首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mulberry Leaf Metabolism under High Temperature Stress   总被引:5,自引:0,他引:5  
Effects of high temperature on the activity of photosynthetic enzymes and leaf proteins were studied in mulberry (Morus alba L. cv. BC2-59). A series of experiments were conducted at regular intervals (120, 240 and 360 min) to characterize changes in activities of ribulose-1,5-bisphosphate carboxylase (RuBPC) and sucrose phosphate synthase (SPS), photosystem 2 (PS 2) activity, chlorophyll (Chl), carotenoid (Car), starch, sucrose (Suc), amino acid, free proline, protein and nucleic acid contents in leaves under high temperature (40 °C) treatments. High temperature markedly reduced the activities of RuBPC and SPS in leaf extracts. Chl content and PS 2 activity in isolated chloroplasts were also affected by high temperature, particularly over 360 min treatment. Increased leaf temperature affected sugar metabolism through reductions in leaf starch content and sucrose-starch balance. While total soluble protein content decreased under heat, total amino acid content increased. Proline accumulation (1.5-fold) was noticed in high temperature-stressed leaves. A reduction in the contents of foliar nitrogen and nucleic acids (DNA and RNA) was also noticed. SDS-PAGE protein profile showed few additional proteins (68 and 85 kDa) in mulberry plants under heat stress compared to control plants. Our results clearly suggest that mulberry plants are very sensitive to high temperature with particular reference to the photosynthetic carbon metabolism.  相似文献   

2.
Sucrose metabolism was studied at three leaf development stages in two Phaseolus vulgaris L. cultivars, Tacarigua and Montalban. The changes of enzyme activities involved in sucrose metabolism at the leaf development stages were: (1) Sink (9-11 % full leaf expansion, FLE): low total sucrose phosphate synthase (SPS) activity, and higher acid invertase (AI) activity accompanied by low sucrose synthase (SuSy) synthetic and sucrolytic activities. (2) Sink to source transition (40-47 % FLE): increase in total SPS and SuSy activities, decrease in AI activity. (3) Source (96-97 % FLE): high total SPS activity, increased SuSy activities, decreased AI activity. The hexose/sucrose ratio decreased from sink to source leaves in both bean cultivars. The neutral invertase activity was lower than that of AI; it showed an insignificant decrease during the sink-source transition. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Water stress effects on photosynthesis in different mulberry cultivars   总被引:10,自引:0,他引:10  
The effect of water stress on photosynthesis was determined in five mulberry cultivars (Morus alba L. cv. K-2, MR-2, BC2-59, S-13 and TR-10). Drought was imposed by withholding water and the plants were maintained at different water potentials ranging from 0.5 -MPa to 2.0 -MPa. Photosynthetic rates, activities of ribulose-1,5-bisphosphate carboxylase and sucrose phosphate synthase, photosystem II activity and chlorophyll content were used as key parameters to assess photosynthetic performance. There was a marked variation in the photosynthetic rates and ribulose-1,5-bisphosphate carboxylase activity among the five mulberry cultivars subjected to water stress. Photosystem II (PSII) and sucrose phosphate synthase activities were also severely reduced as measured by drought conditions. Of the five mulberry cultivars, S-13 and BC2-59 showed higher photosynthetic rates, ribulose-1,5-bisphosphate carboxylase activity, high sucrose phosphate synthase activity and photochemical efficiency of PSII compared to the other varieties.  相似文献   

4.
Net photosynthetic rate (P N), stomatal conductance (g S), transpiration rate (E), intercellular CO2 concentration (C i), leaf water potential (w), leaf area, chlorophyll (Chl) content, and the activities of photosynthetic carbon reduction cycle (PCR) enzymes in two mulberry (Morus alba L.) cultivars (drought tolerant Anantha and drought sensitive M-5) were studied during water stress and recovery. During water stress, P N, g S, and E declined whereas C i increased. P N, g S, and E were less affected in Anantha than in M-5, which indicates tolerance nature of Anantha over M-5. Activities of ribulose-5-phosphate kinase, NAD- and NADP-glyceraldehyde-3-phosphate dehydrogenases, and 3-phosphoglycerate kinase decreased with increasing stress in both the cultivars. The enzyme activities less affected in tolerant (Anantha) than in sensitive cultivar (M-5) were restored after re-watering to almost initial values in both the cultivars. Re-watering of the plants led to an almost complete recovery of P N, E, and g S, indicating that a short-term stress brings about reversible effect in these two cultivars of mulberry.  相似文献   

5.
Among four mulberry (Morus alba L.) cultivars (K-2, MR-2, BC2-59, and S-13), highest net photosynthetic rate (P N) was observed in BC2-59 while the lowest rates were recorded with K-2. Significant differences among the four cultivars were found in leaf area, biomass production, activities of ribulose-1,5-bisphosphate carboxylase and sucrose phosphate synthase, and glucose and sucrose contents. The P N and the activities of photosynthetic enzymes in the four cultivars were significantly correlated with the growth and biomass production measured as leaf yield, total shoot mass, and aerial plant biomass.  相似文献   

6.
Agastian  P.  Kingsley  S.J.  Vivekanandan  M. 《Photosynthetica》2000,38(2):287-290
Mulberry genotypes were subjected to salinity (0–12 mS cm–1) in pot culture experiment. Chlorophyll and total carotenoid contents were reduced considerably by salinity. At low salinity, photosynthetic CO2 uptake increased over the control, but it decreased at higher salinity. Contents of soluble proteins, free amino acids, soluble sugars, sucrose, starch, and phenols increased at salinity of 1–2 mS cm–1 and decreased at higher salinity (8–12 mS cm–1). Glycine betaine accumulated more than proline, the maximum accumulation of both was at salinity of 2–4 mS cm–1. Among the genotypes studied, BC2-59 followed by S-30 showed better salinity tolerance than M-5.  相似文献   

7.
Singh  A.K.  Singhal  G.S. 《Photosynthetica》2001,39(4):521-527
Elevated temperature inhibited the accumulation of chlorophyll and photosynthetic proteins, and the development of photochemical activity, however, carotenoids continued to accumulate. Signal transduction pathway involved in protochlorophyllide oxidoreductase was unaffected by elevated temperature of 38°C. Two-dimensional gel electrophoresis of stroma proteins showed similar patterns in the dark-grown seedlings and seedlings irradiated at elevated temperature, although some low molecular mass proteins accumulated at 38°C. In contrast, seedlings irradiated at 25°C showed complex pattern of proteins. Hence the development of chloroplast and its associated functions during irradiation of etiolated seedlings are inhibited by elevated temperature.  相似文献   

8.
Ramanjulu  S.  Sreenivasalu  N.  Giridhara Kumar  S.  Sudhakar  C. 《Photosynthetica》1998,35(2):259-263
Three-month-old plants of mulberry (Morus alba L. cv. Kanva-2) were subjected to a drought stress by withholding water supply. As the leaf water potential (W) was dropping progressively with the severity of treatment and increasing stress duration, the values of leaf area, dry mass accumulation, total chlorophyll (Chl) content, net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E) were declined. The photosystem 2 (PS2) photochemical efficiency significantly decreased only at a severe stress treatment. The intercellular CO2 concentration (Ci) remained unaltered during a mild stress, yet it increased under moderate and severe stresses. The Ci/gs ratio reflected the mesophyll efficiency during water stress. Rewatering of the plants led to an almost complete recovery of PN, E, and gs, indicating that a short-term stress brings about reversible effects only.  相似文献   

9.
Rapacz  M.  Hura  K. 《Photosynthetica》2002,40(1):63-69
In spring and winter cultivars of oilseed rape (Brassica napus var. oleifera), acclimation of photosynthetic apparatus to cold was connected with the increase in activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and sucrose-phosphate synthase (SPS). Conversely, cold de-acclimation entailed the decline of RuBPCO and SPS activities. The rate of this photosynthetic de-acclimation might depend on day temperature. On the other hand, temperature rise during de-acclimation (identical during the day and night) resulted in the improvement of photosynthetic activity measured by means of chlorophyll fluorescence. An increase in SPS activity (and even transitory increase in RuBPCO activity) was observed when the elongation growth rate (EGR) accelerated during de-acclimation. Throughout re-acclimation, plants with high EGR were unable to maintain or recover higher photosynthetic capacity, despite the fact that SPS activity remained high or even increased during re-acclimation.  相似文献   

10.
Two-year-old potted plants of six Camellia sinensis cultivars (TV-18, TV-26, UPASI-3, UPASI-26, T-78 and HV-39) were subjected to water stress for 4, 8 and 12 d. Relative water content (RWC) of leaves of all cultivars declined with water stress, but in the two drought tolerant cultivars (UPASI-3 and UPASI-26), higher RWC were maintained in comparison to the others. Phenol content and activities of phenylalanineammonialyase, polyphenoloxidase and peroxidase initially increased, but decreased during extended drought. Chlorophyll contents decreased, whereas proline contents increased during water stress. SDS-PAGE analysis of proteins revealed increased accumulation of proteins of intermediate molecular masses (42 – 44 kDa) and low molecular masses (14 – 26 kDa). After 12 d of water stress, most of these proteins disappeared in T-78 and HV-39, but in the other cultivars they were still detectable.  相似文献   

11.
Ramanjulu  S.  Sreenivasulu  N.  Sudhakar  C. 《Photosynthetica》1998,35(2):279-283
Three-month-old mulberry (Morus alba L.) cultivars (drought tolerant S13 and drought sensitive S54) were subjected to water stress for 15 d. Water stress decreased the leaf water potential, net photosynthetic rate (PN), and stomatal conductance (gs) in both the cultivars. However, the magnitude of decline was comparatively greater in the sensitive cultivar (S54). Intercellular CO2 concentration (Ci) was unaltered during mild stress, but significantly increased at severe stress in both cultivars. The photosystem 2 activity significantly declined only at a severe stress in both cultivars. The Ci/gs ratio representing the mesophyll efficiency was greater in the tolerant cultivar S13. Involvement of stomatal and/or non-stomatal components in declining PN depended on the severity and duration of stress. However, the degree of non-stomatal limitations was relatively less in the drought tolerant cultivar.  相似文献   

12.
Anatomical changes of leaf epidermes of tomato plants (Lycopersicon esculentum Mill. cv. INCA 9) submitted to water stress in the preflowering stage were studied. 20 d after germination, plants were subjected to three treatments: 1) 100 % of evapotranspired water was applied every day, 2) from 100 up to 10 % of evapotranspired water was applied every day, and 3) water supply was completely suppressed. Trichome density was similar in apical, middle and basal zones, and adaxial and abaxial leaf surfaces. Stomatal density and length, and epidermal cell length and width had similar values on the same leaf surface, but the values were higher on the abaxial than on the adaxial leaf surface. The water deficit had little effect on number of trichomes, length and width of epidermal cells and length of stomata, and decreased the stomatal density especially on adaxial surface.  相似文献   

13.
Activities of some key enzymes of carbon metabolism sucrose synthase, acid and alkaline invertase, phosphoenol pyruvate carboxylase, malic enzyme and isocitrate dehydrogenase were investigated in relation to the carbohydrate status in lentil pods. Sucrose remained the dominant soluble sugar in the pod wall and seed, with hexoses (glucose and fructose) present at significantly lower levels. Sucrose synthase is the predominant sucrolytic enzyme in the developing seeds of lentil (Lens culinaris L.). Acid invertase was associated with pod elongation and showed little activity in seeds. Sucrose breakdown was dominated by alkaline invertase during the development of podwall, while both the sucrose synthase and alkaline invertase were active in the branch of inflorescence. A substantial increase of sucrolytic enzymes was observed at the time of maximum seed filling stage (10–20 DAF) in lentil seed. The pattern of activity of sucrose synthase highly paralleled the phase of rapid seed filling and therefore, can be correlated with seed sink strength. It seems likely that the fruiting structures of lentil utilize phosphoenol pyruvate carboxylase for recapturing respired carbon dioxide. Higher activities of isocitrate dehydrogenase and malic enzyme in the seed at the time of rapid seed filling could be effectively linked to the deposition of protein reserves.  相似文献   

14.
磷酸蔗糖合酶(sucrose phosphate synthase,SPS)是植物中蔗糖合成的主要限速酶,影响植物的生长发育和果实中蔗糖的含量。为探明苹果中SPS基因家族特性及其在蔗糖合成中的作用,该研究从苹果基因组中分离了MdSPS家族基因,分析了它们的进化关系以及mRNA表达特性与酶活性和蔗糖含量的关系。结果显示:(1)在苹果基因组中有8个SPS家族基因表达,它们分别属于双子叶植物的3个SPS亚家族。(2)荧光定量PCR分析显示,苹果C类的MdSPS6基因和A类的MdSPS1a/b基因是苹果中表达丰度最高的SPS基因成员,其中MdSPS6在苹果成熟果中表达丰度最高,其次是成熟叶片,而MdSPS1a/b在不积累蔗糖的幼果中表达丰度最高。(3)在果实发育过程中,除MdSPS1a/b之外,其它5个苹果MdSPS家族基因均随果实的生长表达丰度增加,与SPS活性和蔗糖含量明显呈正相关关系。研究表明,C类家族MdSPS6是苹果果实发育后期和叶片中蔗糖合成的主要SPS基因。  相似文献   

15.
He  Ping  Osaki  Mitsuru  Takebe  Masako  Shinano  Takuro 《Photosynthetica》2002,40(4):547-552
A field experiment was conducted to investigate the changes in chlorophyll (Chl) and nitrogen (N) contents, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and phosphoenolpyruvate carboxylase (PEPC) contents and PEPC activity, and the photon-saturated net photosynthetic rate (P Nsat), and their relationships with leaf senescence in two maize hybrids with different senescent appearance. One stay-green (cv. P3845) and one earlier senescent (cv. Hokkou 55) hybrid were used in this study, and we found that Chl and N contents and the P Nsat in individual leaves of P3845 were greater than those in corresponding leaves of Hokkou 55 at the successive growth stages. In addition, larger contents of RuBPCO and PEPC, and a greater activity of PEPC were observed in P3845. Due to the lower rates of decrease of Chl, RuBPCO, and PEPC amounts per unit of N, and the lower net C translocation rate per unit of N in the stay-green hybrid, leaf senescence was delayed in comparison to the earlier senescent hybrid.  相似文献   

16.
Higher amylase activity in cotyledons of kinetin treated salt stressed (75 mM NaCl) chickpea (Cicer arietinum L. cv. PBG-1) seedlings, as compared to salt stressed seedlings was observed during a growth period of 7 d. The activities of acid and alkaline invertases were maximum in shoots and minimum in cotyledons under all conditions. The reduced shoot invertase activities under salt stress were enhanced by kinetin with a simultaneous increase in reducing sugar content. Kinetin increased the activities of sucrose synthase (SS) and sucrose phosphate synthase (SPS) in both the cotyledons and shoots of stressed seedlings. Kinetin appears to increase the turnover of sucrose in the shoots of stressed seedlings.  相似文献   

17.
Field experiments with Glycine max (L.) Merr. cv. Ludou 11 and Ludou 4 were conducted to evaluate changes in photosynthetic rate, antioxidative enzyme activity, soluble protein, chlorophyll (Chl) and carotenoid (Car) contents in relation to leaf senescence during seed filling period. Photosynthetic rate, soluble protein content, catalase and peroxidase activities were the highest at 25 days after flowering (DAF). Chl a, Chl b and Car contents reached the maximum at 15 DAF and rapidly decreased after 33 DAF.  相似文献   

18.
Activities of acid and alkaline invertases and sucrose synthase were determined in roots and nodules of lentil at various stages of development. Alkaline invertase and sucrose synthase were both involved in sucrose metabolism in the nodule cytosol, but there was only a small amount of acid invertase present. Activity of sucrose metabolizing enzymes in roots was significantly less than that observed in the nodules. Amongst sugars, sucrose was found to be the main component in the host cytosol. Lentil neutral invertase (LNI) was partially purified from nodules at 50 days after sowing (DAS). Two forms of invertase were identified, i.e., a major form of 71 kDa which was taken for enzyme characterization and a minor form of 270 kDa which was not used for further studies. The purified enzyme exhibited typical hyperbolic saturation kinetics for sucrose hydrolysis. It had a Km of 11.0 to 14.0 mM for sucrose depending upon the temperature, a pH optimum of 6.8 and an optimum temperature of 40 °C. Compared with raffinose and stachyose, sucrose was better substrate for LNI. The enzyme showed no significant hydrolysis of maltose and p-nitrophenyl--D-glucopyranoside, showing its true -fructosidase nature. LNI is completely inhibited by HgCl2, MnCl2 and iodoacetamide but not by CaCl2, MgCl2 or BaCl2.  相似文献   

19.
Metabolism of 2-carboxy-D-arabinitol 1-phosphate (CA1P) is an important component in the light-dependent regulation of ribulose-1,5-bisphosphate carboxylase (Rubisco) activity and whole leaf photosynthetic CO2 assimilation in many species, and functions as one mechanism for regulating Rubisco activity when photosynthesis is light-limited. Species differ in their capacity to accumulate CA1P, ranging from those which can synthesize levels of this compound approaching or in excess of the Rubisco catalytic site concentration, to those which apparently lack the capacity for CA1P synthesis. CA1P is structurally related to the six carbon transition state intermediate of the carboxylation reaction and binds tightly to the carbamylated catalytic site of Rubisco, making that site unavailable for catalysis. Under steady-state, the concentration of CA1P in the leaf is highest at low photon flux density (PFD) or in the dark. Degradation of CA1P and recovery of Rubisco activity requires light and is stimulated by increasing PFD. The initial degradation reaction is catalyzed by an enzyme located in the chloroplast stroma, CA1P phosphatase, which yields carboxyarabinitol (CA) and inorganic phosphate as its products. The pathway of CA metabolism in the plant remains to be determined. Synthesis of CA1P occurs in the dark, and in Phaseolus vulgaris this process has been shown to be stimulated by low PFD. The pathway of CA1P synthesis and its relationship to the degradative pathway remains unknown at the present time. The discovery of the existence of this previously unknown carbon pathway in photosynthesis indicates that we still have much to learn concerning the regulation of Rubisco activity and photosynthesis.Abbreviations CA 2-carboxy-D-arabinitol - CA1P 2-carboxy-D-arabinitol 1-phosphate - CABP 2-carboxy-D-arabinitol-1,5-bisphosphate (transition state analog) - PFD photon flux density - P1 inorganic phosphate - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) - RuBP ribulose-1,5-bisphosphate  相似文献   

20.
Bunce  J.A.  Sicher  R.C. 《Photosynthetica》2001,39(1):95-101
Midday measurements of single leaf gas exchange rates of upper canopy leaves of soybeans grown in the field at 350 (AC) and 700 (EC) µmol(CO2) mol–1 in open topped chambers sometimes indicated up to 50 % higher net photosynthetic rates (P N) measured at EC in plants grown at AC compared to EC. On other days mean P N were nearly identical in the two growth [CO2] treatments. There was no seasonal pattern to the variable photosynthetic responses of soybean to growth [CO2]. Even on days with significantly lower P N in the plants grown at EC, there was no reduction in ribulose-1,5-bisphosphate carboxylase/oxygenase, chlorophyll, or soluble protein contents per unit of leaf area. Over three years, gas exchange evidence of acclimation occurred on days when either soil was dry or the water vapor pressure deficit was high (n = 12 d) and did not occur on days after rain or on days with low water vapor pressure deficit (n = 9 d). On days when photosynthetic acclimation was evident, midday leaf water potentials were consistently 0.2 to 0.3 MPa lower for the plants grown at EC than at AC. This suggested that greater susceptibility to water stress in plants grown at EC cause the apparent photosynthetic acclimation. In other experiments, plants were grown in well-watered pots in field chambers and removed to the laboratory early in the morning for gas exchange measurements. In these experiments, the amount of photosynthetic acclimation evident in the gas exchange measurements increased with the maximum water vapor pressure deficit on the day prior to the measurements, indicating a lag in the recovery of photosynthesis from water stress. The apparent increase in susceptibility to water stress in soybean plants grown at EC is opposite to that observed in some other species, where photosynthetic acclimation was evident under wet but not dry conditions, and may be related to the observation that hydraulic conductance is reduced in soybeans when grown at EC. The day-to-day variation in photosynthetic acclimation observed here may account for some of the conflicting results in the literature concerning the existence of acclimation to EC in field-grown plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号