charged residues in the transmembrane regions of C3aR were replaced by Ala using site-directed mutagenesis, and mutant receptors were stably expressed in the RBL-2H3 cell line. Ligand binding studies demonstrated that R161A (helix IV), R340A (helix V), and D417A (helix VII) showed no binding activity, although full expression of these receptors was established by flow cytometric analysis. C3a induced very weak intracellular calcium flux in cells expressing these three mutant receptors. H81A (helix II) and K96A (helix III) showed decreased ligand binding activity. The calcium flux induced by C3a in H81A and K96A cells was also consistently reduced. These findings suggest that the charged transmembrane residues Arg161, Arg340, and Asp417 in C3aR are essential for ligand effector binding and/or signal coupling, and that residues His81 and Lys96 may contribute less directly to the overall free energy of ligand binding. These transmembrane residues in C3aR identify specific molecular contacts for ligand interactions that account for C3a-induced receptor activation.  相似文献   

13.
The four mammalian Jak tyrosine kinases are non-covalently associated with cell surface receptors binding helical bundled cytokines. In the type I interferon receptor, Tyk2 associates with the IFNAR1 receptor subunit and positively influences ligand binding to the receptor complex. Here, we report that Tyk2 is essential for stable cell surface expression of IFNAR1. In the absence of Tyk2, mature IFNAR1 is weakly expressed on the cell surface. Rather, it is localized into a perinuclear endosomal compartment which overlaps with that of recycling transferrin receptors and with early endosomal antigen-1 (EEA1) positive vesicles. Conversely, co-expressed Tyk2 greatly enhances surface IFNAR1 expression. Importantly, we demonstrate that Tyk2 slows down IFNAR1 degradation and that this is due, at least in part, to inhibition of IFNAR1 endocytosis. In addition, Tyk2 induces plasma membrane relocalization of the R2 subunit of the interleukin-10 receptor. These results reveal a novel function of a Jak protein on internalization of a correctly processed cytokine receptor. This function is distinct from the previously reported effect of other Jak proteins on receptor exit from the endoplasmic reticulum.  相似文献   

14.
ABSTRACT

The aim of the study was to computer-dock selected ligands to neurophyseal receptors in order to identify amino acid residues responsible for ligand–receptor interactions. To this aim, reliable oxytocin receptor (OTR) and arginine-vasopressin receptor (V1aR/V2R) models were built. The OTR-selective agonist [Thr4,Gly7]OT, the OTR-selective cyclohexapeptide antagonist L-366,948 and OT itself were docked via genetic algorithm to OTR, V1aR, and V2R and relaxed using a constrained simulated annealing protocol. For the analysis of receptor/ligand interactions a subset of initial conformations was chosen using energetic and steric criteria. All three ligands seem to prefer similar modes of binding to the receptors, manifested by repetitive residues of the receptors which directly interact with the ligands. Taking into account that many aspects of mechanisms of G protein-coupled receptor (GPCR) action are still unsolved, the results obtained with the docking simulations may propose future experimental research, especially in site-directed mutagenesis analysis and searching for key amino acid residues responsible for drug activities.  相似文献   

15.
Obesity is associated with inflammation characterized by increased infiltration of macrophages into adipose tissue. C5aR-like receptor 2 (C5L2) has been identified as a receptor for acylation-stimulating protein (ASP) and the inflammatory factor C5a, which also binds C5aR. The present study examines the effects of ligands ASP and C5a on interactions between the receptors C5L2 and C5aR in 3T3-L1 adipocytes and J774 macrophages.BRET experiments indicate that C5L2 and C5aR form homo- and heterodimers in transfected HEK 293 cells, which were stable in the presence of ligand. Cell surface receptor levels of C5L2 and C5aR increased during 3T3-L1 adipocyte differentiation; both receptors are also highly expressed in J774 macrophages. Using confocal microscopy to evaluate endogenous receptors in adipocytes following stimulation with ASP or C5a, C5L2 is internalized with increasing perinuclear colocalization with C5aR. There is little C5a-dependent colocalization in macrophages. While adipocyte-conditioned medium (ACM) increased C5L2–C5aR colocalization in macrophages, this was blocked by C5a. ASP stimulation increased Akt (Ser473) phosphorylation in both cell types; C5a induced slight Akt phosphorylation in adipocytes with less effect in macrophages. ASP, but not C5a, increased fatty acid uptake/esterification in adipocytes.C5L2–C5aR homodimerization versus heterodimerization may thus contribute to differential responses obtained following ASP vs C5a stimulation of adipocytes and macrophages, providing new insights into the complex interaction between these two cell types within adipose tissue. Studying the mechanisms involved in the differential responses of C5L2–C5aR activation based on cell type will further our understanding of inflammatory processes in obesity.  相似文献   

16.
The aim of the study was to computer-dock selected ligands to neurophyseal receptors in order to identify amino acid residues responsible for ligand-receptor interactions. To this aim, reliable oxytocin receptor (OTR) and arginine-vasopressin receptor (V1aR/V2R) models were built. The OTR-selective agonist [Thr4,Gly7]OT, the OTR-selective cyclohexapeptide antagonist L-366,948 and OT itself were docked via genetic algorithm to OTR, V1aR, and V2R and relaxed using a constrained simulated annealing protocol. For the analysis of receptor/ligand interactions a subset of initial conformations was chosen using energetic and steric criteria. All three ligands seem to prefer similar modes of binding to the receptors, manifested by repetitive residues of the receptors which directly interact with the ligands. Taking into account that many aspects of mechanisms of G protein-coupled receptor (GPCR) action are still unsolved, the results obtained with the docking simulations may propose future experimental research, especially in site-directed mutagenesis analysis and searching for key amino acid residues responsible for drug activities.  相似文献   

17.
We studied the role played by the intracellular COOH-terminal region of the human arginine vasopressin (AVP) V1-vascular receptor (V1R) in ligand binding, trafficking, and mitogenic signal transduction in Chinese hamster ovary cells stably transfected with the human AVP receptor cDNA clones that we had isolated previously. Truncations, mutations, or chimeric alterations of the V1R COOH terminus did not alter ligand binding, but agonist-induced V1R internalization and recycling were reduced in the absence of the proximal region of the V(1)R COOH terminus. Coupling to phospholipase C was altered as a function of the COOH-terminal length. Deletion of the proximal portion of the V1R COOH terminus or its replacement by the V2-renal receptor COOH terminus prevented AVP stimulation of DNA synthesis and progression through the cell cycle. Mutation of a kinase consensus motif in the proximal region of the V1R COOH terminus also abolished the mitogenic response. Thus the V1R cytoplasmic COOH terminus is not involved in ligand specificity but is instrumental in receptor trafficking and facilitates the interaction between the intracellular loops of the receptor, G protein, and phospholipase C. It is absolutely required for transmission of the mitogenic action of AVP, probably via a specific kinase phosphorylation site.  相似文献   

18.
I Geffen  H P Wessels  J Roth  M A Shia    M Spiess 《The EMBO journal》1989,8(10):2855-2861
The human asialoglycoprotein receptor is composed of two homologous subunits, H1 and H2. By expressing the two subunits in transfected fibroblast cell lines, it has been shown previously that the formation of a hetero-oligomeric complex is necessary for the transport of H2 to the plasma membrane and for high-affinity ligand binding. Here we show that subunit H1, when expressed in the absence of H2, is capable of internalization through coated pits and recycling. The kinetics of these processes are very similar to those of the H1-H2 complex. To study endocytosis in the absence of ligand binding, the cell surface was labeled at 4 degrees C with the 125I-iodinated impermeant reagent sulfosuccinimidyl-3-(4-hydroxyphenyl) propionate, the cells were incubated at 37 degrees C for different times and the amount of internalized receptor was determined by protease digestion of surface proteins and immunoprecipitation. Similarly, recycling of surface-labeled and then internalized receptor protein was studied by monitoring its reappearance on the surface in the presence of exogenous protease. Our results show that subunit H1 contains all the signals necessary for receptor endocytosis and recycling independent of ligand binding.  相似文献   

19.
Defining how the agonist-receptor interaction differs from that of the antagonist-receptor and understanding the mechanisms of receptor activation are fundamental issues in cell signalling. The V1a vasopressin receptor (V1aR) is a member of a family of related G-protein coupled receptors that are activated by neurohypophysial peptide hormones, including vasopressin (AVP). It has recently been reported that an arginyl in the distal N-terminus of the V1aR is critical for binding agonists but not antagonists. To determine specific features required at this locus to support high affinity agonist binding and second messenger generation, Arg46 was substituted by all other 19 encoded amino acids. Our data establish that there is an absolute requirement for arginyl, as none of the [R46X]V1aR mutant constructs supported high affinity agonist binding and all 19 had defective signalling. In contrast, all of the mutant receptors possessed wildtype binding for both peptide and nonpeptide antagonists. The ratio of Ki to EC50, an indicator of efficacy, was increased for all substitutions. Consequently, although [R46X]V1aR constructs have a lower affinity for agonist, once AVP has bound all 19 are more likely than the wildtype V1aR to become activated. Therefore, in the wildtype V1aR, Arg46 constrains the inactive conformation of the receptor. On binding AVP this constraint is alleviated, promoting the transition to active V1aR. Our findings explain why arginyl is conserved at this locus throughout the evolutionary lineage of the neurohypophysial peptide hormone receptor family of G-protein coupled receptors.  相似文献   

20.
Altering the number of surface receptors can rapidly modulate cellular responses to extracellular signals. Some receptors, like the transferrin receptor (TfR), are constitutively internalized and recycled to the plasma membrane. Other receptors, like the epidermal growth factor receptor (EGFR), are internalized after ligand binding and then ultimately degraded in the lysosome. Routing internalized receptors to different destinations suggests that distinct molecular mechanisms may direct their movement. Here, we report that the endosome-associated protein hrs is a subunit of a protein complex containing actinin-4, BERP, and myosin V that is necessary for efficient TfR recycling but not for EGFR degradation. The hrs/actinin-4/BERP/myosin V (CART [cytoskeleton-associated recycling or transport]) complex assembles in a linear manner and interrupting binding of any member to its neighbor produces an inhibition of transferrin recycling rate. Disrupting the CART complex results in shunting receptors to a slower recycling pathway that involves the recycling endosome. The novel CART complex may provide a molecular mechanism for the actin-dependence of rapid recycling of constitutively recycled plasma membrane receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号