首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The intracellular distribution and catalytic properties of CTP: ethanolaminephosphate cytidylyltransferase from endosperm of castor bean (Ricinus communis L. var. Hale) have been studied. This enzyme was confined to membranes, with about 80% of the activity occurring in mitochondria and the rest in endoplasmic reticulum (ER) following sucrose density gradient centrifugation. The mitochondrial location of this enzyme was supported by further purifying mitochondria on Percoll density gradients. The mitochondrial cytidylyltransferase was detected largely in outer membrane fractions, and lost its activity after trypsin treatment, indicating that the active sites are exposed to the cytoplasm. Both mitochondrial and ER cytidylyltransferase required cations for activity; Mg2+ was preferred over Mn2+ and Ca2+. The pH optima both were 6.5. The apparent Km values for ethanolamine phosphate were 143 and 83 microM and those for CTP were 125 and 1010 microM, respectively, for the mitochondrial and ER activities. The mitochondrial cytidylyltransferase reached a maximal velocity of 3.0 nmol/min/mg protein, whereas ER cytidylyltransferase was 0.424 nmol/min/mg protein. These findings reveal that the majority of the cytidylyltransferase activity in castor bean endosperm is not closely associated with ethanolaminephosphotransferase (predominantly in ER) which catalyzes the subsequent reaction in the synthesis of phosphatidyl-ethanolamine by a nucleotide pathway. The possible roles of these enzymes in phosphatidylethanolamine synthesis in plants are discussed.  相似文献   

2.
Sphingomyelin is synthesized in the cis Golgi   总被引:11,自引:0,他引:11  
We have employed in vitro a truncated ceramide analogue with 8 carbon atoms in the sphingosine and the fatty acyl residue, each, to investigate the activity of various membrane fractions to synthesize truncated sphingomyelin. This shortened ceramide readily diffuses through membranes and therefore can easily find access to the lumina of intact organelles. Sphingomyelin synthase activity resides in the Golgi apparatus, and after sucrose density gradient centrifugation of Golgi-enriched fractions sphingomyelin synthesis follows a cis Golgi marker enzyme.  相似文献   

3.
The hypothesis that insulin is internalized into the hepatic Golgi apparatus was tested by the diaminobenzidine-shift protocol of Courtoy et al. (1984, J. Cell Biol. 98, 870). Highly purified Golgi fractions were isolated after the coinjection of [125I]insulin and the synthetic ligand, galactose-bovine serum albumin-horseradish peroxidase. Golgi fractions were subsequently reacted in the presence or absence of diaminobenzidine, then subjected to Percoll gradient centrifugation. For incubations carried out in the absence of diaminobenzidine, [125I]insulin-containing components were found at a low density (peak density congruent to 1.042) identical to that of the Golgi marker enzyme galactosyltransferase. However after incubations carried out in the presence of diaminobenzidine, the majority of [125I]insulin-containing components was shifted to a higher density of greater than 1.06 while that of galactosyltransferase remained unchanged (peak congruent to 1.042). These observations indicate that the majority of internalized insulin is not located in galactosyltransferase-containing Golgi components.  相似文献   

4.
Separation of granule subpopulations in human polymorphonuclear leukocytes   总被引:1,自引:0,他引:1  
Human polymorphonuclear leukocytes were isolated, disrupted by sonification and the nuclei and unbroken cells removed by centrifugation. The supernatant was applied on top of an optimised discontinuous Percoll gradient. After centrifugation we found nine gradient bands of distinct density. Both the nine bands and the whole fractionated gradient material were assayed for granule marker enzymes. Granule fractions of distinct density, enclosing different enzyme concentrations demonstrated the existence of granule subpopulations. There were three subpopulations of azurophil granules, about four subpopulations of specific granules, one granule fraction perhaps representing the C-particles, and a fraction of plasma membrane vesicles.  相似文献   

5.
NAD kinase activity from dark grown corn coleoptiles is shown to be almost totally dependent on Ca2+ and calmodulin. Nearly all of the enzyme activity is found in a particulate fraction. Upon differential and density gradient centrifugation the NAD kinase activity co-migrates with the mitochondrial cytochrome c oxidase whereas marker activities for nuclei, etioplasts, endoplasmic reticulum, and microbodies could well be separated, indicating that the NAD kinase is associated with mitochondria. This NAD kinase, associated with intact mitochondria, can be activated by exogenously added Ca2+ and calmodulin. In order to investigate the submitochondrial localization of the NAD kinase, the organelles were ruptured by osmotic treatment and sonication and the submitochondrial fractions were separated by density gradient centrifugation. The NAD kinase activity exhibits the same density pattern as the antimycin A-insensitive NADH-dependent cytochrome c reductase, a marker enzyme of the outer mitochondrial membrane. Marker enzymes for the mitochondrial matrix and the inner mitochondrial membrane reveal different density profiles. These results indicate that the Ca2+, calmodulin-dependent NAD kinase from coleoptiles of dark grown corn seedlings is located at the outer mitochondrial membrane. The physiological relevance of the location and the Ca2+, calmodulin-dependence of the NAD kinase will be discussed.  相似文献   

6.
Intracellular localization of heat shock proteins in maize   总被引:14,自引:6,他引:8       下载免费PDF全文
Cooper P  Ho TH 《Plant physiology》1987,84(4):1197-1203
The intracellular distribution of the maize root heat shock proteins (hsp) was studied as a step toward understanding their physiological function. Linear sucrose density centrifugation was employed to separate organelles so the relative quantities of hsp in different subcellular compartments could be analyzed in a single preparation. Gradient fractions were assayed for the presence of hsp by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and for marker enzyme activities. Analyses of 15 to 60% gradients showed five hsp to be organelle associated. Hsp 25 and 72 were in fractions containing closely equilibrating Golgi and endoplasmic reticulum marker activities, while hsp 18, 29, and 72 were in fractions containing overlapping plasma membrane, mitochondria, and glyoxysomal marker activities. Hsp larger than 72 kilodaltons were not present in gradient fractions. A second fractionation scheme achieved better separation of the two sets of closely equilibrating organelles. When a 13,000g centrifugation step to remove mitochondria was employed prior to gradient centrifugation, hsp 29 was absent from the gradient fractions. If the buoyant density of the endoplasmic reticulum was shifted by either maintaining the ribosomes on the membrane or removing them, a corresponding shift in the equilibrium positions of hsp 25 and 72 occurred. Hsp 18 and 70 remained in plasma membrane-containing fractions irrespective of these treatments.  相似文献   

7.
Detailed investigations by quantitative centrifugal fractionation were conducted to determine the subcellular distribution of protein-bound sialic acid in rat liver. Homogenates obtained from perfused livers were fractionated by differential centrifugation into nuclear fraction, large granules, microsomes, and final supernate fraction, or were used to isolate membrane preparations enriched in either plasma membranes or Golgi complex elements. Large granule fractions, microsome fractions, and plasma membrane preparations were subfractionated by density equilibration in linear gradients of sucrose. In some experiments, microsomes or plasma membrane preparations were treated with digitonin before isopycnic centrifugation to better distinguish subcellular elements related to the plasma membrane or the Golgi complex from the other cell components; in other experiments, large granule fractions were obtained from Triton WR-1339-loaded livers, which effectively resolve lysosomes from mitochondria and peroxisomes in density gradient analysis. Protein-bound sialic acid and marker enzymes were assayed in the various subcellular fractions. The distributions obtained show that sialoglycoprotein is restricted to some particular domains of the cell, which include the plasma membrane, phagolysosomes, and possibly the Golgi complex. Although sialoglycoprotein is largely recovered in the microsome fraction, it has not been detected in the endoplasmic reticulum-derived elements of this subcellular fraction. In addition, it has not been detected either in mitochondria or in peroxisomes. Because the sialyltransferase activities are associated with the Golgi complex, the cytoplasm appears compartmentalized into components which biogenetically involve the Golgi apparatus and components which do not.  相似文献   

8.
Chicken liver plasma membranes, minimally contaminated with Golgi apparatus-derived vesicles, were prepared from a low-speed (400 g) pellet by means of flotation in isotonic Percoll solution, followed by a hypotonic wash and flotation in a discontinuous sucrose gradient. Based on the analysis of suitable marker enzymes, alkaline phosphatase and alkaline phosphodiesterase, two plasma membrane fractions were isolated with enrichments, depending on the equilibrium density and marker of 28-97 and with a total yield of 4-5%. Golgi apparatus fractions were prepared by flotation of microsomes, obtained from the same homogenate as the low-speed pellet, in a discontinuous sucrose gradient. The trans-Golgi marker galactosyltransferase was 27-fold enriched in a fraction of intermediate density (d=1.077-1.116 g/ml). Approximately 12% of galactosyltransferase was recovered in the membranes equilibrating d=1.031-1.148 g/ml. Contamination with plasma membrane fragments was low in the light (d=1.031-1.077 g/ml) and intermediate density Golgi vesicles. The isolation of purified plasma membranes and Golgi vesicles from one liver homogenate will enable future studies on receptor cycling between these cell organelles.  相似文献   

9.
Normal rat liver lysosomal membranes in the form of membrane vesicles have been purified using Percoll density gradient centrifugation. Lysosomes (density = 1.111) were purified approximately 63 +/- 12-fold (mean +/- standard deviation, n = 5) using a gradient of Percoll made isotonic with sucrose and buffered to pH 7.0. These lysosomes were then exposed to 10 mM methionine methyl ester, pH 7.0, the uptake of which resulted in swelling and breakage of the lysosomes with subsequent vesicle formation. These vesicles (density = 1.056) were further separated from residual mitochondrial and plasma membrane enzyme activities using a second Percoll density gradient. Marker enzyme analysis and electron microscopy indicated that the lysosomal membranes were essentially free of both beta-hexosaminidase, a soluble lysosomal enzyme, and contaminating organelles. The specific activity of lysosomal ATPase in the lysosomal membranes was fourfold greater than in the intact lysosomes.  相似文献   

10.
A protocol employing discontinuous sucrose gradient centrifugation was developed to prepare light mitochondrial (L) and Golgi fraction endosomes from simultaneously prepared parent L and microsomal fractions. As judged by the concentration of labeled hormone postinjection, L intermediate and heavy endosome subfractions were 40- to 175-fold purified and Golgi intermediate and heavy endosome subfractions were 30- to 45-fold purified. On electron microscopy, L endosomal fractions contained a predominance of lipoprotein-filled vesicles and were less heterogeneous than corresponding Golgi endosomal fractions. All endosomal fractions were enriched in receptors for insulin and prolactin but binding sites for the former were more broadly distributed in other subfractions than those for the latter. On Percoll gradient centrifugation, L endosomal fractions yielded one peak (rho 1.057) corresponding to the heavier of two peaks seen in Golgi endosomal fractions. The protein composition of high density L and Golgi endosomes, as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was similar. The bulk of marker enzymes assayed did not migrate with the endosomal components. Combined acid phosphatase cytochemistry and electron microscope radioautography established that about 80% of the L endosomes contained no acid phosphatase. By affinity labeling and immunological titration with insulin receptor antibody, insulin receptors were identical in L and Golgi endosomes. Insulin-stimulable receptor kinase was demonstrable in both L and Golgi endosome fractions. Following in vivo insulin administration, the insulin receptor kinase in both L and Golgi endosomes was significantly activated. This activated state was not inhibited by a large excess of antiserum to insulin and thus not due to insulin contaminating the partially purified receptor preparation. These observations are compatible with the maintenance and/or initiation of hormone-dependent phosphorylations intracellularly.  相似文献   

11.
After a 3-h incubation of Krebs II ascitic cells in the presence of phospholipase C from Clostridium welchii under nonlytic conditions, the incorporation of [3H] choline into phosphatidylcholine was increased 1.7-fold as compared to untreated cells. The total amounts of phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin were unchanged up to 3 h of incubation. The limiting step in phosphatidylcholine biosynthesis was the formation of CDP-choline catalyzed by CTP:choline-phosphate cytidylyltransferase (EC 2.7.7.15) as monitored by the decrease in phosphocholine labeling following phospholipase C treatment of cells prelabeled with [3H]choline. The specific activity of homogenate cytidylyltransferase was increased about 1.6-fold in phospholipase C-treated cells. Specific activity of the membrane fraction was increased 2-fold, whereas cytosolic specific activity decreased in phospholipase C-treated cells. The activation of cytidylyltransferase was concomitant with translocation of the enzyme from the cytosol to the membrane fraction. The latter was further fractionated using a Percoll gradient that allowed an efficient separation between endoplasmic reticulum and other subcellular membranes. In control cells, particulate cytidylyltransferase activity co-migrated with the endoplasmic reticulum and ribosome markers and not with the plasma membrane. Also, in treated cells, the stimulation of cytidylyltransferase activity occurred at the endoplasmic reticulum level and did not involve either the external cell membrane or other cellular organelles including the Golgi apparatus, lysosomes, or mitochondria. Thus, our results demonstrate that a stimulus acting on the plasma membrane promotes the translocation of the soluble form of cytidylyltransferase specifically to the endoplasmic reticulum.  相似文献   

12.
The subcellular localization of beta2-microglobulin (beta 2m) in human neutrophils was determined by an enzyme-linked immunosorbent assay on subcellular fractions obtained by Percoll density gradient centrifugation of neutrophils disrupted by nitrogen cavitation. The neutrophils were found to contain 160 ng beta 2m/mg protein. Approximately two-thirds co-located with the markers for specific granules and was released from intact cells during degranulation, whereas one-third of the beta 2m was located together with markers of the plasma membrane. This fraction was not further enriched during degranulation. These results indicate that beta 2m cannot be universally used as a plasma membrane marker as hitherto assumed, but beta 2m may serve as an indicator of neutrophil degranulation.  相似文献   

13.
Plasma membranes were isolated from lactating bovine mammary gland. Two crude membrane fractions; medium/d 1.033 (light membrane) and 1.033/1.053 interfaces (heavy membrane), were obtained by Ficoll density gradient centrifugation of osmotically washed microsomal fraction. Two crude membranes were further purified separately by sucrose density gradient centrifugation. Both light and heavy membranes banded at a sucrose density of 1.14. The purified membranes appeared as heterogeneous smooth membrane vesicles on electron microscopy. The contaminating suborganelles were not detected. The yield of the purified membranes relative to the homogenate was 1.2%. The degree of purity of the membranes was shown by a great increase in the specific activity of 5′-nucleotidase over the homogenate of 20-fold for light membrane and of 16-fold for heavy membrane. The relative activities of Mg2+-ATPase, (Na+ + K+)-ATPase, γ-glutamyl transpeptidase, phosphodiesterase I, akaline phosphatase and xanthine oxidase were also high (12–18-times) and nearly 20% of these enzymes was recovered. The activity of marker enzyme for mitochondria, endoplasmic reticulum and Golgi apparatus was very low, while that of acid phosphatase for lysosome was relatively high (5-times). DNA and RNA contents were very low. The major polypeptides rich in other suborganelles were not detected profoundly in the membrane fraction and the polypeptide compositions in both light and heavy membranes were similar upon SDS-polyacrylamide gel electrophoresis.  相似文献   

14.
Z Jia  I Nemere 《Steroids》1999,64(8):541-550
Chick kidney and brain were analyzed for the subcellular distribution (if any) of a putative plasma membrane receptor for 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. Fractionation protocols were found to be based not only on differential centrifugation conditions, but also gentleness of resuspension procedures, and sufficiently dense Percoll gradients. The postnuclear pellets were resolved on 21.85% Percoll gradients overlayed on 2.4 M sucrose cushions. For both kidney and brain, fraction 1 (bottom of tube) was found to be enriched over whole homogenate 5.4- and 1.6-fold, respectively, in acid phosphatase activity, fractions 2 through 5 were enriched four- and eightfold, respectively, in succinate dehydrogenase activity, fraction 8 contained Golgi, as judged by a small peak of alpha-mannosidase activity, and fraction 9 was enriched sevenfold (for each tissue) in Na+,K+-ATPase activity. Western analyses, using a characterized antibody to the putative chick intestinal plasma membrane vitamin D receptor, revealed the highest levels of antigenicity in both chick kidney and brain in plasma membrane and Golgi fractions, followed by unidentified membranes in fractions 6 and 7 of Percoll gradients. Distribution of specific binding of [3H]1,25(OH)2D3 in Percoll gradient fractions paralleled that of antigenicity. Qualitatively, kidney plasma membrane contained more antigen than brain plasma membrane after Western blot analyses; these results were mirrored by differences in specific binding of the tritiated secosteroid (65 +/- 14.5 and 34 +/- 11.9 fmol/mg of protein, respectively).  相似文献   

15.
The preparative isolation of mitochondria from Chinese hamster ovary cells   总被引:1,自引:0,他引:1  
A "hybrid" discontinuous gradient consisting of 6% Percoll overlaid on metrizamide separated mitochondria from other organelles in a Chinese hamster ovary cell postnuclear supernatant in a single 15-min centrifugation. The mitochondrial preparation contained about 25% of the mitochondrial marker, cytochrome-c oxidase, in a form that was about 90% latent. Based on the postnuclear supernatant, cytochrome-c oxidase activity was enriched approximately 45-fold. Trace amounts of lysosomal, rough endoplasmic reticular, Golgi, peroxisomal, plasma membrane, and cytosolic markers were found in the preparation. Electron microscopy revealed that the preparation consisted almost exclusively of mitochondria with only minor amounts of contaminating organelles. Analysis of the mitochondrial preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that the mitochondrial preparation had a unique protein profile compared to the postnuclear supernatant and other gradient interfaces. Separation of the mitochondria into membrane and lumenal (matrix) fractions by treatment with 100 mM Na2CO3, pH 11.5, also indicated that the mitochondria were intact; they were rich in lumenal proteins. The data indicate that the mitochondria represent maximally about 2.2% of Chinese hamster ovary cell postnuclear supernatant protein. These isolated mitochondria should prove useful for problems in molecular cell biology.  相似文献   

16.
The endoplasmic reticulum from Neurospora crassa was identified by monitoring the activity of the putative enzyme marker phosphatidylcholine glyceride transferase. After differential centrifugation of a cell homogenate, phosphatidylcholine glyceride transferase activity initially copurified with plasma membrane H+-ATPase. However, isopycnic centrifugation of the whole-cell homogenate on a linear sucrose gradient separated the two enzyme activities into different fractions. The lighter membrane fraction exhibited characteristics that have been associated with the endoplasmic reticulum in other organisms: (i) the inclusion of magnesium caused this light membrane fraction to shift to a higher density on the gradient; (ii) it was highly enriched in cytochrome c reductase, an endoplasmic reticulum marker in other systems; and (iii) the morphology of the light fraction with and without added magnesium was clearly distinguishable from that of the plasma membrane fraction by electron microscopy. A reinvestigation of the location of chitin synthetase confirmed its association with the plasma membrane fraction even after separation of the lighter fractions.  相似文献   

17.
The subcellular distribution in rat liver of non-latent and latent NADH pyrophosphatase was determined by analytical sucrose density gradient centrifugation. Non-latent NADH pyrophosphatase activity was distributed similarly to the plasma membrane marker, 5′-nucleotidase. However, latent NADH pyrophosphatase was found at the low density region of the gradient, similar to the distribution of galactosyl transferase, a Golgi marker. A population of membranes, corresponding to those from the low density region, was prepared by discontinuous sucrose gradient centrifugation. Radiolabelled insulin was used, to monitor the involvement of these membranes in ligand internalization. The membrane perturbant, digitonin, was used to effect a partial separation between membranes bearing NADH pyrophosphatase and those bearing galactosyl transferase. The mechanism by which this separation is effected has been investigated and it was shown that, although digitonin caused a loss of enzyme latency, the density shift was not due to this effect. The partially purified ligandosome-rich fraction was characterized by enzymic and ultrastructural analysis. A novel EM cytochemical stain for NADH pyrophosphatase identified a vesicular fraction distinct from Golgi lamellae.  相似文献   

18.
Adsorption of local anesthetics on phospholipid membranes   总被引:5,自引:0,他引:5  
The subcellular distribution in rat liver of non-latent and latent NADH pyrophosphatase was determined by analytical sucrose density gradient centrifugation. Non-latent NADH pyrophosphatase activity was distributed similarly to the plasma membrane marker, 5'-nucleotidase. However, latent NADH pyrophosphatase was found at the low density region of the gradient, similar to the distribution of galactosyl transferase, a Golgi marker. A population of membranes, corresponding to those from the low density region, was prepared by discontinuous sucrose gradient centrifugation. Radiolabelled insulin was used, to monitor the involvement of these membranes in ligand internalization. The membrane perturbant, digitonin, was used to effect a partial separation between membranes bearing NADH pyrophosphatase and those bearing galactosyl transferase. The mechanism by which this separation is effected has been investigated and it was shown that, although digitonin caused a loss of enzyme latency, the density shift was not due to this effect. The partially purified ligandosome-rich fraction was characterized by enzymic and ultrastructural analysis. A novel EM cytochemical stain for NADH pyrophosphatase identified a vesicular fraction distinct from Golgi lamellae.  相似文献   

19.
Human granulocytes were disrupted by nitrogen cavitation and the lysates fractionated by sucrose density gradient centrifugation at 83 000 × g for 20 min (rate zonal) or 3.5 h (isopycnic). The distribution of marker enzymes allowed the identification of the following subcellular components: plasma membrane, Golgi, endoplasmic reticulum, azurophil granules, specific granules, mitochondria and cytosol. Examination of the gradient fractions by electron microscopy confirmed the biochemical marker analysis. The protocol permitted isolation of vesicles highly enriched in either plasma membrane or Golgi (galactosyl transferase) activities. Absolute plasma membrane yields of 40–60% were achieved with a 20–70-fold increase in specific activity of surface marker over the cells. Plasma membrane sedimented to an average density of 1.14 g·cm−3. Galactosyl transferase activity was bimodal in distribution. The denser peak cosedimanted with specific granules (g9 = 1.19). The lighter peak sedimented to unique position at an average density of 1.11, was enriched 18-fold over the low speed supernatant, and contained structures resembling Golgi. N-Formyl-Met-Leu-Phe binding and Mg2+ -ATPase activities cosedimented with the plasma membrane as well as specific granule and/or high density galactosyl transferase fractions. These findings suggest that Mg2+ -ATPase and N-formyl chemotactic peptide receptor activities may be localized in an internal pool of membranes as well as in the plasma membrane and that Golgi may have been a contaminant of previous granulocyte plasma membrane or specific granule preparations.  相似文献   

20.
Human granulocytes were disrupted by nitrogen cavitation and the lysates fractionated by sucrose density gradient centrifugation at 83 000 × g for 20 min (rate zonal) or 3.5 h (isopycnic). The distribution of marker enzymes allowed the identification of the following subcellular components: plasma membrane, Golgi, endoplasmic reticulum, azurophil granules, specific granules, mitochondria and cytosol. Examination of the gradient fractions by electron microscopy confirmed the biochemical marker analysis. The protocol permitted isolation of vesicles highly enriched in either plasma membrane or Golgi (galactosyl transferase) activities. Absolute plasma membrane yields of 40–60% were achieved with a 20–70-fold increase in specific activity of surface marker over the cells. Plasma membrane sedimented to an average density of 1.14 g·cm?3. Galactosyl transferase activity was bimodal in distribution. The denser peak cosedimanted with specific granules (g9 = 1.19). The lighter peak sedimented to unique position at an average density of 1.11, was enriched 18-fold over the low speed supernatant, and contained structures resembling Golgi. N-Formyl-Met-Leu-Phe binding and Mg2+ -ATPase activities cosedimented with the plasma membrane as well as specific granule and/or high density galactosyl transferase fractions. These findings suggest that Mg2+ -ATPase and N-formyl chemotactic peptide receptor activities may be localized in an internal pool of membranes as well as in the plasma membrane and that Golgi may have been a contaminant of previous granulocyte plasma membrane or specific granule preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号