首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main objective of this study was to evaluate some probiotic characteristics of Lactobacillus spp. isolated from traditional sheep cheese, and to investigate the fermentative ability and viability in sheep and cow milks of a selected potential probiotic Lactobacillus (L.) strain, i.e., L. paracasei FS103. A total of 54 autochthonous Lactobacillus isolates were characterized for (i) acidity and bile salt resistance, (ii) tolerance to gastric and intestinal juice models, and (iii) antagonistic activity against pathogens and antibiotic resistance. Potential probiotic Lactobacillus has been used in sheep and cow milks for the manufacturing of experimental fermented milks. In these latter, pH value, microbial count, and sensory analysis were carried out. Lactobacillus FS103 classified as L. paracasei subsp. paracasei had a good survival in gastric and intestinal juice models, inhibited the growth of undesirable bacteria, and was susceptible to chloramphenicol, clindamycin, penicillin, amoxicillin, erythromycin, tetracycline, and ampicillin. Moreover, when used to produce experimental sheep and cow fermented milks, L. paracasei FS103 was able to acidify both milk types leading to a continuous pH decrease during all fermentation time (24 h). FS103 population remains viable at a level > 108 CFU mL−1 after 21 days of cold (4 °C) storage. The results of sensory analysis showed that scores related to consistency, taste, and astringent were significantly higher in sheep fermented milk while animal-like was less acceptable compared to cow fermented milk. Lactobacillus paracasei FS103 isolated from sheep cheese exhibited potential probiotic properties and suitable features for sheep and cow fermented milks maintaining high vitality during cold storage.  相似文献   

2.
Wang CY  Lin PR  Ng CC  Shyu YT 《Anaerobe》2010,16(6):578-585
This study assessed potential probiotic Lactobacillus strains isolated from the feces of breast-fed infants and from Taiwanese pickled cabbage for their possible use in probiotic fermented foods by evaluating their (i) in vitro adhesive ability, resistance to biotic stress, resistance to pathogenic bacteria, and production of β-galactosidase; (ii) milk technological properties; and (iii) in vivo adhesive ability, intestinal survival and microbial changes during and after treatment. Five Lactobacillus isolates identified as Lactobacillus reuteri F03, Lactobacillus paracasei F08, Lactobacillus rhamnosus F14, Lactobacillus plantarum C06, and Lactobacillus acidophilus C11 that showed resistance to gastric juice and bile salts were selected for further evaluation of their probiotic properties. All the strains demonstrated the ability to adhere to Caco-2 cells, particularly, strain L. plantarum C06 and L. reuteri F03 showed satisfactory abilities, which were similar to that of the reference strain L. rhamnosus GG. The strains L. paracasei F08 and L. acidophilus C11 had the highest β-galactosidase activity. Most of the strains were resistant to aminoglycosides and vancomycin but sensitive to ampicillin, erythromycin, and penicillin. All the 5 strains elicited antibacterial activity against both Gram-positive (Bacillus cereus, Listeria monocytogenes and Staphylococcus aureus) and -negative (Escherichia coli and Salmonella enterica) pathogens. Moreover, the strains L. reuteri F03, L. paracasei F08, and L. plantarum C06 could grow rapidly in milk without nutrient supplementation and reached 10? cfu/mL after 24 h of fermentation at 37 °C. The viable cell counts of the 3 strains remained above 10? cfu/mL after 21 d of storage at 4 °C. In the animal feeding trial, the number of intestinal lactobacilli increased significantly after administration of milk fermented with the 3 strains, and the counts of fecal coliforms and Clostridium perfringens were markedly reduced. Lactobacillus strains could also survive in the ileal intestinal tissue of the treated rats. Technologically interesting Lactobacillus isolates may be used in the future as probiotic starter cultures for manufacturing novel fermented foods.  相似文献   

3.
The aim of this study was to screen potential probiotic lactic acid bacteria from Chinese spontaneously fermented non-dairy foods by evaluating their probiotic and safety properties. All lactic acid bacteria (LAB) strains were identified by 16S rRNA gene sequencing. The in vitro probiotic tests included survival under low pH and bile salts, cell surface hydrophobicity, auto-aggregation, co-aggregation, antibacterial activity, and adherence ability to cells. The safety properties were evaluated based on hemolytic activity and antibiotic resistance profile. The salt tolerance, growth in litmus milk, and acidification ability were examined on selected potential probiotic LAB strains to investigate their potential use in food fermentation. A total of 122 strains were isolated and identified at the species level by 16S rRNA gene sequencing and included 62 Lactobacillus plantarum, 40 Weissella cibaria, 12 Lactobacillus brevis, 6 Weissella confusa, and 2 Lactobacillus sakei strains. One W. cibaria and nine L. plantarum isolates were selected based on their tolerance to low pH and bile salts. The hydrophobicity, auto-aggregation, co-aggregation, and antagonistic activities of these isolates varied greatly. All of the 10 selected strains showed multiple antibiotic resistance phenotypes and no hemolytic activity. The highest adhesion capacity to SW480 cells was observed with L. plantarum SK1. The isolates L. plantarum SK1, CB9, and CB10 were the most similar strains to Lactobacillus rhamnosus GG and selected for their high salt tolerance and acidifying activity. The results revealed strain-specific probiotic properties were and potential probiotics that can be used in the food industry.  相似文献   

4.
The present paper provides an overview on the use of probiotic organisms as live supplements, with particular emphasis on Lactobacillus acidophilus and Bifidobacterium spp. The therapeutic potential of these bacteria in fermented dairy products is dependent on their survival during manufacture and storage. Probiotic bacteria are increasingly used in food and pharmaceutical applications to balance disturbed intestinal microflora and related dysfunction of the human gastrointestinal tract. Lactobacillus acidophilus and Bifidobacterium spp. have been reported to be beneficial probiotic organisms that provide excellent therapeutic benefits. The biological activity of probiotic bacteria is due in part to their ability to attach to enterocytes. This inhibits the binding of enteric pathogens by a process of competitive exclusion. Attachment of probiotic bacteria to cell surface receptors of enterocytes also initiates signalling events that result in the synthesis of cytokines. Probiotic bacteria also exert an influence on commensal micro-organisms by the production of lactic acid and bacteriocins. These substances inhibit growth of pathogens and also alter the ecological balance of enteric commensals. Production of butyric acid by some probiotic bacteria affects the turnover of enterocytes and neutralizes the activity of dietary carcinogens, such as nitrosamines, that are generated by the metabolic activity of commensal bacteria in subjects consuming a high-protein diet. Therefore, inclusion of probiotic bacteria in fermented dairy products enhances their value as better therapeutic functional foods. However, insufficient viability and survival of these bacteria remain a problem in commercial food products. By selecting better functional probiotic strains and adopting improved methods to enhance survival, including the use of appropriate prebiotics and the optimal combination of probiotics and prebiotics (synbiotics), an increased delivery of viable bacteria in fermented products to the consumers can be achieved.  相似文献   

5.
Nawaz M  Wang J  Zhou A  Ma C  Wu X  Moore JE  Millar BC  Xu J 《Current microbiology》2011,62(3):1081-1089
The study provides phenotypic and molecular analyses of the antibiotic resistance in lactic acid bacteria (LAB) from fermented foods in Xi'an, China. LAB strains (n = 84) belonging to 16 species of Lactobacillus (n = 73), and Streptococcus thermophilus (n = 11) were isolated and identified by sequencing their 16S rRNA gene. All strains were susceptible to ampicillin, bacitracin, and cefsulodin, and intrinsically resistant to nalidixic acid, kanamycin, and vancomycin (except L. bulgaricus, L. acidophilus, and S. thermophilus, which were susceptible to vancomycin). Some strains had acquired resistance for penicillin (n = 2), erythromycin (n = 9), clindamycin (n = 5), and tetracycline (n = 14), while resistance to gentamycin, ciprofloxacin, streptomycin, and chloramphenicol was species dependent. Minimum inhibitory concentrations presented in this study will help to review microbiological breakpoints for some of the species of Lactobacillus. The erm(B) gene was detected from two strains of each of L. fermentum and L. vaginalis, and one strain of each of L. plantarum, L. salivarius, L. acidophilus, L. animalis, and S. thermophilus. The tet genes were identified from 12 strains of lactobacilli from traditional foods. This is the first time, the authors identified tet(S) gene from L. brevis and L. kefiri. The erm(B) gene from L. fermentum NWL24 and L. salivarius NWL33, and tet(M) gene from L. plantarum NWL22 and L. brevis NWL59 were successfully transferred to Enterococcus faecalis 181 by filter mating. It was concluded that acquired antibiotic resistance is well dispersed in fermented food products in Xi'an, China and its transferability to other genera should be monitored closely.  相似文献   

6.
AIM: To evaluate the biodiversity of lactobacilli from slightly fermented sausages (chorizo, fuet and salchichon) by molecular typing, while considering their safety aspects. METHODS AND RESULTS: Species-specific PCR, plasmid profiling and randomly amplified polymorphic DNA (RAPD)-PCR were used to characterize 250 lactic acid bacteria (LAB) isolated from 21 low acid Spanish fermented sausages. Lactobacillus sakei was the predominant species (74%) followed by Lactobacillus curvatus (21.2%) and Leuconostoc mesenteroides (4.8%). By plasmid profiling and RAPD-PCR 144 different strains could be differentiated, 112 belonging to Lact. sakei, 23 to Lact. curvatus and 9 to Leuc. mesenteroides. Ion-pair high performance liquid chromatography was used to detect biogenic amine production. Tyramine and phenylethylamine were produced by 14.4 and 12.4% of the isolates, respectively, all belonging to the species Lact. curvatus. The production of tyramine was stronger than that of phenylethylamine. Partial sequencing of the tyrosine decarboxylase gene from Lact. curvatus was achieved. A specific PCR assay to detect the Lact. curvatus tyramine-producers was designed. The disc diffusion test was used to detect antibiotic resistance among the isolates. Most isolates displayed resistance to vancomycin and gentamicin. Only four strains were resistant to most of the antibiotics tested. None of the isolates were resistant to erythromycin. CONCLUSIONS: Lactobacillus sakei would be the species of choice for further use as starter culture in fermented sausage production. Strain typing and characterization of biogenic amine production together with antibiotic susceptibility testing for the selection of starter cultures could help to increase the quality and safety of the products. SIGNIFICANCE AND IMPACT OF THE STUDY: Species-specific PCR, RAPD and plasmid profiling proved to be efficient at typing LAB at species and strain level. Information on biogenic amine production and transferable antibiotic resistance is important in order to avoid selection of strains with undesirable properties as starter cultures.  相似文献   

7.
A complex and heterogeneous microflora performs sugar and lactic acid fermentations in food products. Depending on the fermentable food matrix (dairy, meat, vegetable etc.) as well as on the species composition of the microbiota, specific combinations of molecules are produced that confer unique flavor, texture, and taste to each product. Bacterial populations within such "fermented food microbiota" are often of environmental origin, they persist alive in foods ready for consumption, eventually reaching the gastro-intestinal tract where they can interact with the resident gut microbiota of the host. Although this interaction is mostly of transient nature, it can greatly contribute to human health, as several species within the food microbiota also display probiotic properties. Such an interplay between food and gut microbiota underlines the importance of the microbiological quality of fermented foods, as the crowded environment of the gut is also an ideal site for genetic exchanges among bacteria. Selection and spreading of antibiotic resistance genes in foodborne bacteria has gained increasing interest in the past decade, especially in light of the potential transferability of antibiotic resistance determinants to opportunistic pathogens, natural inhabitants of the human gut but capable of acquiring virulence in immunocompromised individuals. This review aims at describing major findings and future prospects in the field, especially after the use of antibiotics as growth promoters was totally banned in Europe, with special emphasis on the application of genomic technologies to improve quality and safety of fermented foods.  相似文献   

8.
A method for isolating potential probiotic lactobacilli directly from traditional milk-based foods was developed. The novel digestion/enrichment protocol was set up taking care to minimize the protective effect of milk proteins and fats and was validated testing three commercial fermented milks containing well-known probiotic Lactobacillus strains. Only probiotic bacteria claimed in the label were isolated from two out of three commercial fermented milks. The application of the new protocol to 15 raw milk samples and 6 traditional fermented milk samples made it feasible to isolate 11 potential probiotic Lactobacillus strains belonging to Lactobacillus brevis, Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus johnsonii, Lactobacillus plantarum, Lactobacillus reuteri, and Lactobacillus vaginalis species. Even though further analyses need to ascertain functional properties of these lactobacilli, the novel protocol set-up makes it feasible to isolate quickly potential probiotic strains from traditional milk-based foods reducing the amount of time required by traditional procedures that, in addition, do not allow to isolate microorganisms occurring as sub-dominant populations.  相似文献   

9.
VANCOMYCIN SUSCEPTIBILITY AS AN AID TO THE IDENTIFICATION OF LACTOBACILLI   总被引:1,自引:0,他引:1  
Forty strains of lactobacilli isolated from probiotic supplements or functional foods, and two clinical isolates, have been identified by API 50 CHL and tested for susceptibility to vancomycin. All the Lactobacillus acidophilus (16) and Lact. delbreuckii (two) strains were sensitive to vancomycin, while all the other strains (mainly Lact. rhamnosus, 15) were resistant. Susceptibility to other antibiotics was not species-specific. Differential susceptibility to vancomycin may be helpful in speciation of lactobacilli.  相似文献   

10.
AIMS: The purpose of this study was to investigate the staphylococcal flora associated with wild turkey populations. METHODS AND RESULTS: Faecal samples obtained from 26 wild turkeys over a 16-month period were inoculated onto mannitol salt agar plates to select for staphylococci. Fifty-seven randomly chosen isolates were identified as Staphylococcus lentus and their susceptibility determined against clindamycin, chloramphenicol, ciprofloxacin, erythromycin, oxacillin, penicillin G, rifampin, tetracycline, trimethoprim-sulfamethoxazole, and vancomycin. Resistance was minimal as only 3 isolates showed resistance to clindamycin, 3 isolates were resistant to oxacillin, 3 isolates were resistant to penicillin G, and 1 isolate was resistant to erythromycin. Multiple antibiotic resistance was also minimal. CONCLUSIONS: S. lentus is the predominant staphylococcal species associated with wild turkey faeces and antibiotic resistance in these organisms is not problematic. SIGNIFICANCE AND IMPACT OF THE STUDY: S. lentus has been shown as a potential causative agent of inflammatory reactions in the respiratory tract. Due to increased numbers of wild turkeys and more frequent human exposure, surveys to monitor microbial populations are warranted.  相似文献   

11.
In this study, the probiotic potential of Lactobacillus strains isolated from traditional Kurdish cheese was investigated. The Lactobacillus strains were examined for resistance to gastric acidity and bile toxicity, antimicrobial activities, autoaggregation, coaggregation, hydrophobicity, adhesion to Caco-2 cells, and antibiotic susceptibility. The results showed that all strains tested tolerate acid gastric conditions (pH 2.0 and 3.0), and all of them were bile resistant (at 0.3 and 1 % concentration). Although no antibacterial activity was detected in vitro assay for the treated (neutralized to pH 6.5 and treated with catalase) cell-free culture supernatant (CFCS) of strains, untreated CFCS showed strong antagonistic activity against two known pathogens bacteria. All strains exhibited a strong autoaggregating phenotype and manifested a high degree of coaggregation with pathogens. On the other hand, majority of studied strains were found sensitive to different antibiotics, such as ampicillin, penicillin, ciprofloxacin, chloramphenicol, erythromycin, rifampicin, and tetracycline, and were resistant to vancomycin and streptomycin. Finally, isolated strains showed good hydrophobicity and adherence to Caco-2 cell line, so they could be exploited for food manufacture.  相似文献   

12.
Aims:  To assess the frequency of erythromycin- and tetracycline-resistant lactobacilli in Italian fermented dry sausages.
Methods and Results:  We isolated lactobacilli colonies from 20 salami from the north of Italy (Piacenza province) using selective medium supplemented with erythromycin or tetracycline; we determined the minimum inhibitory concentration and searched for selected erythromycin and tetracycline resistance genes. A total of 312 lactobacilli colonies were genetically ascribed to 60 different strains belonging to seven Lactobacillus species. Lactobacillus sakei , Lactobacillus curvatus and Lactobacillus plantarum were the most frequently found species. Thirty strains (50%) were phenotypically resistant to erythromycin, 45 (75%) to tetracycline and 27 (45%) were resistant to both. The most frequently detected resistance genes were tet (M) and erm (B).
Conclusions:  This study provides evidence of the presence of tetracycline- and, to a lesser extent, erythromycin-resistant lactobacilli in fermented dry sausages produced in northern Italy.
Significance and Impact of the Study:  Although these antibiotic-resistant lactobacilli could serve as reservoir organisms, in our study, 16 of 20 salami could be considered safe in regard to possible antibiotic resistance gene transfer to pathogens, whereas 4 of 20 could represent a borderline situation.  相似文献   

13.
Twenty-four acid- and bile-tolerant lactobacilli isolates from dairy products were identified and further in vitro characterized for the presence of functional traits potentially useful for probiotic applications, which included desirable and undesirable traits, such as biofilm formation, ability to inhibit intestinal pathogens, antibiotic susceptibility, and enzyme activity. The majority of examined strains were susceptible to certain antimicrobial agents (streptomycin, gentamicin, clindamycin, erythromycin, tetracycline, quinupristin–dalfopristin), except for three strains of Lactobacillus rhamnosus with minimal inhibitory concentration levels for streptomycin higher than the microbiological breakpoints (≥32 μg/mL), which are considered as resistant. Undesirable traits such as α-chymotrypsin or N-acetyl-β-glucosaminidase activities were not detected, but low β-glucuronidase, and moderate and high β-glucosidase activities were recorded in nine strains, which were eliminated from further examination together with three isolates showing unsuitable antibiotic resistance. Of the remaining 12 isolates, 4 (Lactobacillus fermentum 202, Lactobacillus gallinarum 7001, L. rhamnosus 183, and Lactobacillus plantarum L2-1) manifested an outstanding potential to inhibit selected intestinal pathogens in an agar spot test, including Escherichia coli and Salmonella spp., and simultaneously demonstrated strong biofilm-forming capacity. In conclusion, the results of our in vitro experiments showed that the above four strains had a potential probiotic value and met the criteria to be identified as a possible probiotic microorganism, with the necessity of verification through well-designed in vivo experimental, clinical, and technological studies before the strains can be used as probiotics or as starter probiotic cultures.  相似文献   

14.
Spreading of resistance to antibiotics is of great concern due to the increasing rate of isolation of multiresistant pathogens. Since commensal bacteria may transfer determinants of resistance to pathogens, studies on development of resistance should include also lactobacilli. Resistance to macrolides, penicillins and tetracycline was determined in 40 isolates of Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus crispatus, and Lactobacillus casei isolated from faeces of apparently healthy volunteers. Frequency of mutation and changes in susceptibility after serial exposure to these antibiotics at concentrations of 4× and 8× MIC were evaluated in susceptible isolates. Acquired resistance was defined as an increment in MIC values of at least four times in respect to the pre-selection values. Resistance to macrolides and/or tetracycline was identified in 14 and 4 isolates, respectively. ermB gene and A2058G mutation in 23S rRNA were detected in macrolide resistant isolates. Frequencies of mutation of susceptible isolates (n=26) were lower for ampicillin and erythromycin than for tetracycline. Serial exposure to antibiotics led to selection of resistant mutants. However, acquired resistance was rather unstable and was lost after subcultures in antibiotic-free medium in most mutants. Resistance to erythromycin was associated to a A2058G mutation in 23S rRNA. In conclusion, results indicate that resistance to macrolides and tetracycline is present among intestinal lactobacilli. Decrease in susceptibility following serial exposure to antibiotics might occur in lactobacilli, in a strain- and antibiotic-dependent way. Since lactobacilli are often used as probiotics, their ability to acquire resistance should be evaluated for isolates candidate to be included in probiotics based products.  相似文献   

15.
The aim of the study was to evaluate the species distribution, antimicrobial susceptibility and erythromycin-penicillin resistance mechanisms of viridans streptococci (VGS) isolates from blood cultures of adult patients with underlying diseases. Fifty VGS blood culture isolates were screened for their antibiotic susceptibilities against penicillin G, erythromycin and tetracycline by E-test. Clindamycin, cefotaxime, chloramphenicol, levofloxacin, linezolid and vancomycin susceptibility were performed by broth microdilution method. Erythromycin and penicillin resistance genotypes, ermB and mefA/E, pbp1a, pbp2b and pbp2x are amplified using PCR method. The clinical isolates included Streptococcus mitis (n. 19), S.oralis (n. 13), S.sanguinis, S.parasanguinis (n. 6, each), S.salivarius, S.vestibularis (n. 2, each), S.constellatus, S.sobrinus (n. 1, each). The percentage resistance against erythromycin and penicillin was 36% and 30%, respectively. The genotypic carriage rate of erythromycin resistance genes were: 56% ermB, 28% mefE, 8% ermB+mefE. Penicillin-resistant isolates carried pbp2b (33.3%) and pbp2x (20%) genes. Twenty-four VGS isolates were recovered from patients with cancer. S.mitis and S.oralis predominated among patients with cancer who had erythromycin and penicillin resistance isolates. The importance of classical antimicrobial agents like penicillin and erythromycin warrants the continuous surveillance of invasive VGS isolates and can guide better treatment options especially in patients with underlying diseases.  相似文献   

16.
Considerable variations among probiotics with respect to their health benefitting attributes fuel the research on bioprospecting of proficient probiotic strains from various ecological niches especially the poorly unexplored ones. In the current study, kalarei, an indigenous cheese-like fermented milk product, and other dairy-based sources like curd and raw milk were used for isolation of lactic acid bacteria (LAB). Among 34 LAB isolates, 7 that could withstand simulated gastrointestinal (GI) conditions were characterized for functional probiotic attributes, viz. adhesion ability, aggregation and coaggregation, extracellular enzyme producing capability, antibacterial activity against pathogens and antibiotic resistance. The isolate M-13 (from kalarei) which exhibited most of the desirable probiotic functional properties was identified as Lactobacillus plantarum based on 16S ribosomal DNA sequence analysis and designated as L. plantarum M-13. The sequence was submitted to GenBank (accession number KT592509). The study presents the first ever report of isolation of potential probiotic LAB, i.e. L. plantarum M-13 from indigenous food kalarei, and its application for development of potential probiotic fermented oat flour (PFOF). PFOF was analysed for parameters like viability of L. plantarum M-13, acidity and pH. Results show that PFOF serves as a good matrix for potential probiotic L. plantarum M-13 as it supported adequate growth of the organism (14.4 log cfu/ml after 72 h of fermentation). In addition, appreciable acid production by L. plantarum M-13 and consequential pH reduction indicates the vigorous and active metabolic status of the potential probiotic organism in the food matrix. Thus, study shows that fermented oat flour may possibly be developed as a potential probiotic carrier especially in view of the problems associated with dairy products as probiotic vehicles.  相似文献   

17.
Isolation of tannin-degrading lactobacilli from humans and fermented foods   总被引:1,自引:0,他引:1  
Lactobacilli with tannase activity were isolated from human feces and fermented foods. A PCR-based taxonomic assay revealed that the isolates belong to Lactobacillus plantarum, L. paraplantarum, and L. pentosus. Additional studies on a range of Lactobacillus species from established culture collections confirmed that this enzymatic activity is a phenotypic property common to these three species.  相似文献   

18.
The gut is a source of lactic acid bacteria with remarkable functional and technologies properties as well as a potential source of probiotics. In the present study, 13 strains of Lactobacillus were isolated from poultry intestine and identified according to their 16S rDNA sequences, as well as the evaluation of their probiotic potential. The probiotic properties were tested in aspects of antibiotic susceptibility, antimicrobial activity, exopolysaccharide production, lysozyme tolerance, gut condition tolerance (low pH, bile salt tolerance) and adhesion to human colorectal adenocarcinoma cell line (Caco-2). Most isolates were resistance to streptomycin (10 μg/mL), gentamicin (10 μg/mL), kanamycin (30 μg/mL), penicillin (10 μg/mL) and chloramphenicol (30 μg/mL). Isolates shows strong abilities to adhere to Caco-2 cell in the range of (76 to 85%). Isolates SHA101 to SHA113 showed high survival rate under gastrointestinal tract condition (>80%), indicating their potential in application of probiotics. The results of these tests indicate that the lactic acid bacteria isolated from poultry intestine have potential use as probiotic in various products.  相似文献   

19.
The enterococci are important nosocomial pathogens with a remarkable capacity of expressing resistance to several antimicrobial agents. Their ubiquitous nature and resistance to adverse environmental conditions take account for their ability to colonize different habitats and for their potential for easy spreading through the food chain. In the present study we evaluated the distribution of species and antimicrobial susceptibility among enterococcal isolates recovered from food obtained in retail stores in Rio de Janeiro, Brazil. The following species were identified among 167 isolates obtained from poultry meat and 127 from pasteurized milk: Enterococcus faecalis (62.6%), E. casseliflavus (17.3%), E. durans (6.5%), E. gallinarum (3.0%), E. gilvus (2.4%), E. faecium (2.0%), E. hirae (1.4%), and E. sulfureus (1.0%). The overall percentages of antimicrobial resistant isolates were: 31.2 % to tetracycline, 23.8% to erythromycin, 11.3% to streptomycin, 4.3% to chloramphenicol, 3.9% to gentamicin, 1.4% to norfloxacin, 1.1% to imipenem, 0.7% to ciprofloxacin, nitrofurantoin, and penicillin, and 0.4% to ampicillin. Intermediate resistance was detected in frequencies varying from 0.5% for linezolid to 58.2% for erythromycin. None of the isolates showed resistance to glycopeptides. High-level resistance to aminoglycosides was observed in 13.1% of the isolates. Multiresistance was observed in E. faecalis, E. casseliflavus, E. faecium, E. gallinarum, E. durans and E. gilvus.  相似文献   

20.
Lactic acid bacteria (LAB) (n = 152) in African pearl millet slurries and in the metagenomes of amylaceous fermented foods were investigated by screening 33 genes involved in probiotic and nutritional functions. All isolates belonged to six species of the genera Pediococcus and Lactobacillus, and Lactobacillus fermentum was the dominant species. We screened the isolates for the abilities to survive passage through the gastrointestinal tract and to synthesize folate and riboflavin. The isolates were also tested in vitro for their abilities to survive exposure to bile salts and to survive at pH 2. Because the ability to hydrolyze starch confers an ecological advantage on LAB that grow in starchy matrixes as well as improving the nutritional properties of the gruels, we screened for genes involved in starch metabolism. The results showed that genes with the potential ability to survive passage through the gastrointestinal tract were widely distributed among isolates and metagenomes, whereas in vitro tests showed that only a limited set of isolates, mainly those belonging to L. fermentum, could tolerate a low pH. In contrast, the wide distribution of genes associated with bile salt tolerance, in particular bsh, is consistent with the high frequency of tolerance to bile salts observed. Genetic screening revealed a potential for folate and riboflavin synthesis in both isolates and metagenomes, as well as high variability among genes related to starch metabolism. Genetic screening of isolates and metagenomes from fermented foods is thus a promising approach for assessing the functional potential of food microbiotas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号