首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of choline in osmoprotection in the moderate halophile Halomonas elongata has been examined. Transport and conversion of choline to betaine began immediately after addition of choline to the growth medium. Intracellular accumulation of betaine synthesized from choline was salt dependent up to 2.5 M NaCl. Oxidation of choline was enhanced at 2.0 M NaCl in the presence or absence of externally provided betaine. This indicates that the NaCl concentration in the growth medium has major effects on the choline-betaine pathway of H. elongata.  相似文献   

2.
Choline is abundantly produced by eukaryotes and plays an important role as a precursor of the osmoprotectant glycine betaine. In Pseudomonas aeruginosa, glycine betaine has additional roles as a nutrient source and an inducer of the hemolytic phospholipase C, PlcH. The multiple functions for glycine betaine suggested that the cytoplasmic pool of glycine betaine is regulated in P. aeruginosa. We used (13)C nuclear magnetic resonance ((13)C-NMR) to demonstrate that P. aeruginosa maintains both choline and glycine betaine pools under a variety of conditions, in contrast to the transient glycine betaine pool reported for most bacteria. We were able to experimentally manipulate the choline and glycine betaine pools by overexpression of the cognate catabolic genes. Depletion of either the choline or glycine betaine pool reduced phospholipase production, a result unexpected for choline depletion. Depletion of the glycine betaine pool, but not the choline pool, inhibited growth under conditions of high salt with glucose as the primary carbon source. Depletion of the choline pool inhibited growth under high-salt conditions with choline as the sole carbon source, suggesting a role for the choline pool under these conditions. Here we have described the presence of a choline pool in P. aeruginosa and other pseudomonads that, with the glycine betaine pool, regulates osmoprotection and phospholipase production and impacts growth under high-salt conditions. These findings suggest that the levels of both pools are actively maintained and that perturbation of either pool impacts P. aeruginosa physiology.  相似文献   

3.
Barley (Hordeum vulgare L.) plants at the three-leaf stage were water-stressed by flooding the rooting medium with polyethylene glycol 6000 with an osmotic potential of −19 bars, or by withholding water. While leaf water potential fell and leaf kill progressed, the betaine (trimethylglycine) content of the second leaf blade rose from about 0.4 micromole to about 1.5 micromoles in 4 days. The time course of betaine accumulation resembled that of proline accumulation. Choline levels in unstressed second leaf blades were low (<0.1 micromole per blade) and remained low during water stress. Upon relief of stress, betaine-like proline—remained at a high concentration in drought-killed leaf zones, but betaine did not disappear as rapidly as proline from viable leaf tissue during recovery.

When [methyl-14C]choline was applied to second leaf blades of intact plants in the growth chamber, water-stressed plants metabolized 5 to 10 times more 14C label to betaine than control plants during 22 hours. When infiltrated with tracer quantities of [14C]formate and incubated for various times in darkness or light, segments cut from water-stressed leaf blades incorporated about 2- to 10-fold more 14C into betaine than did segments from unstressed leaves. In segments from stressed leaves incubated with [14C]formate for about 18 hours in darkness, betaine was always the principal 14C-labeled soluble metabolite. This 14C label was located exclusively in the N-methyl groups of betaine, demonstrating that reducing equivalents were available in stressed leaves for the reductive steps of methyl group biosynthesis from formate. Incorporation of 14C from formate into choline was also increased in stressed leaf tissue, but choline was not a major product formed from [14C]formate.

These results are consistent with a net de novo synthesis of betaine from 1- and 2-carbon precursors during water stress, and indicate that the betaine so accumulated may be a metabolically inert end product.

  相似文献   

4.
The accumulation of betaine and the induction of betaine aldehydedehydrogenase, which catalyzes the last step in the synthesisof betaine, were analyzed in salt-stressed barley leaves. Whenhydroponically grown barley plants were transferred to a mediumthat contained 200 mM NaCl, the levels of both betaine and thetotal extractable betaine aldehyde dehydrogenase activity inthe leaves increased approximately 7-fold and 3-fold when calculatedon the basis of total leaf protein, respectively, over the courseof 7 days. Betaine aldehyde dehydrogenase activity was alsodetected in either etiolated leaves or roots of barley plantsgrown under aseptic conditions. Betaine was detected in bothetiolated leaves and roots at levels that were about 20% ofthat in green leaves when calculated on a fresh weight basis. 1 This research was supported financially by a research grantfrom the Ministry of Education, Science and Culture (63560080) (Received March 9, 1990; Accepted May 29, 1990)  相似文献   

5.
渗透胁迫下小麦叶片蛋白质合成与降解的示踪研究   总被引:1,自引:0,他引:1  
渗透胁迫降低了叶片、特别是生长叶片蛋白质中固定~(14)CO_2及由根系吸收的~(14)C-Gly的掺入率,但同等程度胁迫处理,抗旱品种的掺入率降低幅度小于敏感品种;轻度胁迫后复水,抗旱品种生长叶蛋白质的放射性高于对照,而敏感品种仍低于对照。Poly(A~+)-mRNA的体外翻译测定证明,胁迫时蛋白质合成能力降低的主要原因是Poly(A~+)-mRNA翻译活性的降低。渗透胁迫也促进了叶片蛋白质降解,但与蛋白质合成不同,在成熟叶片中表现得更突出。  相似文献   

6.
Hague DR  Sims TL 《Plant physiology》1980,66(3):505-509
Illumination (22,000 lumens per meter2) of etiolated maize plants for 80 hours brings about a 5-fold increase in phosphoenolpyruvate carboxylase activity per unit of protein. An increase in carboxylase protein and incorporation of [35S]methionine into the protein occurs simultaneously with the activity increase. In green plants, the level of phosphoenolpyruvate carboxylase protein and enzyme activity is dependent on the intensity of light during growth. These results are consistent with the conclusion that the activity increase results from light-stimulated de novo synthesis of phosphoenolypyruvate carboxylase protein.  相似文献   

7.
The uptake and degradation of nanomolar levels of [methyl-14C]choline in estuarine water samples and in seawater filtrate cultures composed mainly of natural free-living bacteria was studied. Uptake of [14C]choline exhibited Michaelis-Menten kinetics, with Kt + Sn values of 1.7 to 2.9 nM in filtrate cultures and 1.7 to 4.1 nM in estuarine-water samples. Vmax values ranged from 0.5 to 3.3 nM · h−1. The uptake system for choline in natural microbial assemblages therefore displays very high affinity and appears able to scavenge this compound at the concentrations expected in seawater. Uptake of choline was inhibited by some natural structural analogs and p-chloromercuribenzoate, indicating that the transporter may be multifunctional and may involve a thiol binding site. When 11 nM [14C]choline was added to water samples, a significant fraction (>50%) of the methyl carbon was respired to CO2 in incubations lasting 10 to 53 h. Cells taking up [14C]choline produced [14C]glycine betaine ([14C]GBT), and up to 80% of the radioactivity retained by cells was in the form of GBT, a well-known osmolyte. Alteration of the salinity in filtrate cultures affected the relative proportion of [14C]choline degraded or converted to [14C]GBT, without substantially affecting the total metabolism of choline. Increasing the salinity from 14 to 25 or 35 ppt caused more [14C]GBT to be produced from choline but less 14CO2 to be produced than in the controls. Lowering the salinity to 7 ppt decreased [14C]GBT production and increased 14CO2 production slightly. Intracellular accumulations of [14C]GBT in the salt-stressed cultures were osmotically significant (34 mM). Choline may be used as an energy substrate by estuarine bacteria and may also serve as a precursor of the osmoprotectant GBT, particularly as bacteria are mixed into higher-salinity waters.  相似文献   

8.
Barash I  Mor H  Sadon T 《Plant physiology》1975,56(6):856-858
Glutamate dehydrogenase becomes density labeled through the incorporation of deuterium and (15)N when detached oat leaves (Avena sativa var. Fulghum) are incubated in the presence of ammonia. The enzyme has been isolated by means of DEAE-cellulose chromatography, ammonium sulfate precipitation, isopycnic equilibrium centrifugation, and disc electrophoresis from leaves fed l-methionine-(35)S. Radioactivity is incorporated into isozyme 1 of glutamate dehydrogenase, whereas isozyme 2, detected only in the absence of ammonia, has not been labeled. Cycloheximide, chloramphenicol, puromycin, and 6-methyl purine inhibit the elevation of glutamate dehydrogenase by ammonia. It is suggested that the increase in glutamate dehydrogenase activity is due to de novo synthesis of isozyme 1.  相似文献   

9.
Two strains of Rhizobia isolated from nodules of Vicia faba var. major and one strain isolated from nodules of Cicer arietinum L. were characterized for salt resistance. The presence of 1 mM glycine betaine or choline in a minimal medium with added NaCl had a beneficial role on the growth of the three strains. Both molecules were found to be taken up by cells obtained at low osmolarity, and whereas glycine betaine uptake activity was stimulated significantly in cells grown in the presence of 0.15 M NaCl, choline uptake activity was strongly inhibited by salt in all tested strains. However, in cells grown with exogenous choline, the uptake inhibition exerted by salt was relieved, mainly in the strain isolated from nodules of C. arietinum L. On the basis of kinetics determinations, in control cells as well as in salt-stressed cells, only high-affinity activities were observed for glycine betaine and choline (apparent K m s between 3 and 18 μM). Periplasmic proteins that bound glycine betaine or choline were identified. In nondenaturing conditions, these proteins extracted from the various strains showed different electrophoretic mobility with always a less negative entire charge than the analogous proteins from Rhizobium meliloti. Received: 29 July 1996 / Accepted: 10 September 1996  相似文献   

10.
The growth and sink to source transition (cessation of assimilateimport) in light-grown leaves were compared to those of dark-grownleaves. Darkening chambers were placed over sugarbeet (Betavulgaris L.) plants so that new leaves emerged and grew in thedark. New leaves emerged at 1.8 day intervals, regardless ofthe light conditions. The dark-grown leaves were reversiblyretarded in overall growth; they were unable to photosynthesize,but attained photosyn-thetic, vein loading and export capacityafter exposure to sufficient amount and duration of light. Despitethe inability to fix carbon, dark-grown leaves showed dry weightgain. The increase in the dry weight, however, was localizedin the petiole and major veins and not in the laminar tissue.Despite metabolic differences in the two leaf types, sink tosource transition occurred in about a week in both light- anddark-grown leaves; and assimilate importing stopped at about8 days after emergence. While sink to source transition (asdetermined by assimilate import) per se did not appear to belight-regulated, the ability to accumulate sucrose in the veinsfor export out.of leaves was light dependent. This was basedon the observation that post-transitional dark-grown leaveswhich had ceased importing could not export exogenously appliedsucrose unless they were exposed to light for several days.The data indicated that transition is developmentally regulatedand not coupled to photosynthetic capacity. 1Contribution No. D-15192-1-89 from the New Jersey AgriculturalExperiment Station. This work was funded in part by the BeetSugar Development Foundation and Rutgers Universi ty ResearchCouncil and was submitted as partial fulfillment for M.S. degreeby Lynne H. Pitcher. (Received August 22, 1990; Accepted January 9, 1991)  相似文献   

11.
The response of methanogenesis and sulfate reduction to trimethylamine, choline, and glycine betaine was examined in surface sediments from the intertidal region of Lowes Cove, Maine. Addition of these substrates markedly stimulated methanogenesis in the presence of active sulfate reduction, whereas addition of other substrates, including glucose, acetate, and glycine, had no effect on methane production. Sulfate reduction was stimulated simultaneously with methanogenesis by the various quaternary amines and all other substrates examined. Incubation of exogenous trimethylamine, choline, or glycine betaine with either bromoethane sulfonic acid or sodium molybdate was used to establish pathways of degradation of the substrates. Methanogenesis dominated the metabolism of trimethylamine, although limited nonmethanogenic activity, perhaps by sulfate-reducing bacteria, was observed. Acetate was oxidized primarily by sulfate reducers. Both choline and glycine betaine were fermented stoichiometrically to acetate and trimethylamine; apparently, neither substrate could be utilized directly by methanogens or sulfate reducers, and the activities of fermenters, methanogens, and sulfate reducers were all required to effect complete mineralization. These observations support the hypothesis that the presence of quaternary amines can mediate the coexistence of sulfate reduction and methanogenesis in marine surface sediments; they also implicate methanogens in the nitrogen cycle of marine sediments containing quaternary amines.  相似文献   

12.
When actinomycin D, puromycin, streptomycin, chloramphenicol, and cycloheximide, known inhibitors of protein synthesis, were applied to leaves of intact seedlings or detached leaves of barley prior to their greening, the same general response resulted: the light-induced increase in activity of ribulose 1,5-diphosphate carboxylase was prevented while that of phosphoribulokinase was only partially suppressed; synthesis of chlorophyll was arrested. This is taken as preliminary evidence that de novo synthesis of protein may be responsible for the observed increase in ribulose-1,5-diphosphate carboxylase activity during greening. However, other factors may be involved with the light-induced stimulation of phosphoribulokinase.

Carbohydrate metabolites and substrates of the enzymes failed to induce the formation of ribulose-1,5-diphosphate carboxylase and phosphoribulokinase in the dark. No evidence was found for the presence of inhibitors in etiolated seedlings or activators in illuminated leaves of barley. Carboxylase activity almost equal to that of the illuminated water control was stimulated by MgCl2 in the dark; MgCl2 had no effect on the activity of the kinase.

  相似文献   

13.
The role of glycine betaine and choline in osmoprotection of various Rhizobium, Sinorhizobium, Mesorhizobium, Agrobacterium, and Bradyrhizobium reference strains which display a large variation in salt tolerance was investigated. When externally provided, both compounds enhanced the growth of Rhizobium tropici, Sinorhizobium meliloti, Sinorhizobium fredii, Rhizobium galegae, Agrobacterium tumefaciens, Mesorhizobium loti, and Mesorhizobium huakuii, demonstrating their utilization as osmoprotectants. However, both compounds were inefficient for the most salt-sensitive strains, such as Rhizobium leguminosarum (all biovars), Agrobacterium rhizogenes, Rhizobium etli, and Bradyrhizobium japonicum. Except for B. japonicum, all strains exhibit transport activity for glycine betaine and choline. When the medium osmolarity was raised, choline uptake activity was inhibited, whereas glycine betaine uptake was either increased in R. leguminosarum and S. meliloti or, more surprisingly, reduced in R. tropici, S. fredii, and M. loti. The transport of glycine betaine was increased by growing the cells in the presence of the substrate. With the exception of B. japonicum, all strains were able to use glycine betaine and choline as sole carbon and nitrogen sources. This catabolic function, reported for only a few soil bacteria, could increase competitiveness of rhizobial species in the rhizosphere. Choline dehydrogenase and betaine-aldehyde dehydrogenase activities were present in the cells of all strains with the exception of M. huakuii and B. japonicum. The main physiological role of glycine betaine in the family Rhizobiaceae seems to be as an energy source, while its contribution to osmoprotection is restricted to certain strains.  相似文献   

14.
The real-time translocation of iron (Fe) in barley (Hordeumvulgare L. cv. Ehimehadaka no. 1) was visualized using the positron-emittingtracer 52Fe and a positron-emitting tracer imaging system (PETIS).PETIS allowed us to monitor Fe translocation in barley non-destructivelyunder various conditions. In all cases, 52Fe first accumulatedat the basal part of the shoot, suggesting that this regionmay play an important role in Fe distribution in graminaceousplants. Fe-deficient barley showed greater translocation of52Fe from roots to shoots than did Fe-sufficient barley, demonstratingthat Fe deficiency causes enhanced 52Fe uptake and translocationto shoots. In the dark, translocation of 52Fe to the youngestleaf was equivalent to or higher than that under the light condition,while the translocation of 52Fe to the older leaves was decreased,in both Fe-deficient and Fe-sufficient barley. This suggeststhe possibility that the mechanism and/or pathway of Fe translocationto the youngest leaf may be different from that to the olderleaves. When phloem transport in the leaf was blocked by steamtreatment, 52Fe translocation from the roots to older leaveswas not affected, while 52Fe translocation to the youngest leafwas reduced, indicating that Fe is translocated to the youngestleaf via phloem in addition to xylem. We propose a novel modelin which root-absorbed Fe is translocated from the basal partof the shoots and/or roots to the youngest leaf via phloem ingraminaceous plants.  相似文献   

15.
Wound stress causes an initial decrease in the uptake and subsequentincorporation of radiolabelled methionine in leaves of C3 (peanutand soybean) and C4 (sorghum and maize) plants. A four-hourincubation of excised leaves at 25C permits them to recoverfrom wounding and thereby facilitates monitoring of changesin protein synthesis caused by heat shock or other types ofenvironmental stress. (Received December 7, 1992; Accepted February 16, 1993)  相似文献   

16.
Many gram-negative bacteria synthesize N-acyl homoserine lactone autoinducer molecules as quorum-sensing signals which act as cell density-dependent regulators of gene expression. We have investigated the in vivo source of the acyl chain and homoserine lactone components of the autoinducer synthesized by the LuxI homolog, TraI. In Escherichia coli, synthesis of N-(3-oxooctanoyl)homoserine lactone by TraI was unaffected in a fadD mutant blocked in β-oxidative fatty acid degradation. Also, conditions known to induce the fad regulon did not increase autoinducer synthesis. In contrast, cerulenin and diazoborine, specific inhibitors of fatty acid synthesis, both blocked autoinducer synthesis even in a strain dependent on β-oxidative fatty acid degradation for growth. These data provide the first in vivo evidence that the acyl chains in autoinducers synthesized by LuxI-family synthases are derived from acyl-acyl carrier protein substrates rather than acyl coenzyme A substrates. Also, we show that decreased levels of intracellular S-adenosylmethionine caused by expression of bacteriophage T3 S-adenosylmethionine hydrolase result in a marked reduction in autoinducer synthesis, thus providing direct in vivo evidence that the homoserine lactone ring of LuxI-family autoinducers is derived from S-adenosylmethionine.  相似文献   

17.
Abstract: Using sequential incubations in media of different K+ composition, we investigated the dynamics of choline (Ch) uptake and acetylcholine (ACh) synthesis in rat brain synaptosomal preparations, using two different deuterated variants of choline and a gas chromatographic-mass spectrometric (GC-MS) assay for ACh and Ch. Synaptosomes were preincubated for 10 min in a Krebs medium with or without high K+ and with 2 μM-[2H9]Ch. At the end of the preincubation all variants of ACh and Ch were measured in samples of the pellet and medium. In the second incubation (4 min) samples of synaptosomes were resuspended in normal or high K+ solutions containing [2H4]Ch (2 μM) and all variants of ACh and Ch were measured in the pellet and medium at the end of this period. This protocol allowed us to compare the effects of preincubation in normal or high K+ solution on the metabolism during a second low or high K+ incubation of a [2H9]Ch pool accumulated during the preincubation period. Moreover, we were able to compare and contrast the effects of this protocol on [2H9]Ch metabolism versus [2H4]Ch metabolism. The most striking result we obtained was that [2H9]Ch that had been retained by the synaptosomes after the preincubation was not acetylated during a subsequent incubation in normal or high K+ media. This result suggests that if an intraterminal pool of Ch is involved in ACh synthesis, the size of this pool is below the limits of detection of our assay. We have confirmed the observation that a prior depolarizing incubation results in an enhanced uptake of Ch during a second incubation in normal K+ Krebs. Moreover, Ch uptake is stimulated by prior incubation under depolarizing conditions relative to normal preincubation when the second incubation is in a high K+ solution. These results are discussed in terms of current models of the regulation of ACh synthesis in brain.  相似文献   

18.
甘氨酸甜菜碱、脯氨酸及葫芦巴碱的含量与葡萄的抗逆性能密切相关,应用离子交换树脂提取葡萄叶中的这三种物质,采用Suger-pak1(waters)色谱柱,柱温:85℃;样品测定时间:70min;进样体积:100μL;流速:0.6mL/min;检测波长:195nm;流动相:50mg/LCa-EDTA的HPLC同时分析测定这三种物质,甘氨酸甜菜碱、脯氨酸及葫芦巴碱线性相关系数分别为0.9999,0.9994及0.9994;保留时间分别为20.28,25.66及30.65min;检出限分别为1.35,2.56及1.02ng/mL,回收率为93%~96%。此方法分离效果好,稳定,精确。  相似文献   

19.
利用实时荧光定量PCR(real-time PCR)和雷氏盐紫外分光光度计法分别测定了400mmol/L NaCl胁迫处理0,0.5h,2h,12h,1d,2d,4d,6d,8d,10d和12d,甘菊叶片中BADH基因表达和甜菜碱含量的变化,并讨论了二者间的相互作用关系。试验结果表明,在高盐胁迫下甘菊叶片中BADH基因和甜菜碱含量均呈现先上升后下降的趋势。在处理初期(0.5h和2h)BADH基因的表达量与对照相比略有下降,此后随处理时间的增加BADH基因表达持续增大,在胁迫处理6d时BADH基因表达量最大为对照的4.6倍,6d之后BADH基因表达量逐渐降低。甜菜碱含量在NaCl处理0.5h突然增大以应对胁迫反应,此后其含量出现了小幅的震荡上升,在胁迫处理4d时达到了最大值,此后随胁迫处理时间的增加甜菜碱含量逐渐降低。二者之间的变化并不是同步的,而是存在滞后性,分析认为甘菊叶片中BADH基因表达与甜菜碱积累间存在相互抑制的作用。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号