首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of supplementing willow stem cuttings to ewes grazing drought pastures upon plasma amino acid (AA) concentrations was studied on Massey University's Riverside Farm, near Masteron, on the East Coast of New Zealand. Ewes of similar age and weight (i.e., 59.0 ± 2.22 kg) were assigned to two groups of 7 each, either with (supplemented) or without (control) supplementation of willow, and experimental grazing was carried for 10 weeks from early February until mid April of 2005. Live weight (LW) was recorded fortnightly and body condition score (BCS) was monthly. Blood samples for quantification of plasma amino acids were collected at week 5 and 10. Both groups had a similar pre-grazing pasture mass (i.e., 2000 kg of dry matter/ha) and dead matter content (0.80) with the diet selected by the ewes containing a metabolisable energy (ME) of 8.3 MJ/kg DM, which is typical of drought conditions. The willow was readily eaten, with intake averaging 0.26 kg DM/ewe/d. Willow was of higher ME content than short drought pasture (i.e., 10.1 versus 8.4 MJ/kg DM) and contained condensed tannins at 40.8 ± 1.97 g/kg DM. Both groups of ewes lost live weight at about 50 g/d. Plasma concentration of 3-methyl histidine (88 versus 127 μmol/L) at week 5 and non-essential amino acids (1082 versus 1417 μmol/L) at week 5 and (1155 versus 1324 μmol/L) at week 10, were substantially lower (P<0.05) in willow supplemented versus control ewes, indicating that willow supplementation reduced catabolism of body proteins in ewes under drought feeding conditions.  相似文献   

2.
A 79-day rotational grazing experiment was conducted over the summer and autumn of 2007 to compare effects of grazing willow (Salix spp.) fodder blocks, a combination of small trees (i.e., 1.0 m) and herbage, or perennial ryegrass (Lolium perenne)/white clover (Trifolium repens) control pasture on breath methane (CH4) emissions, concentrations and solubility of CH4 and sulphur hexafluoride (SF6) tracer gas in blood, and haematology variables in young growing female sheep (i.e., hoggets). Measurements of gases in blood followed a double equilibration technique with two (n = 20) replicate per treatment. Ten ewe hoggets in each replicate were dosed on day 22 with intraruminal slow release SF6 capsules, an inorganic tracer gas used to calculate CH4 emissions. Breath samples were collected over 5-day periods in weeks 5 (period 1) and 11 (period 2). Total condensed tannin (CT) concentrations calculated in the diet selected by the willow fodder block sheep was 12 g CT kg/dry matter intake, with negligible amounts in control pasture hoggets. Compared to control pasture, grazing willow fodder blocks reduced CH4 emission/kg metabolic body weight (BW0.75) by 20% in period 1 (P<0.01), but not in period 2. Blood CH4 concentrations (ng/mL blood) were similar for both groups on day 36, but higher (P<0.001) on day 76 for hoggets grazing willow fodder blocks, while a different trend was observed for SF6 blood concentration being higher (P<0.01) on day 36 in hoggets grazing willow fodder blocks, but similar in both groups on day 76. Repeatability of blood CH4 concentration was 75% in period versus 84% in period 2. Methane and SF6 Ostwald solubility coefficients in blood were similar in both periods for sheep grazing willow fodder blocks and the control pasture. Hoggets grazing willow fodder blocks had lower BW gain (65 g/day), carcass weight (16.1 kg) and carcass fatness (9.2 mm) than hoggets grazing control pasture (102 g; 18.3 kg; 11 mm). Hoggets dosed with SF6 capsules had lower (P<0.05) red blood cells, haemoglobin and haematocrit concentrations when grazing either willow fodder blocks or control pasture, while neutrophil (P=0.063), platelet (P=0.073) and monocyte (P=0.072), white blood cell and total lymphocyte counts (P<0.05) were higher for willow fodder block-fed hoggets than those fed the control pasture. Differences in the reduction in CH4 emission between periods from grazing willow fodder blocks may be due to more willow leaf being eaten during the CH4 measurement period in period 1 than in period 2.  相似文献   

3.
A 131-day rotational grazing experiment was conducted in the summer autumn of 2007/2008 to compare effects of feeding condensed tannin (CT)-containing willow (Salix spp.) fodder blocks (i.e., silvopastoral system) or perennial ryegrass (Lolium perenne)/white clover (Trifolium repens) control pasture upon the immune response to gastrointestinal nematode parasite infection in Romney weaned lambs. Groups of lambs (n = 40) were allocated to either willow fodder blocks or control pasture; half of each group (n = 20) were regularly-drenched with anthelmintic at approximately 21 day intervals, whilst the remaining 20 weaned lambs were not drenched unless pre-determined faecal nematode egg counts (FEC) were reached, when all weaned lambs in that group were drenched with anthelmintic (i.e., trigger-drenching). Metabolizable energy and CT concentrations were higher in willow fodder versus pasture herbages. Weaned lambs grazing willow fodder blocks had lower live weight gain (92 g/day) and carcass weight (14.4 kg) than those grazing control pasture (134 g; 15.3 kg), with no effect of anthelmintic drenching. Regular anthelmintic treatment maintained similar and low FEC up to day 82, which then increased, whilst trigger-drenched lambs grazing willow fodder blocks had higher FEC than lambs grazing control pasture on three out of eight occasions. As judged by faecal larval cultures, grazing willow fodder blocks reduced the relative proportions of abomasal-dwelling parasites (Haemonchus contortus and Teladorsagia spp.). Trigger-drenched willow fodder block-fed sheep had higher platelet, eosinophil, total white blood cell and lymphocyte counts, greater CD21+ and greater γδ (Gamma Delta) TCR+ (T cell receptor) lymphocyte subsets than control pasture-fed sheep, and higher plasma levels of Immunoglobulin A (IgA) specific for carbohydrate larval antigen (CarLa) on day 105 (P<0.001). None of these parameters were affected by grazing treatment in regularly-drenched lambs. Higher immunological measurements in trigger-drenched lambs grazing willow fodder blocks could be due to higher larval intake and/or to the effects of secondary compounds in willow fodder blocks priming the immune system. Further research is required to separate these effects.  相似文献   

4.
Extremely high nutrient loads have been reported in grazed grassland regimes compared with cutting regimes in some dairy systems that include the use of supplemental feeding. The aim of this study was, therefore, to investigate the effects on productivity and behaviour of high-yielding dairy cows with limited access to indoor feed and restriction in the time at pasture in a continuous stocking system. During a 6-week period from the start of the grazing season 2005, an experiment was conducted with the aim of investigating the effect of restrictive indoor feeding combined with limiting the time at pasture on the productivity and behaviour of high-yielding dairy cows (31.0 ± 5.4 kg energy-corrected milk) in a system based on continuous stocking. The herd was split into three groups allocated to three treatments consisting of 4, 6.5 and 9 h at pasture, respectively. Each group of cows grazed in separate paddocks with three replicates and was separately housed in a cubicle system with slatted floor during the rest of the day. All cows were fed the same amount of supplement, adjusted daily to meet the ad libitum indoor intake of the cows at pasture for nine hours. The herbage allowance was 1650 kg dry matter (DM) per ha, and the intake of supplemental feed was 9.1 kg DM per cow daily. The limitation of the time at pasture to 4 h in combination with restrictive indoor feeding reduced the daily milk, fat and protein yield and live weight compared with 9 h of access to pasture. The proportion of time during which the cows were grazing while at pasture increased from 0.64 to 0.86 and the estimated herbage intake per h at pasture decreased from 2547 g DM to1398 g DM, when time at pasture changed from 4 to 9 h. It can be concluded, that in systems with a high herbage allowance, the cow was able to compensate for 0.8 of the reduction in time at pasture by increasing the proportion of time spent grazing and presumably also both the bite rate and mass, although the latter two have not been directly confirmed in the present study.  相似文献   

5.
The study involved 120 crossbred ewes (sixty 1.5 years old animals and sixty 2.5 years old animals; initial liveweight 67.6 kg, condition score 3.7), that were mated in October. They were assigned to six treatments (two shearing treatments (shorn and unshorn) × two silage feed values (low and medium) and two extended grazed herbage allowances (1.0 and 1.8 kg dry matter (DM)/day)) designed to evaluate the effects of shearing at housing, grass silage feed value and extended-grazed herbage allowance on their performance and the performance of their progeny. Swards, which had silage harvested on 6 September, received fertiliser N (34 kg/ha) for extended (deferred) grazing between 19 December and lambing in mid-March. The herbage was allocated at DM allowances of 1.0 or 1.8 kg/ewe daily until 1 February. For the final 6 weeks of pregnancy, daily herbage DM allowances were 1.5, 1.6, 2.0, 2.0 and 2.0 kg for weeks 6, 5, 4, 3 and 2 to parturition, respectively. Two grass silages (low and medium feed value) were offered from housing on 19 December to lambing in mid-March. At housing, half the ewes were shorn whilst the remainder remained unshorn. Each ewe received 23.4 kg concentrate prior to lambing. For the extended-grazed herbage and the low and medium feed-value silages, DM concentrations were 132, 225 and 265 g/kg, and metabolisable energy (ME) concentrations were 10.0, 10.0 and 10.7 MJ/kg DM, respectively. Treatment did not alter (P > 0.05) litter size or number reared. Grass silage feed value did not significantly alter silage DM intake, or ewe and subsequent lamb performance. Increasing herbage allowance in mid-pregnancy decreased herbage utilisation (P < 0.05) and increased herbage intake (P < 0.05). Shearing increased silage intake (P < 0.05), lamb birth weight (P < 0.01) and tended to increase lamb weaning weight (P = 0.07). Relative to the housed shorn ewes, extended grazing did not alter (P > 0.05) ewe or subsequent lamb performance. It is concluded that shearing ewes at housing increased lamb birth weight due to increased silage intake probably associated with cold stress immediately post shearing and reduced heat stress in late pregnancy. Based on differences in lamb weight at weaning 0.8 kg of grass silage DM intake had the same feed value as a daily extended herbage DM allowance of 1.8 kg per ewe throughout the study. Neither silage feed value nor herbage allowance in mid-pregnancy affected lamb birth weight or subsequent growth rate.  相似文献   

6.
The effects of (i) herbage allowance, (ii) frequency of allocation and (iii) grass silage feed value on ewe and lamb performance were studied in mid-gestation ewes. Furthermore, the effects of (i) herbage allowance, (ii) frequency of allocation and (iii) grazing date and their interactions on subsequent herbage yield and feed value were also evaluated. Swards, which had a cut of silage removed on 6 September, received fertiliser nitrogen (34 kg/ha) for extended (deferred) grazing between 6 December and 1 February. Two grass silages differing in feed value were ensiled either precision chopped or in big bales from predominantly perennial ryegrass swards, respectively. In experiment 1, a completely randomised study involving 120 crossbred mid-gestation ewes (Belclare × Scottish Blackface) that had been mated in October was undertaken to evaluate the effects of extended grazed herbage allowance (1.0 and 1.8 kg dry matter (DM)/day), frequency of herbage allocation (daily and twice weekly) and grass silage feed value (low and medium) on ewe and subsequent lamb performance. The six diets were offered from days 63 to 120 of gestation. From day 120 of gestation to parturition all ewes were housed and offered the medium feed value silage ad libitum. All ewes received 19 kg concentrate prior to lambing. Increasing herbage allowance increased forage intake (P < 0.05), lamb birth weight (P < 0.01), weaning weight (P < 0.05) and growth rate from birth to weaning (P < 0.05), decreased herbage utilisation (P < 0.05) and tended to increase ewe condition score at lambing (P = 0.06). Frequency of herbage allocation or grass silage feed value did not alter (P > 0.05) ewe or subsequent lamb performance. In experiment 2, the effect of extended grazed herbage allowance (1.0 and 1.8 kg DM/ewe daily), frequency of allocation (daily and twice weekly) and grazing date (6 to 12 December, 27 December to 3 January and 17 to 23 January) on herbage yield at two harvest dates (27 April and 25 May) was examined in a split plot design study consisting of 72 plots. Delaying grazing date decreased herbage yield (P < 0.01) whilst delaying harvest date increased herbage yield (P < 0.05). Frequency of herbage allocation did not alter (P > 0.05) subsequent herbage yield. It is concluded that for ewes in mid-gestation 1.0 kg of low feed value silage DM had the same feed value, as determined by weaned lamb weight, as 1.3 kg herbage DM allowance. Each 1-day delay in grazing date reduced herbage DM yield by 54.2 kg/ha.  相似文献   

7.
Low pasture allowance during gestation affects ewes’ BW at parturition, the bond with their lamb, lamb development, and thus also may affect their responses to weaning. The objectives were to determine if native pasture allowance from before conception until late pregnancy affects ewe–lamb behaviours at lambing, ewes’ milk yield, lambs’ BW, and the behavioural and physiological changes of ewes and lambs at weaning. From 23 days before conception until 122 days of pregnancy, 24 ewes grazed on two different native pasture allowances: high (10 to 12 kg of dry matter (DM)/100 kg of BW per day; HPA treatment; n=12) or low (5 to 8 kg of DM/100 kg of BW per day; LPA treatment; n=12). Thereafter, all ewes grazed on Festuca arundinacea and received rice bran and crude glycerine. Ewes’ body condition score (BCS) and BW were recorded during pregnancy and postpartum periods. Milk yield was determined on days 32, 41 and 54 after lambing. Lambs’ BW was recorded from birth until 72 days after lambing. Latency from parturition until the ewe licked her lamb, maternal behaviour score (a test that evaluates maternal attachment to the lamb) and latency for lamb to stand up and suckle were determined. The behaviour of the lambs and ewes was recorded before and after weaning (at 65 days). The ewes’ serum total protein, albumin and globulin concentrations were measured before and after weaning. The HPA ewes presented greater BW (P<0.005) and BCS (P<0.005) than the LPA ewes during pregnancy and postpartum (P<0.04), and had a greater milk yield than the LPA ewes (P<0.03). Treatments did not influence any behaviour at lambing, lambs’ BW, neither the ewes’ behavioural and physiological changes at weaning. HPA lambs paced and vocalized more than LPA lambs (P<0.0001). The variation of albumin concentration before and after weaning was greater in the HPA lambs than in the LPA lambs (P<0.0001). In conclusion, although ewes’ BW, BCS and milk production were affected by pasture allowance until late pregnancy, this did not affect the behaviours that lead to the establishment of the mother–young bond, nor the ewes’ behavioural responses at weaning. Lambs reared by ewes that grazed on low pasture allowance during pregnancy presented fewer behavioural changes and a lower decrease of albumin concentration after weaning. Lambs’ BW was not affected by the feeding received by their mothers.  相似文献   

8.
This animal simulation model, named e-Cow, represents a single dairy cow at grazing. The model integrates algorithms from three previously published models: a model that predicts herbage dry matter (DM) intake by grazing dairy cows, a mammary gland model that predicts potential milk yield and a body lipid model that predicts genetically driven live weight (LW) and body condition score (BCS). Both nutritional and genetic drives are accounted for in the prediction of energy intake and its partitioning. The main inputs are herbage allowance (HA; kg DM offered/cow per day), metabolisable energy and NDF concentrations in herbage and supplements, supplements offered (kg DM/cow per day), type of pasture (ryegrass or lucerne), days in milk, days pregnant, lactation number, BCS and LW at calving, breed or strain of cow and genetic merit, that is, potential yields of milk, fat and protein. Separate equations are used to predict herbage intake, depending on the cutting heights at which HA is expressed. The e-Cow model is written in Visual Basic programming language within Microsoft ExcelR. The model predicts whole-lactation performance of dairy cows on a daily basis, and the main outputs are the daily and annual DM intake, milk yield and changes in BCS and LW. In the e-Cow model, neither herbage DM intake nor milk yield or LW change are needed as inputs; instead, they are predicted by the e-Cow model. The e-Cow model was validated against experimental data for Holstein–Friesian cows with both North American (NA) and New Zealand (NZ) genetics grazing ryegrass-based pastures, with or without supplementary feeding and for three complete lactations, divided into weekly periods. The model was able to predict animal performance with satisfactory accuracy, with concordance correlation coefficients of 0.81, 0.76 and 0.62 for herbage DM intake, milk yield and LW change, respectively. Simulations performed with the model showed that it is sensitive to genotype by feeding environment interactions. The e-Cow model tended to overestimate the milk yield of NA genotype cows at low milk yields, while it underestimated the milk yield of NZ genotype cows at high milk yields. The approach used to define the potential milk yield of the cow and equations used to predict herbage DM intake make the model applicable for predictions in countries with temperate pastures.  相似文献   

9.
Although stocking rate is a key management variable influencing the structure and composition of pastures, only few studies have simultaneously analysed the seasonal patterns of pasture use by cattle, and the adjustments the animals make to maintain intake of a high-quality diet over the grazing season. Therefore, over a 3-year study, we recorded diet selection, plot use and impact of heifers on sward structure and quality under three different stocking rates (0.6, 1.0 and 1.4 livestock units (LU) per ha) in a species-rich mountain pasture of central France. Measurements were made on three occasions between early June and the end of September each year. Overall, heifers selected for bites dominated by legumes or forbs, and against reproductive grass, whatever the stocking rate or season. Selection for tall mixed (P < 0.05), short mixed (P < 0.05) and short pure grass bites (P < 0.01) was more pronounced in plots grazed at the lowest stocking rate. Although heifers' selection for short patches decreased at the end of the season (P < 0.001), they continued to graze previously grazed areas, thus exhibiting a typical 'patch grazing' pattern, with the animals that grazed at the lowest stocking rate tending to better maintain their selection for short patches in September (treatment × period: P = 0.078). Neither diet quality nor individual animal performance were affected by the different stocking rate treatments despite high variability in the quantity and quality of herbage offered and differences in diet selection. However, at the 1.4 LU per ha stocking rate, the quantity of forage available per animal at the end of the season, 0.79 t dry matter (DM) per ha of green leaves with the median of sward height at 4.6 cm, approached levels limiting cattle's ability to compensate for the effects of increasing stocking rate. In plots grazed at 0.6 LU per ha, the total herbage biomass remained higher than 3 t DM per ha with more than 30% of plot area still covered by reproductive grass patches at the end of the grazing season, which in the medium term should affect the botanical composition of these pastures. Sward heterogeneity was high in plots grazed at 1.0 LU per ha, with sufficient herbage availability (1.1 t DM per ha of green leaves) to maintain animal performance, and more than 15% of plot area was kept at a reproductive stage at the end of the grazing season. Hence, it could represent the optimal balance to satisfy both livestock production and conservation management objectives.  相似文献   

10.
In a previous study, we showed that access to willow fodder decreased somatic cell counts (SCC) in the milk of local Mamber goats grazing in brushland at the end of lactation. To test whether the consumption of willow affects the cells of the immune system, Alpine crossbred dairy goats grazing in the same environment were either offered free access to freshly cut willow fodder (W, n = 24) or not (C, n = 24) for 2 weeks. The willow fodder contained 7.5 g/kg DM of salicin. The other major secondary compounds were catechin, myricitrin, hyperin and chlorogenic acid (2.2, 2.6, 1.0 and 0.75 g/kg DM, respectively). Udder health status was determined before the experiment, and each of the two groups included five (W) or six (C) goats defined as infected, as established by microbial cfu in milk, and 19 (W) or 18 (C) non-infected goats. Goats ingested, on average, 600 g of DM from willow (25% of food intake), resulting in minor changes in dietary quality compared to the controls, as established by faecal near-IR spectrometry. Throughout the 2 weeks of experiment, differences between groups in dietary CP contents were minor and affected neither by infection nor by access to willow; the dietary percentage of neutral detergent fibre (NDF) decreased in C and increased in W; dietary acid detergent fibre (ADF) increased; and the dietary tannin contents decreased for both treatments. However, milking performance and milk quality attributes in both W and C goats were similar. Initial SCC and milk neutrophil (cluster of differentiation (CD)18+ and porcine granulocyte (PG)68) cell counts were higher in infected than in non-infected goats; counts decreased significantly in W but not in C uninfected goats. The percentage of CD8+ T-cells increased in all C goats, while in the W group, a significant increase was found only for infected goats. The consumption of willow mitigated an increase in CD8+ in blood and triggered an increase in CD8+ in milk, suggesting an immune-regulatory effect independent of udder status. To our knowledge, this is the first report of a direct nutraceutical effect of fodder ingestion on the immune status of goats.  相似文献   

11.
The time at pasture of dairy cows is often restricted in the context of extending the grazing season in autumn or at the end of winter. The objective of our study was to evaluate the effects of a restriction of time at pasture on milk production, herbage intake and feeding behaviour in dairy cows according to feeding regime. The four treatments consisted of 4 h or 8 h of time at pasture per day tested under two feeding regimes combining rate of supplementation and herbage allowance: either a high rate of supplementation (10 kg dry matter (DM) of a maize silage-soya bean meal mixture in the ratio 87 : 13 on a % DM basis) with a low herbage allowance (6 kg DM/cow per day above 5 cm), or a low rate of supplementation (5 kg DM of the same supplement) with a high herbage allowance (11 kg DM/cow per day). The study was carried out according to a 4 × 4 Latin square design with four 2-week periods, with 48 mid-lactation Holstein cows. The cows in the 4-h treatment had access to pasture from 0900 h to 1300 h and those in the 8-h treatment from 0900 h to 1700 h. The supplement was given at 1830 h. When time at pasture was reduced from 8 h to 4 h per day, herbage intake decreased (9.9 v. 8.1 kg DM, P < 0.001), along with a fall in milk production (22.3 v. 21.2 kg, P < 0.001) and milk protein concentration (30.1 v. 29.6 g/kg, P < 0.001), while milk fat concentration increased (39.4 v. 39.9 g/kg, P < 0.05). The effect of time at pasture on milk production was slightly more marked on the low-supplement feeding regime (interaction P < 0.06). Reducing time at pasture by 4 h led to a sharp decrease in grazing time (327 v. 209 min, P < 0.001), but strongly increased the pasture intake rate (31 v. 39 g DM/min, P < 0.001) and the proportion of time spent grazing (0.68 v. 0.87, P < 0.001). Cows showed a stronger motivation for grazing when receiving the low-supplement feeding regime. In conclusion, we showed that reducing time at pasture from 8 to 4 h for cows receiving 5 to 10 kg DM of a maize silage-based supplement decreased moderately milk production and herbage intake, because of the capacity for behavioural adaptation by the grazing dairy cows.  相似文献   

12.
Short-term effects of nutrition on conception rate (CR), ovulation rate (OR), ova and embryo losses (OEL) during the first 50 days following insemination and total reproductive wastage after ovulation (TRW), were investigated in primiparous lactating Sarda ewes after oestrous synchronisation and cervical [corrected] artificial insemination (AI). Eighty ewes grazing a green high-quality pasture were offered one of three iso-energetic supplements from day 14 before to day 2 after AI: whole maize grain (M); soyabean meal (S); maize gluten meal (G); or served as controls (C). Supplements G and S were iso-nitrogenous but provided different amounts of rumen undegradable digestible protein. The intake of herbage and digestible dry matter, measured by the n560 mg/l was associated with lower CR. Ranking by ovulation groups of CR was single相似文献   

13.
One of the main aims of pasture-based systems of dairy production is to increase the proportion of grazed grass in the diet. This is most easily achieved by increasing the number of grazing days. However, periods of inclement weather conditions can reduce the number of days at pasture. The two objectives of this experiment were: (i) to investigate the effect of restricting pasture access time on animal production, grazing behaviour and dry matter intake (DMI) of spring calving dairy cows in early lactation; and (ii) to establish whether silage supplementation is required when cows return indoors after short grazing periods. In all, 52 Holstein-Friesian spring calving dairy cows were assigned to a four-treatment study from 25 February to 26 March 2008. The four treatments were: full-time access to pasture (22H; control); 4.5-h- pasture access after both milkings (2 × 4.5H); 3-h pasture access after both milkings (2 × 3H); 3-h pasture access after both milkings with silage supplementation by night (2 × 3SH). All treatments were offered 14.4 kg DM/cow per day herbage from swards, with a mean pre-grazing yield of 1739 kg DM/ha above 4 cm, - and were supplemented with 3 kg DM/cow per day of concentrate. The 2 × 3SH treatment was offered an additional 4 kg DM/cow of grass silage by night. Restricting pasture access time (2 × 3H, 2 × 3SH and 2 × 4.5H) had no effect on milk (28.3 kg/cow per day) and solids-corrected milk (27.2 kg/cow per day) yield when compared with the treatment grazing full time. Supplementing animals with grass silage did not increase milk production when compared with all other treatments. Milk protein concentration tended to be lower (P = 0.08; 32.2 g/kg) for the 2 × 3SH animals when compared with the 22H animals (33.7 g/kg). The grass DMI of the 2 × 3SH treatment was significantly lower (-2.3 kg DM/cow per day) than all other treatments (11.9 kg DM/cow per day), yet the total DMI of these animals was highest (16.6 kg DM/cow per day). The 22H cows grazed for 481 min/cow per day, which is significantly longer than all other treatments. The 2 × 3H animals grazed for 98% of the time, whereas the 2 × 3SH grazed for 79% of their time at pasture. Restricting pasture access time did not affect end body weight or body condition score. The results of this study indicate that restricting pasture access time of dairy cows in early lactation does not affect milk production performance. Furthermore, supplementing cows with grass silage does not increase milk production but reduces grazing efficiency.  相似文献   

14.
The aim of this work was to evaluate the ability of a line selected for reproductive longevity (LP) to confront productive challenges compared to a line selected during 31 generations for litter size at weaning (V). A total of 133 reproductive rabbit does were used (72 and 61 from LP and V lines, respectively). Within each line, three groups with different levels of productive effort were planned: PP9, inseminated at day 4 after the first partum and with nine kits during the second partum, and inseminated after first weaning (30 days) and with nine (PW9) or five kits (PW5) during the second partum. The reproductive performance, body condition (perirrenal fat thickness (PFT)) and lipolytic response were controlled. LP does showed greater mean live weight (LW; +128 g; P < 0.05), PFT (+0.47 mm; P < 0.05) and estimated body energy (EBE; +0.29 MJ/kg; P < 0.01) than V does at second partum. However, LP does that mated at first post partum did not significantly differ in EBE relative to V does at second partum. During the first week of lactation, dry matter (DM) intake was similar for both lines (94 and 95 g DM/kg LW0.75 day for V and LP does, respectively). There was a significant difference in milk yield between both lines during the first week when litter size was nine (60 v. 54 g of milk/kg LW0.75 day for LP and V does, respectively; P < 0.01), but no difference when litter size was five. Consequently, when litter size was nine, LP does showed a lower recovery of PFT (0.6 mm less; P < 0.05) than V does during the first 10 days of lactation. However, when litter size was five, LP does showed a higher LW (+210 g; P < 0.05) than V does at 10 days of lactation and a similar recovery of PFT. During the last 3 weeks of the lactation, LP does showed a higher feed intake (+6 g DM/kg LW0.75 day; P < 0.05) and milk yield (+27 g/day; P < 0.001) than V does when litter size was nine, resulting in no significant differences in LW at 30 days of lactation. However, when litter size was five, both lines showed similar feed intake and milk yield, maintaining their differences in LW at 30 days of lactation (+206 g for LP does; P < 0.05). These results show that the rabbit line selected for reproductive longevity is more robust with respect to coping with productive challenges, than a line selected for reproductive intensity.  相似文献   

15.
Prediction of organic matter (OM) digestibility (OMD) of primary growth and regrowth grass silages was studied based on their chemical composition, pepsin-cellulase solubility of OM (OMS) and indigestible neutral detergent fibre (INDF) content. Twenty-five primary and 28 regrowth silages were harvested from mixed timothy (Phleum pratense) meadow fescue (Festuca pratensis) or timothy cocksfoot (Dactylis glomerata) swards by varying the dates of the first and second harvest. In vivo OMD was measured with sheep and indigestible NDF was determined by 12 days ruminal incubation of forage samples in nylon bags using dairy cows fed a forage-based diet. Chemical composition of the silages was significantly correlated with digestibility, but single regression equations led to an unacceptable prediction accuracy of OMD (RMSE>40 g/kg DM). Pepsin-cellulase solubility reliably predicted OMD of primary growth silages (RMSE = 10.8 g/kg DM), but was less accurate for regrowth silages (RMSE = 25.9 g/kg). The prediction accuracy of OMD could be improved by using different equations for the two silage types. Indigestible NDF predicted OMD more accurately than OMS for all silages and especially for the regrowth silages. In contrast to OMS, the relationship between INDF and OMD was similar for both silage types.  相似文献   

16.
Agroecology opens up new perspectives for the design of sustainable farming systems by using the stimulation of natural processes to reduce the inputs needed for production. In horse farming systems, the challenge is to maximize the proportion of forages in the diet, and to develop alternatives to synthetic chemical drugs for controlling gastrointestinal nematodes. Lactating saddle mares, with high nutritional requirements, are commonly supplemented with concentrates at pasture, although the influence of energy supplementation on voluntary intake, performance and immune response against parasites has not yet been quantified. In a 4-month study, 16 lactating mares experimentally infected with cyathostome larvae either received a daily supplement of barley (60% of energy requirements for lactation) or were non-supplemented. The mares were rotationally grazed on permanent pastures over three vegetation cycles. All the mares met their energy requirements and maintained their body condition score higher than 3. In both treatments, they produced foals with a satisfying growth rate (cycle 1: 1293 g/day; cycle 2: 1029 g/day; cycle 3: 559 g/day) and conformation (according to measurements of height at withers and cannon bone width at 11 months). Parasite egg excretion by mares increased in both groups during the grazing season (from 150 to 2011 epg), independently of whether they were supplemented or not. This suggests that energy supplementation did not improve mare ability to regulate parasite burden. Under unlimited herbage conditions, grass dry matter intake by supplemented mares remained stable around 22.6 g DM/kg LW per day (i.e. 13.5 kg DM/al per day), whereas non-supplemented mares increased voluntary intake from 22.6 to 28.0 g DM/kg LW per day (13.5 to 17.2 kg DM/al per day) between mid-June and the end of August. Hence total digestible dry matter intake and net energy intake did not significantly differ between supplemented and non-supplemented mares during the second and third cycles. In conclusion, supplementing lactating mares at pasture should not be systematic because their adaptive capacities enable to increase herbage intake and ensure foal growth. Further research is needed to determine the herbage allowance threshold below which supplementation is required.  相似文献   

17.
Ewe lambs of the Ethiopian Menz breed were assigned at weaning (90+/-3 days) to four levels of nutrition (poor, low, medium and high) to achieve different premating growth rates with or without treatment for endoparasites. A concentrate mixture providing 2.5 Mcal/kg dry matter (DM) metabolizable energy and 15.2 g/kg DM digestible protein was used. Improved nutrition increased lamb postweaning average daily weight gain up to puberty by 6 to 26 g/day and the conception rate to first estrus by 9 to 16% while it reduced the mortality rate by 24 to 31% and age at first lambing by 2 to 5 months. Lambs reached puberty (age at first estrus) at 16.9+/-0.1 kg (+/-SEM) or 60% of mature body weight and 350+/-12 days of age. The onset of puberty was advanced by weaning weight (P<0.05), itself being well correlated with birth weight (r = 0.51, P<0.001), and by level of nutrition (high=299+/-19, medium=301+/-18, low=383+/-23 and poor=454+/-31 days, P<0.001) through enhanced growth rate (r = -0.82, P<0.001). No independent effect of drenching for endoparasites on pubertal development was observed (P>0.05), but its interaction with season-of-birth improved the growth of lambs born during the period of short rains (P<0.05). Overall mean litter size at first lambing was 1.07; the twinning rate was 6.5% and the birth weight was 1.9+/-0.1 kg. Up to 13.4% of newborn lambs, averaging 1.3+/-0.6 kg, died on the day of parturition. The results indicate that improved growth rate and body weight, resulting from better postweaning nutrition, affects the attainment of puberty in Menz ewe lambs. Mitigation of nutrition stress and endoparasitic infection depending on season-of-birth would thus increase the annual reproductive rate of breeding ewes and flock productivity.  相似文献   

18.
Birth weight plays a central role in lamb survival and growth, and the knowledge of its genetic determinism has become essential in worldwide selection programmes. Within this context, within-litter birth weight variation (BWV) has been suggested as an attractive trait to homogenise litters in prolific species, although it has not been analysed in sheep. The objective of this study was to ascertain whether maternal additive genetic variance exists for BWV in Ripollesa ewes, and to study its genetic, permanent environmental and residual relationships with litter weight (LW) and litter size (LS) at birth. Data were recorded in the Ripollesa experimental flock of the Universitat Autònoma of Barcelona, between 1986 and 2005, and included 1 662 litters from 380 ewes, with 712 records of BWV and 1 530 records of LW. Traits were analysed with a multivariate animal model solved through Bayesian methodologies, and with a threshold characterisation of LS. Additionally, the effect of BWV on lamb survival was studied. Additive genetic variance was observed for BWV (h2 = 0.061), as well as for LW (h2 = 0.200) and LS (h2 = 0.141). Nevertheless, genetic correlations among those traits were not substantial (BWV and LW = 0.151; BWV and LS = − 0.219; LW and LS = − 0.320) and suffered from a high degree of uncertainly, with the null correlation included within the highest posterior interval at 95%. Within-litter birth weight variation and LS showed a negative and large permanent environmental correlation ( − 0.872), and LW and LS were negatively correlated due to residual ( − 0.762) and permanent environmental ( − 0.449) random sources of variation. Within-litter birth weight variation influenced lamb mortality during the first 7 days of life (P < 0.05), increasing and decreasing survivability in heavier and lighter littermates, respectively. Nevertheless, stillbirths and lambs died after the 1st week of life were not affected by BWV (P>0.05). The low heritability found indicates that slow genetic progress may be expected from selecting for BWV. Close to zero genetic correlations suggest that this selection will probably not affect LS and LW, although some significant permanent and residual correlations must be taken into account. Further studies are needed to understand better the genetic architecture among these three reproductive traits.  相似文献   

19.
20.
A study was undertaken to investigate the performance of breeding ewes fed a range of forage and concentrate-based diets in late pregnancy, balanced for supply of metabolizable protein (MP). For the final 6 weeks before lambing, 104 twin-bearing multiparous ewes were offered one of four diets: ad libitum precision-chop grass silage + 0.55 kg/day concentrates (GS); ad libitum maize silage + 0.55 kg/day concentrates (MS); a 1 : 1 mixture (on a dry matter (DM) basis) of grass silage and maize silage fed ad libitum + 0.55 kg/day (GSMS); or 1.55 kg/day concentrates + 50 g/day chopped barley straw (C). The CP content of the concentrates was varied between treatments (157 to 296 g/kg DM) with the aim of achieving a daily intake of 130 g/day MP across all treatments. Compared with ewes fed GS, forage DM intake was higher (P < 0.05) in ewes fed MS (+0.21 kg/day) and GSMS (+0.16 kg/day), resulting in higher (P < 0.001) total DM intakes with these treatments. C ewes had the lowest total DM intake of all the treatments examined (P < 0.001). C ewes lost more live weight (LW; P < 0.001) and body condition score (BCS; P < 0.05) during the first 3 weeks of the study but there were no dietary effects on ewe LW or BCS thereafter. The incidence of dystocia was lower (P < 0.01) in C ewes compared with those offered silage-based diets (7.5% v. 37.4% ewes), and was higher (P < 0.01) in ewes fed MS compared with GS or GSMS (50.7%, 34.7% and 26.9%, respectively). There were no significant dietary effects on the plasma metabolite concentrations of ewes in late pregnancy, pre-weaning lamb mortality, weaned lamb output per ewe or on lamb growth rate. The results of this study demonstrate that both maize silage and all-concentrate diets can replace grass silage in pregnant ewe rations without impacting on performance, provided the supply of MP is non-limiting. The higher incidence of dystocia in ewes fed maize silage as the sole forage is a concern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号