首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acrosome reaction-inducing substance (ARIS) in the jelly coat of starfish eggs is a highly sulfated proteoglycan-like molecule of an apparent molecular size over 10(4) kDa and plays a pivotal role in the induction of acrosome reaction in homologous spermatozoa. It is known in Asterias amurensis that ARIS binds to a restricted area of the anterior portion of sperm head, and that a glycan fragment of ARIS, named Fragment 1, consisting of 10 repeats or so of a pentasaccharide unit retains the biological activity of ARIS to an appreciable extent. In this report, we have shown the binding of Fragment 1, a relatively small pure glycan fragment of ARIS, to the putative ARIS receptor on the sperm surface by three independent methods. First, the specific binding of P-ARIS to isolated sperm membranes was monitored in real-time by using a surface plasmon resonance detector, namely a Biacore sensor system. The specific and quantitative binding of Fragment 1 to the intact sperm and to isolated sperm membranes was similarly monitored. Secondly, the binding of 125I-labeled Fragment 1 to the intact sperm was stoichiometrically measured, for which we had developed a unique procedure for radioiodination of saccharide chains. It is found that Fragment 1 competes with P-ARIS for the binding to ARIS-receptor, suggesting that Fragment 1 is a useful ligand in the search for ARIS receptor protein(s). Thirdly, the putative receptor molecules were specifically labeled by using Fragment 1 as a ligand for photoaffinity crosslink technique. Taking these results into account, we conclude that starfish sperm have the ARIS receptor, which consists most probably of 50 to 60 kDa proteins, of reasonably high affinity (for Fragment 1, Kd = 15 microM, Bmax = 8.4 x 10(4) per cell).  相似文献   

2.
A stereocontrolled synthesis of beta-D-GlcpNAc6SO3-(1----3)-beta-D-Galp6SO3-(1----4)-beta-D- GlcpNAc6SO3- (1----3)-D-Galp, was achieved by use of benzyl O-(2-acetamido-3,4 di-O-benzyl-2-deoxy-6-O-p-methoxyphenyl-beta-D- glucopyranosyl)-(1----3)-O-(2,4-di-O-tert-butyldiphenylsilyl-beta- D- galactopyranosyl-(1----4)-O-(2-acetamido-3-O-benzyl-2-deoxy-6-O-p-methox yphenyl - beta-D-glucopyranosyl)-(1----3)-2,4,6-tri-O-benzyl-beta-D-galactopyranos ide as a key intermediate, which was in turn prepared by employing two glycosyl donors, 3,4-di-O-benzyl-2-deoxy-6-O-p-methoxyphenyl-2-phthalimido-beta-D- glucopyranosyl trichloroacetimidate and O-(3,6-di-O-acetyl-2,4-di-O-benzyl-beta-D-galactopyranosyl)-(1----4)-3-O - benzyl-2-deoxy-6-O-p-methoxyphenyl-2-phthalimido-beta-D-glucopyranosyl trichloroacetimidate, and a glycosyl acceptor, benzyl 2,4,6-tri-O-benzyl-beta-D-galactopyranoside.  相似文献   

3.
Spermatozoa of the starfish, Asterias amurensis, have a specific receptor for asterosap, a sperm-activating peptide isolated from the jelly coat of homologous eggs. We characterized the receptor by using several asterosap derivatives. Analysis of equilibrium binding of radioactive di-iodinated Bolton-Hunter reagent-labeled asterosap ((125)I(2)-BHP15) to the spermatozoa indicated that the cell has 1.1 x 10(5) binding sites of high affinity (K(d) = 57 pM), and also the receptor showed positive cooperativity for asterosap binding. When spermatozoa were treated with fluorophore-labeled asterosap, the sperm flagella were labeled, indicating that the receptors are mostly localized in the sperm tail. When spermatozoa were reacted with radioactive asterosap prelabeled with photoaffinity cross-linkers, a single 130-kDa membrane protein of sperm flagella was specifically radiolabeled. This result was reproducible regardless of the length of spacer arm of cross-linkers so far studied. Therefore, the 130-kDa protein is likely to be the receptor for asterosaps. Modification of asterosap at the N-terminal region with bulky molecules such as carboxyfluorescein did not affect the activity of asterosap, suggesting that the N-terminus of asterosap is not involved in the ligand-receptor interaction. On the other hand, S-alkylated asterosaps did not compete with (125)I(2)-BHP15 for binding to the receptor, indicating that disulfide linkage of asterosap is essential for the ligand-receptor interaction. The properties of the receptor, high affinity and high concentration, enabled us to apply the fluorescence polarization technique to study the molecular interaction between asterosap and the receptor. Using this method, we performed binding experiments in almost real time and found that divalent cations are significantly involved in the interaction between asterosap and the receptor.  相似文献   

4.
5.
The recent isolation and characterization of the SALMFamide neuropeptides S1 and S2 from the starfish Asterias rubens has initiated a series of studies on their distribution. Specific antisera have been raised against S1 and used in light-microscopical immunocytochemistry. The results of this study reveal for the first time a possible hyponeural innervation of the visceral musculature of the gut and the widespread neuronal distribution of S1, (i) in axons and cell bodies of both ectoneural and hyponeral regions of the radial nerve cord and circumoral nerve ring, (ii) in the nerve ring and nerve plexus of the tube feet, (iii) in the apical muscle, (iv) in skin, and (v) extensively throughout the digestive system. These discoveries are of particular interest in terms of the possible functional roles for S1 in Asterias rubens.Part of this work has been previously reported as an abstract: (Moore et al.1990, 1991)  相似文献   

6.
M Mori  Y Ito  T Ogawa 《Carbohydrate research》1990,195(2):199-224
The mollu-series glycosphingolipids, O-alpha-D-mannopyranosyl-(1----3)-O-beta-D-mannopyranosyl-(1----4)-O-bet a-D-glucopyranosyl-(1----1)-2-N-tetracosanoyl-(4E)-sphingeni ne and O-alpha-D-mannopyranosyl-(1----3)-O-[beta-D-xylopyranosyl-(1----2])-O- beta-D-mannopyranosyl-(1----4)-O-beta-D-glucopyranosyl-(1----1)-2-N- tetracosanoyl-(4E)-sphingenine, were synthesized for the first time by using 2,3,4-tri-O-acetyl-D-xylopyranosyl trichloroacetimidate, methyl 2,3,4,6-tetra-O-acetyl-1-thio-alpha-D-mannopyranoside, benzyl O-(4,6-di-O-benzyl-beta-D-mannopyranosyl)-(1----4)-2,3,6-tri-O-benzyl-be ta-D- glucopyranoside 9, and (2S,3R,4E)-2-azido-3-O-(tert-butyldiphenylsilyl)-4-octade cene-1,3-diol 6 as the key intermediates. The hexa-O-benzyl disaccharide 9 was prepared by coupling two monosaccharide synthons, namely, 2,3-di-O-allyl-4,6-di-O-benzyl-alpha-D-mannopyranosyl bromide and benzyl 2,3,6-tri-O-benzyl-beta-D-glucopyranoside. It was demonstrated that azide 6 was highly efficient as a synthon for the ceramide part in the coupling with both glycotriaosyl and glycotetraosyl donors, particularly in the presence of trimethylsilyl triflate.  相似文献   

7.
The novel glycosphingolipid, SEGLx (Gal beta 1-4(Fuc alpha 1-3)Glc beta 1-3Gal beta Cer), which was identified by us (Kawakami Y, et al. (1993) J Biochem 114: 677-83), shows a characteristic spectrum on 1H-NMR analysis, in which the anomeric proton resonances of a reducing end galactose and a glucose are split. To elucidate the structural characteristics of SEGLx, we determined its three-dimensional (3D) structure by means of computer simulation, involving such techniques as molecular mechanics (MM2), the semiempirical molecular orbital method (AM1), molecular dynamics (Amber), and computer 3D modelling. With the hypothesis that all OH group(s) of a ceramide participate in intramolecular hydrogen bonds, two kinds of stable conformers, horizontal and right-angled ones, were formed, depending on the ceramide species. The present findings suggest that the chemical species of both the long chain base and fatty acid moieties, mainly the occurrence of OH group(s), affect the chemical shifts of the anomeric proton resonances not only of the reducing terminal galactose but also the penultimate glucose through the formation of intramolecular hydrogen bonds. Computer simulation through theoretical calculation and 3D modelling was shown to be the best means of confirming the results obtained by experimental analysis.  相似文献   

8.
E Yoon  R A Laine 《Glycobiology》1992,2(2):161-168
Development of tandem mass spectral methods for direct linkage determination in oligosaccharides requires sets of trisaccharides differing only in one structural parameter. In this case, we chose the position of linkage to the reducing-end hexose. These sets of compounds would also be useful for the development of high-resolution separation techniques geared to resolve linkage types. Conventional organic synthesis of such a set could take as long as 2-5 months for each member of the set. Each trisaccharide would require 10-20 steps of synthesis. Instead, we utilized low pH to induce a loose acceptor specificity for bovine milk galactosyltransferase (lactose synthase: EC 2.4.1.22) and by this method, within 2 weeks, generated four novel oligosaccharides for NMR and mass spectral studies. The disaccharides cellobiose (beta 1----4), laminaribiose (beta 1----3), gentiobiose (beta 1----6) and maltose (alpha 1----4) acted as acceptors for EC 2.4.1.22 under these conditions. The beta 1----2-linked disaccharide, sophorose, was not commercially available and is not included in this study. The alpha-linked disaccharides were also examined, but except for the alpha 1----4 disaccharide maltose, were very poor acceptors under a variety of conditions. From these four acceptors, the following four novel trisaccharides were synthesized in micromole amounts, suitable for studies of linkage position using low-energy collision-induced-dissociation tandem mass spectrometry (FAB-MS-CID-MS), and for NMR: Galp(beta 1----4)Glcp(beta 1----3)-Glc, Galp(beta 1----4)Glcp(beta 1----4)Glc, Galp(beta 1----4)Glcp(beta 1----6)-Glc and Galp(beta 1----4)Glcp(alpha 1----4)Glc.  相似文献   

9.
The combining site of the nontoxic carbohydrate binding protein (Abrus precatorius agglutinin, APA) purified from the needs of Abrus precatorius (Jequirity bean), was studied by quantitative precipitin and precipitin-inhibition assays. Of 26 glycoproteins and polysaccharides tested, all, except sialic acid-containing glycoproteins and desialized ovine salivary glycoproteins, reacted strongly with the lectin, and precipitated over 70% of the lectin added, indicating that APA has a broad range of affinity and recognizes (internal) Gal beta 1----sequences of carbohydrate chains. The strong reaction with desialized porcine and rat salivary glycoproteins as well as pneumococcus type XIV polysaccharide suggests that APA has affinity for one or more of the following carbohydrate sequences: Thomsen-Friedenreich (T, Gal beta 1----3GalNAc), blood group precursor type I and/or type II (Gal beta 1----3/4GlcNAc) disaccharide determinants of complex carbohydrates. Among the oligosaccharides tested, the T structure was the best inhibitor; it was 2.4 and 3.2 times more active than type II and type I sequences, respectively. The blood group I Ma-active trisaccharide, Gal beta 1----4GlcNAc beta 1----6Gal, was about as active as the corresponding disaccharide (II). From the above results, we conclude that the size of the combining site of the A. precatorius agglutinin is probably as large as a disaccharide and most strongly complementary to the Gal beta 1----3GalNAc (T determinant) sequence. The carbohydrate specificities of this lectin will be further investigated once the related oligosaccharide structures become available.  相似文献   

10.
Total synthesis of O-beta-D-galactopyranosyl-(1----3)-O-[(5-acetamido-3,5-dideoxy- D-glycero-alpha-D-galacto-2-nonulopyranosylonic acid)-(2----6)]-O-(2-acetamido-2-deoxy-alpha-D-galactopyranosyl)-(1----3 )-L- serine was achieved by use of the key glycosyl donor O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O- [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha-D- galactopyranosyl trichloroacetimidate and the key glycosyl acceptor N-(benzyloxycarbonyl)-L- serine benzyl ester in a regiocontrolled way.  相似文献   

11.
12.
A synthesis of alpha-D-Manp-(1----3)-[beta-D-GlcpNAc-(1----4)]-[alpha-D-Manp++ +-(1----6)]- beta-D-Manp-(1----4)-beta-D-GlcpNAc-(1----4)-[alpha-L-Fucp-( 1----6)]-D- GlcpNAc was achieved by employing benzyl O-(3,4,6-tri-O-benzyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl)-(1--- -4)-O- (2-O-benzyl-beta-D-mannopyranosyl)-(1----4)-O-(3,6-di-O-benzyl-2-deoxy-2 - phthalimido-beta-D-glucopyranosyl)-(1----4)-3-O-benzyl-2-deoxy-6-O-p- methoxyphenyl-2-phthalimido-beta-D-glucopyranoside as a key glycosyl acceptor. Highly stereoselective mannosylation was performed by taking advantage of the 2-O-acetyl group in the mannosyl donors. The alpha-L-fucopyranosyl residue was also stereoselectively introduced by copper(II)-mediated activation of methyl 2,3,4-tri-O-benzyl-1-thio-beta-L-fucopyranoside.  相似文献   

13.
The title trisaccharide was synthesized from methyl 2,3,4-tri-O-benzyl-L-glycero-alpha-D-manno-heptopyranoside by acetolysis, followed by conversion into ethyl thioglycosides and also glycosyl bromides, which were both used in glycosylation reactions. In glycosylations using thioglycosides as glycosyl donors, N-iodosuccinimide-silver triflate and dimethyl(methylthio)sulfonium triflate were used as promoters, and in glycosylations with glycosyl bromides silver triflate was used. The protecting groups introduced into intermediates during the synthesis of the title trisaccharide were designed to allow later glycosylation at O-3' to give larger oligosaccharide fragments of the Salmonella LPS core region, and also to allow the introduction of phosphate groups at O-4 and O-4', a structural element that is suggested to be present in the Ra core.  相似文献   

14.
We have identified a mannosidase in rat liver that releases alpha 1----2, alpha 1----3 and alpha 1----6 linked manose residues from oligosaccharide substrates, MannGlcNAc where n = 4-9. The end product of the reaction is Man alpha 1----3[Man alpha 1----6]Man beta 1----4GlcNAc. The mannosidase has been purified to homogeneity from a rat liver microsomal fraction, after solubilization into the aqueous phase of Triton X-114, by anion-exchange, hydrophobic and hydroxyapatite chromatography followed by chromatofocusing. The purified enzyme is a dimer of a 110-kDa subunit, has a pH optimum between 6.1 and 6.5 and a Km of 65 microM and 110 microM for the Man5GlcNAc-oligosaccharide or Man9GlcNAc-oligosaccharide substrates, respectively. Enzyme activity is inhibited by EDTA, by Zn2+ and Cu2+, and to lesser extent by Fe2+ and is stabilized by Co2+. The pattern of release of mannose residues from a Man6GlcNAc substrate shows an ordered hydrolysis of the alpha 1----2 linked residue followed by hydrolysis of alpha 1----3 and alpha 1----6 linked residues. The purified enzyme shows no activity against p-nitrophenyl-alpha-mannoside nor the hybrid GlcNAc Man5GlcNAc oligosaccharide. The enzyme activity is inhibited by swainsonine and 1-deoxymannojirimycin at concentrations 50-500-fold higher than required for complete inhibition of Golgi-mannosidase II and mannosidase I, respectively. The data indicate strongly that the enzyme has novel activity and is distinct from previously described mannosidases.  相似文献   

15.
A crystal and molecular structure for GTA I, the low temperature polymorph of (1----3)-alpha-D-glucan triacetate, is proposed on the basis of X-ray diffraction analysis of well-oriented films, combined with stereochemical model refinement. The unit cell is monoclinic with parameters a = 30.17 A, b = 17.42 A, c (fibre axis) = 12.11 A, and beta = 90 degrees C. The probable space group is P2(1) with b axis unique. Six molecular chains pass through the unit cell with alternating polarity and with three independent chains comprising the asymmetric unit. The chain axes are located in a hexagonal packing arrangement. The chain backbone conformation is a left-handed, three-fold helix, but all nine O(6) acetyl groups of the asymmetric unit are in non-equivalent rotational positions. The most probable structure is indicated by X-ray residuals R = 0.261 and R" = 0.283, based on 62 reflection intensities (41 observed and 21 unobserved).  相似文献   

16.
17.
A Thall  U Galili 《Biochemistry》1990,29(16):3959-3965
The study of the expression of Gal alpha 1----3Gal beta 1----4GlcNAc residues on mammalian glycoconjugates is of particular interest since as many as 1% of circulating IgG antibodies in man (the natural anti-Gal antibody) interact specifically with this carbohydrate residue. In recent studies, we have found that Gal alpha 1----3Gal beta 1----4GlcNAc residues are abundant on red cells and nucleated cells of nonprimate mammals, prosimians, and New World monkeys, but their expression is diminished in Old World monkeys, apes, and humans. In the present work, we have analyzed the expression of these residues on secreted mammalian glycoproteins. For this purpose, we have developed a radioimmunoassay (RIA) which enables the quantification of Gal alpha 1----3Gal beta 1----4GlcNAc residues on the secreted glycoproteins. Purified biotinylated anti-Gal was used as the antibody in the RIA, and bovine thyroglobulin enriched for Gal alpha 1----3Gal beta 1----4GlcNAc residues served as a solid-phase antigen. In this study, it is reported for the first time that the evolutionary pattern of Gal alpha 1----3Gal beta 1----4GlcNAc residue distribution in in vivo secreted glycoproteins is similar to that observed in membranes of cell lines and of red cells. Thyroglobulin, fibrinogen, or IgG molecules from nonprimate mammals and from New World monkeys express varying amounts of Gal alpha 1----3Gal beta 1----4GlcNAc residues ranging between 0.01 and 11 residues per molecule, whereas no such residues are present on any of these glycoproteins of human or Old World monkey origin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
O-linked sugar chains with xylose as a reducing end linked to human urinary soluble thrombomodulin were studied. Sugar chains were liberated by hydrazinolysis followed by N-acetylation and tagged with 2-aminopyridine. Two fractions containing pyridylaminated Xyl as a reducing end were collected. Their structures were determined by partial acid hydrolysis, two-dimensional sugar mapping combined with exoglycosidase digestions, methylation analysis, mass spectrometry, and NMR as SO4-3GlcAbeta1-3Galbeta1-3(+/-Siaalpha2-6)Galbeta1+ ++-4Xyl. These sugar chains could bind to an HNK-1 monoclonal antibody. This is believed to be the first example of a proteoglycan linkage tetrasaccharide with glucuronic acid 3-sulfate and sialic acid.  相似文献   

19.
Benzylation of methyl 3-O-(2-acetamido-4,6-O-benzylidene-2-deoxy-beta-D- glucopyranosyl)-2,4,6-tri-O-benzyl-beta-D-galactopyranoside with benzyl bromide in N,N-dimethylformamide in the presence of sodium hydride afforded methyl 3-O- (2-acetamido-3-O-benzyl-4,6-O-benzylidene-2-deoxy-beta-D-glucopyranosyl) -2,4,6- tri-O-benzyl-beta-D-galactopyranoside (3). Reductive ring-opening of the benzylidene group of 3 gave methyl 3-O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D- glucopyranosyl)- 2,4,6-tri-O-benzyl-beta-D-galactopyranoside (4). Cleavage of the 4,6-acetal group of 3 with hot, 80% aqueous acetic acid afforded the diol (5). Compounds 3, 4, and 5 were each subjected to halide ion-catalyzed glycosylation with 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl bromide to produce the corresponding trisaccharide derivatives, which, on catalytic hydrogenation, furnished the title trisaccharides, respectively.  相似文献   

20.
Based on sequence homology with the previously cloned human cerebroside sulfotransferase (CST) cDNA, a novel sulfotransferase was cloned by screening a human fetal brain cDNA library. The novel sulfotransferase gene was present on human chromosome 11q13; the location was different from human CST and from that of the recently cloned human beta-Gal 3'-sulfotransferase (GP3ST). The isolated cDNA contained an open reading frame that encoded a predicted protein of 431 amino acid residues with type II transmembrane topology. The amino acid sequence showed 33% identity with that of human CST and 38% with that of human GP3ST. The recombinant enzyme expressed in Chinese hamster ovary cells catalyzed transfer of sulfate to position 3 of non-reducing beta-galactosyl residues in Galbeta1-4GlcNAc. Type 2 chains served as good acceptors, whereas type 1 chains served as poor acceptors, and intermediate activity was found toward Galbeta1-3GalNAc. Therefore, the substrate specificity was different from that of GP3ST. CST activity was not detected in the newly cloned enzyme. Northern blotting analysis showed that the sulfotransferase mRNA was strongly expressed in the thyroid and moderately expressed in the brain, heart, kidney, and spinal cord. Co-transfection of the enzyme cDNA and fucosyltransferase III into COS-7 cells resulted in expression of (SO(4)-3)Galbeta1-4(Fucalpha1-3)GlcNAc and a small amount of (SO(4)-3)Galbeta1-3(Fucalpha1-4)GlcNAc. These results indicated that the newly cloned enzyme is a novel Gal-3-O-sulfotransferase and is involved in biosynthesis of the (SO(4)-3)Galbeta1-4(Fucalpha1-3)GlcNAc structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号