首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary cultures of rat dorsal root ganglion Schwann cells were used to assay the efficacy of PC12 cells in stimulating Schwann cell proliferation. Co-cultures of PC12 cells and Schwann cells assayed by [3H]thymidine labeling followed by autoradiography showed proliferation of Schwann cells only where contact occurred between PC12 neurites and Schwann cells. Membranes derived from PC12 cells were shown to have many characteristics similar to membranes derived from sensory neurons; both could mimic whole cells in stimulating Schwann cell division; both were inactivated by mild heat treatment and by trypsinization, and both elevated intracellular cyclic AMP concentrations in Schwann cells 16 h after addition of membranes. We conclude that PC12 cells will be a valuable source for the isolation of the neuronal cell surface component which controls proliferation of Schwann cells during development of the peripheral nervous system.  相似文献   

2.
During embryogenesis, Schwann cells interact with axons and other Schwann cells, as they migrate, ensheath axons, and participate in organizing peripheral nervous tissues. The experiments reported here indicate that the calcium-dependent molecule, N-cadherin, mediates adhesion of Schwann cells to neurites and to other Schwann cells. Cell cultures from chick dorsal root ganglia and sciatic nerves were maintained in media containing either 2 mM Ca++ or 0.2 mM Ca++, a concentration that inactivates calcium-dependent cadherins. When the leading lamellae of Schwann cells encountered migrating growth cones in medium with 2 mM Ca++, they usually remained extended, and the growth cones often advanced onto the Schwann cell upper surface. In the low Ca++ medium, the frequency of withdrawal of the Schwann cell lamella after contact with a growth cone was much greater, and withdrawal was the most common reaction to growth cone contact in medium with 2 mM Ca++ and anti-N-cadherin. Similarly, when motile leading margins of two Schwann cells touched in normal Ca++ medium, they often formed stable areas of contact. N-cadherin and vinculin were co-concentrated at these contact sites between Schwann cells. However, in low Ca++ medium or in the presence of anti-N-cadherin, interacting Schwann cells usually pulled away from each other in a behavior reminiscent of contact inhibition between fibroblasts. In cultures of dissociated cells in normal media, Schwann cells frequently were aligned along neurites, and ultrastructural examination showed extensive close apposition between plasma membranes of neurites and Schwann cells. When dorsal root ganglia explants were cultured with normal Ca++, Schwann cells migrated away from the explants in close association with extending neurites. All these interactions were disrupted in media with 0.2 mM Ca++. Alignment of Schwann cells along neurites was infrequent, as were extended close apposition between axonal and Schwann cell plasma membranes. Finally, migration of Schwann cells from ganglionic explants was reduced by disruption of adhesive contact with neurites. The addition of antibodies against N-cadherin to medium with normal Ca++ levels had similar effects as lowering the Ca++ concentration, but antibodies against the neuronal adhesive molecule, L1, had no effects on interactions between Schwann cells and neurites.  相似文献   

3.
Proliferation of Schwann cells is one of the first events that occurs after contact with a growing axon. To further define the distribution and properties of this axonal mitogen, we have (a) cocultured cerebellar granule cells, which lack glial ensheathment in vivo with Schwann cells; and (b) exposed Schwann cell cultures to isolated granule cell membranes. Schwann cells cocultured with granule cells had a 30-fold increase in the labeling index over Schwann cells cultured alone, suggesting that the mitogen is located on the granule cell surface. Inhibition of granule cell proteoglycan synthesis caused a decrease in the granule cells' ability to stimulate Schwann cell proliferation. Membranes isolated from cerebellar granule cells when added to Schwann cell cultures caused a 45-fold stimulation in [3H]thymidine incorporation. The granule cell mitogenic signal was heat and trypsin sensitive and did not require lysosomal processing by Schwann cells to elicit its proliferative effect. The ability of granule cells and their isolated membranes to stimulate Schwann cell proliferation suggests that the mitogenic signal for Schwann cells is a ubiquitous factor present on all axons regardless of their ultimate state of glial ensheathment.  相似文献   

4.
Exposing rat Schwann cells co-cultured with nerve cells to a reconstituted basement membrane induced the formation of myelin segments by Schwann cells. This occurred in a serum-free culture medium in which, in the absence of this matrix, Schwann cells proliferate but fail to differentiate. This reconstituted basement membrane was prepared from solubilized extracellular matrix proteins synthesized by a basement membrane-producing murine tumor. The major constituents of this reconstituted matrix are collagen type IV, laminin, heparan sulfate proteoglycan, entactin, and nidogen. The matrix also elicited striking morphological changes in Schwann cells, inducing them to spread longitudinally along the nerve fibers (a necessary early step in the process of ensheathment of nerve fibers). Several observations indicated that the effect of the matrix was exerted directly on Schwann cells and not indirectly through an effect on nerve cells. First, the matrix-induced cell spreading occurred only in areas in which Schwann cells directly contacted the matrix; Schwann cells that were associated with the same nerve fibers but that did not themselves directly contact the matrix did not exhibit spreading. Second, the matrix-induced alteration in Schwann cell morphology was observed in cultures in which the nerve cells were removed. These results provide direct evidence that basement membrane contact induces normal Schwann cell differentiation, and support the idea that Schwann cell differentiation in vivo may be regulated by the appearance of the basement membrane, which normally envelops terminally differentiating Schwann cells.  相似文献   

5.
《The Journal of cell biology》1990,111(6):2663-2671
In healthy adult peripheral nerve, Schwann cells are believed to be generally quiescent. Similarly, cultures of isolated rat sciatic nerve Schwann cells hardly proliferate in serum-supplemented medium. The possibility that Schwann cells negatively regulate their own proliferation was supported by the demonstration that conditioned media from Schwann cell cultures inhibited the proliferation of mitogen- stimulated test cultures. The inhibition could be complete, was dose dependent, and was exhibited when the test Schwann cells were under the influence of different types of mitogens such as cholera toxin, laminin, and living neurons. The inhibition of proliferation was completely reversible and a rapid doubling of cell number resulted when treatment with conditioned medium was withdrawn from mitogen-stimulated Schwann cells. Conditioned medium from cholera toxin-stimulated and immortalized Schwann cell cultures contained less antiproliferative activity than that found in medium from quiescent Schwann cell cultures. However, media conditioned by two actively proliferating rat Schwannoma cell lines were rich sources of antiproliferative activity for Schwann cells. Unlike the mitogen-stimulated Schwann cells, whose proliferation could be inhibited completely, the immortalized and transformed Schwann cell types were nearly unresponsive to the antiproliferative activity. The antiproliferative activity in Schwann and Schwannoma cell conditioned media was submitted to gel filtration and SDS-PAGE. The activity exists in at least two distinct forms: (a) a high molecular weight complex with an apparent molecular mass greater than 1,000 kD, and (b) a lower molecular weight form having a molecular mass of 55 kD. The active 55-kD form could be derived from the high molecular weight form by gel filtration performed under dissociating conditions. The 55-kD form was further purified to electrophoretic homogeneity. These results suggest that Schwann cells produce an autocrine factor, which we designate as a "neural antiproliferative protein," which completely inhibits the in vitro proliferation of Schwann cells but not that of immortalized Schwann cells or Schwannoma lines.  相似文献   

6.
Neurofibromatosis Type 1 tumors are highly vascularized and contain Schwann cells with hyperactivated Ras. In vitro , the NF1-derived neurofibromin deficient Schwann cells have an angiogenic profile, which favors angiogenesis and sustains the growth of the NF1-derived tumors. This study examined the relationship of the activation state of Ras as it related to the expression of angiogenic and antiangiogenic factors in both cultured NF1-derived Schwann cells and normal human Schwann cells. Western blot analysis of normal human Schwann cells revealed low expression of angiogenic vascular endothelial growth factor (VEGF) as well as low expression of the antiangiogenic pigment epithelium derived factor (PEDF). Relative to normal human Schwann cells, NF1-derived Schwann cells have increased RAS activity and a three-fold increase in VEGF expression. Surprisingly, PEDF was also expressed in the NF1-derived Schwann cells at approximately the same level as VEGF expression. Using a retroviral construct, we introduced the GAP-related domain of neurofibromin into the NF1-derived Schwann cells to reduce the level of activated Ras. Relative to the untreated NF1-derived Schwann cells the Schwann cells expressing the GAP-related domain expressed about one-half the VEGF but twice the PEDF. We conclude that decreasing the Ras activity in NF1-drived Schwann cells will not only decrease proliferation, but also slow tumor angiogenesis due to the decreased expression of angiogenic and increased expression of antiangiogenic factors.  相似文献   

7.
Angiogenic and invasive properties of neurofibroma Schwann cells   总被引:10,自引:0,他引:10       下载免费PDF全文
Neurofibromas are benign tumors from patients with von Recklinghausen Neurofibromatosis (NF1) that are comprised primarily of Schwann cells. These Schwann cells are found both in association with axons and in the extracellular matrix that is prevalent in neurofibromas, and in which fibroblasts are also abundant. An unresolved question has been whether cells in neurofibromas are normal cells or are intrinsically abnormal. We have tested the hypothesis that cells in neurofibromas are abnormal and have shown that neurofibroma Schwann cells, unlike normal Schwann cells, promote angiogenesis in the chick chorioallantoic membrane model system, and invade basement membranes in this system. In contrast, neurofibroma fibroblasts neither promote angiogenic reactions nor invade basement membranes. When injected into nude mice, neurofibroma Schwann cells do not form progressive tumors. These results suggest that NF1 Schwann cells differ from normal Schwann cells, that they are preneoplastic, and that genetic and/or epigenetic changes in Schwann cells may be required for development of peripheral nerve tumors in NF1.  相似文献   

8.
9.
目的:探讨坐骨神经中神经脊来源的许旺细胞所占的比率。方法:将Wnt1-Cre+/-与Rosa-EGFP+/-小鼠杂交,获取Wnt1/EGFP小鼠,其所有起源于神经脊的细胞都有EGFP蛋白表达。取其坐骨神经,经过消化分离纯化,获得许旺细胞。进行抗GFP免疫荧光染色和流式分析的检测。结果:根据P1代许旺细胞的形态学观察,其纯度约为60%。抗GFP免疫荧光染色显示,并非所有的许旺细胞均呈阳性。P3代许旺细胞的纯度约为99%,流式细胞术分析显示约65%左右的GFP阳性率。结论:小鼠坐骨神经中的许旺细胞在体外培养提纯后,神经脊起源的许旺细胞占总许旺细胞的比例约为65%。  相似文献   

10.
Neurofibromatosis Type 1 tumors are highly vascularized and contain Schwann cells with hyperactivated Ras. In vitro, the NF1‐derived neurofibromin deficient Schwann cells have an angiogenic profile, which favors angiogenesis and sustains the growth of the NF1‐derived tumors. This study examined the relationship of the activation state of Ras as it related to the expression of angiogenic and antiangiogenic factors in both cultured NF1‐derived Schwann cells and normal human Schwann cells. Western blot analysis of normal human Schwann cells revealed low expression of angiogenic vascular endothelial growth factor (VEGF) as well as low expression of the antiangiogenic pigment epithelium derived factor (PEDF). Relative to normal human Schwann cells, NF1‐derived Schwann cells have increased RAS activity and a three‐fold increase in VEGF expression. Surprisingly, PEDF was also expressed in the NF1‐derived Schwann cells at approximately the same level as VEGF expression. Using a retroviral construct, we introduced the GAP‐related domain of neurofibromin into the NF1‐derived Schwann cells to reduce the level of activated Ras. Relative to the untreated NF1‐derived Schwann cells the Schwann cells expressing the GAP‐related domain expressed about one‐half the VEGF but twice the PEDF. We conclude that decreasing the Ras activity in NF1‐drived Schwann cells will not only decrease proliferation, but also slow tumor angiogenesis due to the decreased expression of angiogenic and increased expression of antiangiogenic factors.  相似文献   

11.
Multiple discontinuities are observed in the basal laminas of Schwann cells in mature dystrophic mice. To explore the pathogenesis of this abnormality we have exploited a dystrophic in equilibrium shiverer mouse chimera preparation in which both the basal lamina phenotype and the genotype of myelin-forming Schwann cells can be determined. If the basal lamina abnormality were to arise from an intrinsic deficiency of the dystrophic Schwann cell itself, only those Schwann cells of dystrophic genotype could express the mutant phenotype, whereas the coexisting population of shiverer Schwann cells should express typically normal basal laminas. No such distinction was observed; rather both dystrophic and shiverer Schwann cells were found to express relatively normal basal laminas and two pathogenetic mechanisms remain theoretical possibilities. The dystrophic Schwann cell population may be intrinsically defective but also may be rescued by obtaining the normal product of the dy locus synthesized by the coexisting shiverer cells. Alternatively, an extra Schwann cell deficiency existing within dystrophic mice may be normalized by shiverer cells and the normal intrinsic potential of both dystrophic and shiverer Schwann cells can then be realized. Regardless of the exact mechanism underlying these findings, some extracellularly mediated influence, emanating in vivo from shiverer cells, is capable of ameliorating the basal lamina deficiency typically expressed by dystrophic Schwann cells.  相似文献   

12.
Schwann cells as regulators of nerve development.   总被引:15,自引:0,他引:15  
Myelinating and non-myelinating Schwann cells of peripheral nerves are derived from the neural crest via an intermediate cell type, the Schwann cell precursor [K.R. Jessen, A. Brennan, L. Morgan, R. Mirsky, A. Kent, Y. Hashimoto, J. Gavrilovic. The Schwann cell precursor and its fate: a study of cell death and differentiation during gliogenesis in rat embryonic nerves, Neuron 12 (1994) 509-527]. The survival and maturation of Schwann cell precursors is controlled by a neuronally derived signal, beta neuregulin. Other factors, in particular endothelins, regulate the timing of precursor maturation and Schwann cell generation. In turn, signals derived from Schwann cell precursors or Schwann cells regulate neuronal numbers during development, and axonal calibre, distribution of ion channels and neurofilament phosphorylation in myelinated axons. Unlike Schwann cell precursors, Schwann cells in older nerves survive in the absence of axons, indicating that a significant change in survival regulation occurs. This is due primarily to the presence of autocrine growth factor loops in Schwann cells, present from embryo day 18 onwards, that are not functional in Schwann cell precursors. The most important components of the autocrine loop are insulin-like growth factors, platelet derived growth factor-BB and neurotrophin 3, which together with laminin support long-term Schwann cell survival. The paracrine dependence of precursors on axons for survival provides a mechanism for matching precursor cell number to axons in embryonic nerves, while the ability of Schwann cells to survive in the absence of axons is an absolute prerequisite for nerve repair following injury. In addition to providing survival factors to neurones and themselves, and signals that determine axonal architecture, Schwann cells also control the formation of peripheral nerve sheaths. This involves Schwann cell-derived Desert Hedgehog, which directs the transition of mesenchymal cells to form the epithelium-like structure of the perineurium. Schwann cells thus signal not only to themselves but also to the other cellular components within the nerve to act as major regulators of nerve development.  相似文献   

13.
Kang  Hyuno  Tian  Le  Thompson  Wesley 《Brain Cell Biology》2003,32(5-8):975-985
Schwann cells and axons labeled by transgene-encoded, fluorescent proteins can be repeatedly imaged in living mice to observe the reinnervation of neuromuscular junctions. Axons typically return to denervated junctions by growing along Schwann cells contained in the old nerve sheaths or “Schwann cell tubes”. These axons then commonly “escape” the synaptic sites by growing along the Schwann cell processes extended during the period of denervation. These “escaped fibers” grow to innervate adjacent synaptic sites along Schwann cells bridging these sites. Within the synaptic site, Schwann cells, originally positioned above the synaptic site continue to cover the acetylcholine receptors (AChRs) immediately following denervation, but gradually vacate portions of this site. When regenerating axons return, they first deploy along the Schwann cells and ignore sites of AChRs vacated by Schwann cells. In many cases these vacated sites are never reinnervated and are ultimately lost. Following partial denervation, Schwann cells grow in an apparently tropic fashion from denervated to nearby innervated synaptic sites and serve as the substrates for nerve sprouting. These experiments show that Schwann cells provide pathways that stimulate axon growth and insure the rapid reinnervation of denervated or partially denervated muscles.  相似文献   

14.
The availability of tissue culture systems that allow the growth of nerve cells, Schwann cells, and fibroblasts separately or in various combinations now makes possible investigation of the role of cell interactions in the development of the peripheral nervous system. Using these systems it was earlier found that basal lamina is formed on the Schwann cell surface in cultures of sensory ganglion cells and Schwann cells without fibroblasts. It is here reported that the presence of nerve cells is required for the generation of basal lamina on the Schwann cell plasmalemma. Utilizing nerve cell-Schwann cell preparations devoid of fibroblasts, this was found in the following ways. (1) When nerve cells are removed from 3- to 5-week-old cultures, the basal lamina disappears from Schwann cells. (2) If nerve cells are added back to such Schwann cell populations, Schwann cell basal lamina reappears. (3) Removal of nerve cells from older (3–4 months) cultures does not lead to basal lamina loss; areas presumed not to have been coated with lamina before neurite degeneration remain so, suggesting that the lamina persists but is not reformed. (4) If basal lamina is removed with trypsin, it is reformed in neuron plus Schwann cell cultures but not in Schwann cell populations alone. Thus, the formation but not the persistence of Schwann cell basal lamina requires the presence of nerve cells.  相似文献   

15.
Mutations in the frataxin gene cause dorsal root ganglion demyelination and neurodegeneration, which leads to Friedreich's ataxia. However the consequences of frataxin depletion have not been measured in dorsal root ganglia or Schwann cells. We knocked down frataxin in several neural cell lines, including two dorsal root ganglia neural lines, 2 neuronal lines, a human oligodendroglial line (HOG) and multiple Schwann cell lines and measured cell death and proliferation. Only Schwann cells demonstrated a significant decrease in viability. In addition to the death of Schwann cells, frataxin decreased proliferation in Schwann, oligodendroglia, and slightly in one neural cell line. Thus the most severe effects of frataxin deficiency were on Schwann cells, which enwrap dorsal root ganglia neurons. Microarray of frataxin-deficient Schwann cells demonstrated strong activations of inflammatory and cell death genes including interleukin-6 and Tumor Necrosis Factor which were confirmed at the mRNA and protein levels. Frataxin knockdown in Schwann cells also specifically induced inflammatory arachidonate metabolites. Anti-inflammatory and anti-apoptotic drugs significantly rescued frataxin-dependent Schwann cell toxicity. Thus, frataxin deficiency triggers inflammatory changes and death of Schwann cells that is inhibitable by inflammatory and anti-apoptotic drugs.  相似文献   

16.
Schwann cells provide a favorable microenvironment for successful regeneration of the injured peripheral nerve. Even though the roles of extracellular matrix proteins in the Schwann cell physiology have long been studied, the precise function of nidogen, a ubiquitous component of the basal lamina, in Schwann cells is unknown. In this study, we show that the protein and mRNA messages for nidogens are up-regulated in the sciatic nerve after sciatic nerve transection. We demonstrate that recombinant nidogen-1 increased the process formation of Schwann cells cultured from adult rat sciatic nerves and that nidogen-1 prevented Schwann cells from serum-deprivation-induced death. In addition, nidogen-1 promoted spontaneous migration of Schwann cells in two-independent migration assays. The Schwann cell responses to the recombinant nidogen-1 were specific because the nidogen-binding ectodomain of tumor endothelial marker 7 inhibited the nidogen responses without affecting Schwann cell response to laminin. Finally, we found that beta1 subunit-containing integrins play a key role in the nidogen-induced process formation, survival, and migration of Schwann cells. Altogether, these results indicate that nidogen has a prosurvival and promigratory activity on Schwann cells in the peripheral nerve.  相似文献   

17.
During development of the peripheral nervous system (PNS), Schwann cells migrate along neuronal axons before initiating myelination of the axons. While intercellular signals controlling migration, between Schwann cells and peripheral neurons, are established, how their intracellular transduction of the signals into Schwann cells still remains to be clarified. Here, we show that cytohesin-1, a guanine-nucleotide exchange factor (GEF), and the effector Arf6 are required for migration of primary Schwann cells. Knockdown of cytohesin-1 or Arf6 in Schwann cells, as well as treatment with the chemical cytohesin inhibitor SecinH3 or knockout of cytohesin-1, inhibits peripheral neuronal conditioned medium-mediated migration. Similar effects are also observed following stimulation with each of growth factors contained in a conditioned medium, suggesting that cytohesin-1 plays a role in transducing soluble ligand signals from neurons. Reintroduction of small interfering (si)RNA-resistant cytohesin-1 into Schwann cells reverses blunted migration in the siRNA-transfected Schwann cells, illustrating the importance of cytohesin-1 in migration. On the other hand, introduction of cytohesin-1 that harbors the Tyr-382 mutation, which is an amino acid that is important for its activation, failed to reverse the reduction in primary Schwann cell migration. These results suggest that signaling through cytohesin-1 is required for Schwann cell migration, revealing a novel mechanism for Schwann cell migration.  相似文献   

18.
Src-suppressed protein kinase C substrate (SSeCKS) plays an important role in the differentiation process. In regeneration of sciatic nerve injury, expression of SSeCKS decreases, mainly in Schwann cells. However, the function of SSeCKS in Schwann cells differentiation remains unclear. We observed that SSeCKS was decreased in differentiated Schwann cells. In long-term SSeCKS-reduced Schwann cells, cell morphology changed and myelin gene expression induced by cAMP was accelerated. Myelination was also enhanced in SSeCKS-suppressed Schwann cells co-culture with dorsal root ganglion (DRG). In addition, we found suppression of SSeCKS expression promoted Akt serine 473 phosphorylation in cAMP-treated Schwann cells. In summary, our data indicated that SSeCKS was a negative regulator of myelinating glia differentiation.  相似文献   

19.
In the developing peripheral nerve, Schwann cells proliferate rapidly and then become quiescent, an essential step in control of Schwann cell differentiation. Cell proliferation is controlled by growth factors that can exert positive or inhibitory influences on DNA synthesis. It has been well established that neonatal Schwann cells divide very slowly in culture when separated from neurons but here we show that when culture was continued for several months some cells began to proliferate rapidly and non-clonal lines of immortalised Schwann cells were established which could be passaged for over two years. These cells had a similar molecular phenotype to short-term cultured Schwann cells, except that they expressed intracellular and cell surface fibronectin. The difference in proliferation rates between short- and long-term cultured Schwann cells appeared to be due in part to the secretion by short-term cultured Schwann cells of growth inhibitory activity since DNA synthesis of long-term, immortalised Schwann cells was inhibited by conditioned medium from short-term cultures. This conditioned medium also inhibited DNA synthesis in short-term Schwann cells stimulated to divide by glial growth factor or elevation of intracellular cAMP. The growth inhibitory activity was not detected in the medium of long-term immortalised Schwann cells, epineurial fibroblasts, a Schwannoma (33B), astrocytes or a fibroblast-like cell-line (3T3) and it did not inhibit serum-induced DNA synthesis in epineurial fibroblasts, 33B cells or 3T3 cells. The activity was apparently distinct from transforming growth factor-beta, activin, IL6, epidermal growth factor, atrial natriuretic peptide and gamma-interferon and was heat and acid stable, resistant to collagenase and destroyed by trypsin treatment. We raise the possibility that loss of an inhibitory autocrine loop may contribute to the rapid proliferation of long-term cultured Schwann cells and that an autocrine growth inhibitor may have a role in the cessation of Schwann cell division that precedes differentiation in peripheral nerve development.  相似文献   

20.
During embryogenesis, Schwann cells interact with axons and other Schwann cells, as they migrate, ensheath axons, and participate in organizing peripheral nervous tissues. The experiments reported here indicate that the calcium-dependent molecule, N-cadherin, mediates adhesion of Schwann cells to neurites and to other Schwann cells. Cell cultures from chick dorsal root ganglia and sciatic nerves were maintained in media containing either 2mM Ca++ or 0.2 mM Ca++, a concentration that inactivates calcium-dependent cadherins. When the leading lamellae of Schwann cells encountered migrating growth cones in medium with 2 mM Ca++, they usually remained extended, and the growth cones often advanced onto the Schwann cell upper surface. In the low Ca++ medium, the frequency of withdrawal of the Schwann cell lamella after contact with a growth cone was much greater, and withdrawal was the most common reaction to growth cone contact in medium with 2 mM Ca++ and anti-N-cadherin. Similarly, when motile leading margins of two Schwann cells touched in normal Ca++ medium, they often formed stable areas of contact. N-cadherin and vinculin were co-concentrated at these contact sites between Schwann cells. However, in low Ca++ medium or in the presence of anti-N-cadherin, interacting Schwann cells usually pulled away from each other in a behavior reminiscent of contact inhibition between fibroblasts. In cultures of dissociated cells in normal media, Schwann cells frequently were aligned along neurites, and ultrastructural examination showed extensive close apposition between plasma membranes of neurites and Schwann cells. When dorsal root ganglia explants were cultured with normal Ca++, Schwann cells migrated away from the explants in close association with extending neurites. All these interactions were disrupted in media with 0.2 mM Ca++. Alignment of Schwann cells along neurites was infrequent, as were extended close apposition between axonal and Schwann cell plasma membranes. Finally, migration of Schwann cells from ganglionic explants was reduced by disruption of adhesive contact with neurites. The addition of antibodies against N-cadherin to medium with normal Ca++ levels had similar effects as lowering the Ca++ concentration, but antibodies against the neuronal adhesive molecule, L1, had no effects on interactions between Schwann cells and neurites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号