首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The GTP-dependence for stimulatory and inhibitory regulation of plasma membrane adenylate cyclase activity was measured in plasma membrane fractions isolated from a variety of cell types (platelets, lymphocytes, PC12 cells, GH3 cells, NBP2 cells, and hepatocytes). This report shows that the isolation of plasma membranes for the study of GTP-dependent adenylate cyclase activity was, for some cells, enhanced by the exposure of the cells to glycerol prior to cell lysis. The isolation of plasma membranes from other cells, which did not appear to be sensitive to glycerol pretreatment, was enhanced by the removal of heavy particulate matter prior to fractionation of the cell lysate. The regulation of enzyme activity by various agents was found to be dependent upon the presence of (exogenous) GTP to varying degrees, indicating variable contamination of membrane preparations with GTP. It is concluded that (i) exposure of platelets and lymphocytes to glycerol prior to cell lysis decreases subsequent contamination of the plasma membrane preparation with GTP, and (ii) although glycerol pretreatment of other cells does not ensure the subsequent isolation of plasma membrane adenylate cyclase activity displaying high requirements for (exogenous) GTP, it is a reasonable first approach to be used during the development of procedures for the isolation of plasma membranes.  相似文献   

2.
Chronic exposure of frog erythrocytes to beta-adrenergic agonists leads to desensitization of the responsiveness of adenylate cyclase to isoproterenol and is accompanied by "down-regulation", a decrease in the number of beta-adrenergic receptors on the cell surface. When frog erythrocyte plasma membranes are prepared by osmotic lysis of cells, the receptors lost from the cell surface during desensitization can be recovered in a "light membrane fraction", obtained by centrifuging the cell cytosol at 158,000 X g for 1 hr. These receptors are sequestered away from the plasma membrane fraction which contains the adenylate cyclase and the guanine nucleotide regulatory protein. If desensitized frog erythrocytes are disrupted by gentler freeze/thaw procedures, however, the sequestered beta-adrenergic receptors can be demonstrated to be physically associated with the plasma membrane. Typically, plasma membranes prepared in this fashion do not demonstrate a significant down regulation despite attenuation of isoproterenol-stimulated adenylate cyclase activity. Under these conditions, beta-adrenergic receptors from control and desensitized preparations co-migrate on sucrose density gradients in exactly the same place as the plasma membrane marker, adenylate cyclase. In contrast, when membranes from osmotically lysed desensitized cells are fractionated on sucrose gradients the down regulated receptors are sequestered in a light membrane fraction which barely enters the gradient and which is physically separated from adenylate cyclase activity. The data are consistent with a novel mechanism of receptor down-regulation which appears to involve the sequestration of the beta-adrenergic receptors away from the cell surface into a membrane compartment which remains physically associated with the plasma membrane.  相似文献   

3.
The effect of the hepatocarcinogen dimethylnitrosamine on rat liver plasma membrane adenylate cyclase activity and lipid fluidity was assessed. Glucagon-stimulated adenylate cyclase activity exhibited a complex response to increasing concentrations of dimethylnitrosamine, whereas fluoride-stimulated adenylate cyclase activity was progressively inhibited. Maximal inhibitory effects were observed at a concentration of 15 mM in both cases. The activity of detergent-solubilized adenylate cyclase was unaffected by dimethylnitrosamine. ESR analysis using a fatty acid spin probe showed that dimethylnitrosamine produced a marked, dose-dependent reduction in the fluidity of the plasma membrane with a maximal effect occurring at 20 mM. Dimethylnitrosamine also elevated the temperature at which the lipid phase separation occurred in rat liver plasma membranes, from 28 degrees C to 31 degrees C. The non-carcinogenic but structurally similar compound, dimethylamine hydrochloride neither inhibited adenylate cyclase nor decreased plasma membrane fluidity. It is suggested that the decrease in membrane fluidity, induced by dimethylnitrosamine, via its effects on membrane fluidity, could influence plasma membrane function and cellular regulation.  相似文献   

4.
In almost all cell types, adenylate cyclase is located in the plasma membrane. In lymphocytes, however, this enzyme has been claimed to be largely present in intracellular compartments. In this study, the distribution of adenylate cyclase activity in subcellular fractions of calf thymocytes was reinvestigated by a balance sheet approach. When subcellular fractionation was performed in the absence of ATP and dithiothreitol, less than a half of the homogenate basal activity could be recovered in the fractions, and this amount was distributed almost equally in three main compartments: the plasma membrane fraction, the microsomal and mitochondrial fractions and the nuclear fraction. However, if enzyme activity in the above fractions was measured in the presence of the stimulatory agents NaF, guanylylimidophosphate or guanosine 5'-O-(3-thio)triphosphate, or if the subcellular fractionation was performed in media containing ATP and dithiothreitol, the overall recovered activity greatly increased (up to 90%) and the distribution was shifted in favour of the plasma membrane fraction (up to 65% of the recovered activity). The adenylate cyclase properties were similar in all fractions. The ionophore alamethicin did not alter the subcellular distribution of the enzyme. The localization of adenylate cyclase in thymocytes thus appears to be primarily, if not uniquely, in the plasma membrane, as generally found in other cell types.  相似文献   

5.
The isolated intact white adipocyte of the Swiss mouse responds to both ACTH and catecholamines by an elevation of cAMP levels and an increase in lipolysis. However, in the isolated plasma membrane of the mouse adipocyte, adenylate cyclase loses its responsiveness to ACTH but retains its ability to respond to catecholamines. This lack of responsiveness to ACTH by adenylate cyclase of mouse adipocyte plasma membrane can be overcome, at least partially, by addition of GPP (NH)p, an analog of GTP, to the assay medium. The data on mouse adipocyte membrane suggests that the coupling of ACTH receptor to adenylate cyclase is dependent on GTP and that catecholamine-activation of adenylate cyclase is less dependent on this nucleotide. The isolated intact white adipocyte of adult New Zealand rabbit responds to ACTH, but does not (or only weakly) respond to catecholamines. In contrast to the mouse plasma membrane preparation, adenylate cyclase of adipocyte membrane of the rabbit responds to ACTH. And the addition of GPP(NH)P is not required to demonstrate the CTH: sensitive adenylate cyclase activity. The difference between mouse and rabbit adipocyte membrane in the requirement for GPP(NH)P in ACTH action is not readily explained. The lack of catecholamine sensitivity of rabbit membrane enzyme cannot be reversed by addition of GPP(NH)P or adenosine deaminase. These two adenylate cyclase model systems using mouse and rabbit adipocyte plasma membrane may be useful tools for the study of the specificity and mechanism of action of lipolytic hormones such as ACTH and catecholamines.  相似文献   

6.
The present studies have established that there is an impaired response to epinephrine of the adenylate system in adipocyte preparations from obese hyperglycemic mice as compared to their thin littermates. In contrast, membrane preparations from both groups of animals were found to exhibit a similar response to fluoride ion. The response of adenylate cyclase to epinephrine was enhanced to a similar extent by increasing the ATP concentration in adipocyte plasma membranes from the two groups of animals. While GTP (0.1 muM) elicited an ATP-like response of similar magnitude in adenylate cyclase activity in both membrane preparations, it did not therefore abolish the impaired response to epinephrine of adenylate cyclase activity in membranes of obese mice. The response of adenylate cyclase activity to (--)-epinephrine in membrane preparations from obese mice progressively diminished with the age of these animals. In contrast, the concentration of (--)-epinephrine required for half-maximal stimulation of adenylate cyclase was similar and remained unchanged with the age for both membrane preparations. These data suggest that a perturbation may occur in the coupling step between the hormone receptor and the catalytic site of the adenylate cyclase system in obese mice. While a 15-day restrictive diet or a 72-h period of fasting was found to normalize the hyperinsulinemia of obese animals, neither affected the response of adenylate cyclase to epinephrine in preparations of adipocyte membranes from these mice. These results suggest that the observed defect in the response of plasma membrane adenylate cyclase activity to epinephrine in obese mice does not result from their hyperinsulinism.  相似文献   

7.
Cytochemical localizations of adenylate cyclase and 3′,5′-nucleotide phosphodiesterase were performed on aggregating Dictytostelium discoideum myxamoebae. The adenylate cyclase reaction product was localized on the inner surface of the plasma membrane. The phosphodiesterase reaction product was localized on the outer surface of the plasma membrane. Differences in enzyme activity were noted according to the state of cell (isolated or aggregated) and according to the cell position in larger aggregates. Heavy precipitation indicative of adenylate cyclase activity was not observed in isolated amoebae, but was often observed in streams and in some cells of aggregates. The precipitation indicative of phosphodiesterase activity could be found in isolated amoebae and in peripheral cells of aggregates.  相似文献   

8.
The interaction of various spin-labeled compounds with the murine thymocyte adenylate cyclase-cyclic AMP system was investigated. Electron paramagnetic resonance spectra from spin-labeled compounds were used to calculate the order parameter, S, and indicated that the thymocyte plasma membrane is a relatively rigid structure. Increasing concentrations of spin-labeled stearates, but not their corresponding methyl esters, resulted in increased membrane fluidity, partial lysis, and concomitant complete inhibition of cholera toxin-mediated increases in cyclic AMP content. Upon subsequent isolation of plasma membranes from these cells, cholera toxin-stimulated adenylate cyclase activity was also completely inhibited. Direct addition of spin-labeled stearates, but not spin-labeled methyl stearates, to thymocyte homogenates caused a dramatic reduction of basal, cholera toxin-, isoproterenol-, NaF-, and prostaglandin E1-stimulated adenylate cyclase activity. Inhibition was complete within the first minute of addition to homogenates and required approximately 0.2 mM spin-labeled stearate I(12,3) for half-maximal inhibition. This inhibition occurred in the presence or absence of an ATP-regenerating system and was not readily reversible. Furthermore, since the membrane cyclic phosphodiesterase activity was not altered by spin-labeled stearates, their inhibition was attributed to a direct action of stearate spin labels on adenylate cyclase. Neither stearate, methyl stearate, spin-labeled methyl stearates nor 2,2,6,6,-tetramethylpiperidine-1-oxyl (Tempo) altered cell viability or enzyme activities at the concentrations studied. Spin-labeled stearates seemed to intercalate into different areas of the plasma membrane than their corresponding methyl esters. Furthermore, the action of spin-labeled stearates appeared to be on the exterior of the plasma membrane rather than the interior. These results illustrate the presence of multilipid domains and the importance of selected lipids and lipid-protein interactions in the adenylate cyclase-cyclic AMP system. Thymocyte adenylate cyclase is described in terms of a current model for membrane proteins.  相似文献   

9.
Tetraploid strains of Saccharomyces cerevisiae carrying different dosages of the CYR1+ gene have been constructed. Adenylate cyclase activity observed in these tetraploid strains was proportional to the dosage of the active CYR1+ gene. Of the 57 mutants requiring adenosine 3',5'-monophosphate for growth at 35 degrees C, two allelic temperature-sensitive cyr1 mutants produced thermolabile adenylate cyclase. Crude extract and plasma membrane fraction of cyr1 mutant cells had no adenylate cyclase activity when assayed with GTP or 5'-guanylyl imidodiphosphate in the presence of Mn2+ or Mg2+. Plasma membrane and Lubrol-soluble plasma membrane fractions obtained from the temperature-sensitive cyr1 mutant were thermolabile compared with those from the wild-type strain. Three cyr1 mutants carried nonsense mutations susceptible to ochre (UAA) suppressors, SUP3 and SUP-o, and had no detectable level of adenylate cyclase activity. It is concluded that the cyr1 mutants carry lesions in the structural gene for adenylate cyclase.  相似文献   

10.
This report explores the biochemical basis for clonal variation in adrenocorticotropin (ACTH)-sensitive adenylate cyclase activity in the Y1 mouse adrenocortical tumor cell line. We demonstrate that the level of a specific protein, designated p68, is significantly correlated with the ability of adrenocorticotropin to stimulate adenylate cyclase activity among Y1 subclones (p = 0.004; r = 0.65). p68 was characterized by its molecular weight in sodium dodecyl sulfate polyacrylamide gels (Mr = 68,000) and by its isoelectric point as determined by two-dimensional gel electrophoresis (pI = 7.2). On two-dimensional gels, the protein migrated as a major spot with satellite spots 0.1 pH unit on either side. Homogenates and plasma membrane fractions from clones highly responsive to ACTH had large amounts of p68. In homogenates from highly responsive clones p68 represented 10 to 12% of the total protein. Homogenates and plasma membrane fractions from clones insensitive to ACTH were deficient in p68. In homogenates from the insensitive clones Y6 and OS3, p68 represented less than or equal 0.8% of the total protein. A somatic cell hybrid, formed by fusion of these two ACTH-insensitive clones recovered ACTH-sensitive adenylate cyclase activity and concomitantly expressed appreciable levels of p68. It is suggested that p68 may regulate the transfer of information from the occupied ACTH receptor ot the catalytic subunit of adenylate cyclase.  相似文献   

11.
Prostaglandin E1 stimulation of human platelet adenylate cyclase, in purified plasma membranes, occurs without the addition of exogenous GTP. Possible contamination of the adenylate cyclase assay mixture by GTP either from nonspecifically bound nucleotide in the plasma membrane or from the substrate ATP was ruled out as follows: (a) variation of the membrane concentration, repeated washing, inclusion of EDTA, GDP beta S, or GMP in the wash step, or UDP in the assay, are all without effect, and (b) analysis of the substrate by high-performance liquid chromatography revealed no contaminating GTP. Other prostaglandins (I2, E2, D2) also activate cyclase without the addition of GTP. In sharp contrast, stimulation of adenylate cyclase in the human neutrophil plasma membrane by prostaglandin E1 shows an obligatory requirement for GTP, under identical assay conditions. GDP beta S pretreatment amplifies the fold cyclase stimulation by GTP in the presence and absence of prostaglandin E1, by lowering the basal activity. This alteration occurs without lowering the GTP-independent prostaglandin E1 activation, and is specific for inhibitory guanine nucleotides (GDP beta S, GMP, GDP) in the pretreatment. Extensive washing with buffer or incubation with other nucleotides, epinephrine, or prostaglandin E1 prior to the assay, is without effect. GTP gamma S treatment of the membrane induces a high-activity state and abolishes the GDP beta S effect on basal activity as well as prostaglandin E1 activation of cyclase. The results suggest distinct patterns of prostaglandin stimulation in platelet and neutrophil cyclase systems, and further imply that guanine nucleotide, prebound to specific sites within the GTP-regulatory proteins, may modify the kinetic characteristics of platelet adenylate cyclase.  相似文献   

12.
Changes in distribution of adenylate cyclase in PC 12 cells under the influence of nerve growth factor (NGF) have been studied using cytochemical methods. The adenylate cyclase activity was predominantly associated with the plasma membrane. In cell cultures without NGF the activity was revealed on the contacting surfaces of cell aggregates; single grains of reaction product were revealed on exposed cell surface only in cultures with a high cell density. One day after administration of NGF, the adenylate cyclase activity on exposed cell surface increased, and three days later the whole cell surface was covered with lead sediment. The enzyme activity was also revealed in growth cones, filopodia and microcytospheres. The role of adenydlate cyclase system in neuron-like differentiation of PC 12 cells is discussed.  相似文献   

13.
LH controls Leydig cell steroidogenesis by interaction with specific membrane receptors initiating membrane coupling events. Stimulation of the androgen pathways occurs mainly through cAMP mediated mechanism including LH induced guanyl nucleotide binding, membrane phosphorylation and adenylate cyclase activation. cAMP dependent kinase activation presumably causes phosphorylation of key proteins of the steroidogenic pathway and consequent increase in testosterone production. The hormone also appears to facilitate the androgen stimulus by a cyclic AMP independent mechanism located at the plasma membrane or intracellular sites. The stimulatory event can be negatively influenced by the action of certain peptide hormones (i.e. angiotensin II) through the guanyl nucleotide inhibitory subunit of adenylate cyclase (Gi). In recent studies we have presented evidence for a Ca2+ sensitive kinase system present in purified cell membranes. Gpp(NH)p, GTP, and phospholipid in presence of nanomolar Ca2+ induce phosphate incorporation into Mr 44,500 substrate with marked inhibition at microM Ca2+. Similarly a biphasic pattern of activation was observed with adenylate cyclase activity. Membrane phosphorylation may be a modifier of LH-stimulated adenylate cyclase activity and possibly other LH induced actions in the activated Leydig cell membrane. Furthermore we have defined the stimulatory effects of forskolin on all Leydig cell cyclic AMP pools and have provided additional evidence of functional compartmentalization and/or cAMP independent facilitory stimulus of steroidogenesis by the trophic hormone. The demonstration of a novel high affinity inhibitory action of forskolin upon adenylate cyclase activity and cyclic AMP generation mediated by the Gi subunit of adenylate cyclase has provided a new approach for direct evaluation of functional inhibitory influence of Gi subunit in the Leydig cell. The cultured fetal Leydig cell system has provided a useful model to elucidate mechanisms involved in the development of gonadotropin induced estradiol mediated desensitization of steroidogenesis. We have isolated from the fetal testis a small population (2-5% of total) of transitional cells with morphological characteristics of cells found in 15 day postnatal testis but functional capabilities of the adult cell. We have also demonstrated after appropriate treatment (i.e. estrogen, and frequent or a high gonadotropin dose) the emergence of a functional adult-like cell type from the fetal Leydig cell population.  相似文献   

14.
The present study was undertaken to localize adenylate cyclase activity in salivary glands by cytochemical means. For the study, serous parotid glands and mixed sublingual glands of the rat were used. Pieces of the fixed glands were incubated with adenosine triphosphate (ATP) or adenylyl-imidodi-phosphate (AMP-PNP) as substrate: inorganic pyrophosphate or PNP liberated upon the action of adenylate cyclase on the substrates is precipitated by lead ions at their sites of production. In both glands, the reaction product was detected along the myoepithelial cell membranes in contact with secretory cells, indicating that a high level of adenylate cyclase activity occurs in association with these cell membranes. The association with a high level of the enzyme activity might be related to the contractile nature of myoepithelial cells which are supposed to aid secretory cells in discharging secretion products. A high level of adenylate cyclase activity was also detected associated with serous secretory cells (acinar cells of the parotid gland and demilune cells of the sublingual gland), but not with mucous secretory cells. In serous cells, deposits of reaction product were localized along the extracellular space of the apical cell membrane bordering the lumen. This is the portion of the cell membrane which fuses with the granule membranes during secretion. Since the granule membranes are not associated with a detectable level of adenylate cyclase activity, it appears that the enzyme activity becomes activated or associated with the granule membranes as they become part of the cell membrane by fusion. The association with a high level of adenylate cyclase activity appears to be related to the ability of the membrane to fuse with other membranes. It is likely, since the luminal membrane of mucous cells which does not fuse with mucous granule membranes during secretion is not associated with a detectable enzyme activity.  相似文献   

15.
Activation of adenylate cyclase in cultured fibroblasts by trypsin   总被引:5,自引:0,他引:5  
Adenylate cyclase activity measured in membranes of cultured normal rat kidney (NRK) fibroblasts was markedly increased by prior treatment of the intact cells with trypsin. Cell population density influenced the extent of activation observed. Trypsin treatment of sparse cells significantly enhanced adenylate cyclase activity, whereas similar treatment of confluent cells caused only a slight increase in adenylate cyclase activity. The degree of activation noted after trypsin treatment also varied depending on the adenylate cyclase function measured. Activity determined in the presence of GTP alone showed the greatest increase after trypsin treatment. Similar enhancement of adenylate cyclase activity of a washed cell membrane preparation was achieved by the addition of low concentrations of trypsin directly to the adenylate cyclase reaction mixture. The membranes of confluent NRK fibroblasts initially exhibited higher adenylate cyclase activity than did membranes of sparse cells. The present results suggest that this change in adenylate cyclase activity at cell confluence is not due to an increase in the amount of adenylate cyclase in the cell membrane but rather to a change in membrane components that regulate its activity. Proteolytic activation of adenylate cyclase appears to result from degradation of cell membrane proteins that modulate the activity of this enzyme.  相似文献   

16.
Free flow electrophoresis was employed to separate renal cortical plasma membranes into luminal (brush border microvilli) and contraluminal (basal-lateral membrane) fractions. During the separation adenylate cyclase activity was found to parallel the activity of Na+-K+-activated ATPase, an enzyme which is present in contraluminal but not in luminal membranes. In the basal-lateral membrane fraction the specific activities of adenylate cyclase and Na+-K+-activated ATPase were 4.4 and 4.6 times greater, respectively, than in the brush border fraction. The adenylate cyclase of the basal-lateral membrane fraction was specifically stimulated by parathyroid hormone which maximally increased enzyme activity eightfold. The biologically active (1-34) peptide fragment of paratyhroid hormone produced a 350% increase in adenylate cyclase activity. In contrast, calcitonin, epinephrine and vasopressin maximally stimulated the enzyme by only 55, 35 and 30%, respectively. These results indicate that adenylate cyclase, specifically stimulated by parathyroid hormone, is distributed preferentially in the contraluminal region of the plasma membrane of renal cortical epithelial cells.  相似文献   

17.
Effects of guanine nucleotides on the adenylate cyclase activity of thyroid plasma membranes were investigated by monitoring metabolism of the radiolabeled nucleotides by thin-layer chromatography (TLC). When ATP was used as substrate with a nucleotide-regeneratign system, TSH stimulated the adenylate cyclase activity in the absence of exogenous guanine nucleotide. Addition of GTP and GDP equally enhanced the TSH stimulation. Effects of GTP and GDP were indistinguishable in regard to their inhibitory effects on NaF-stimulated activities. The results from TLC suggested that GDP could be converted to GTP by a nucleotide-regenerating system. Even in the absence of nucleotide-regenerating system, addition of GDP to the adenylate cyclase assay mixture int he parallel decrease in ATP levels and formation of GTP indicating that thyroid plasma membrane preparatiosn possessed a transphosphorylating activity. When an ATP analog, App[NH]p, was used as substrate without a nucleotide-regenerating system, no conversion of GDP to GTP was observed. Under such conditions, TSH did not stimulate the adenylate cyclase activity unless exogenous GTP or Gpp[NH]p was added. GDP no longer supported TSH stimulation and caused a slight decrease in the activity. GDP was less inhibitory than Gpp(NH)p to the NaF-stimulated adenylate cyclase activity. These results suggest: (1) TSH stimulation of thyroid adenylate cyclase is absolutely dependent on the regulatory nucleotides. (2) In contrst to GTP, GDP cannot support the coupling of the receptor-TSH complex to the catalytic componenet of adenylate cyclase. (3) The nucleotide regulatory site is more inhibitory to the stimulation of the enzyme by NaF when occupied by Gpp[NH]p than GDP.  相似文献   

18.
L-Histidine and imidazole (the histidine side chain) significantly increase cAMP accumulation in intact LLC-PK1 cells. This effect is completely inhibited by isobutylmethylxanthine (IBMX). Histidine and imidazole stimulate cAMP phosphodiesterase activity in soluble and membrane fractions of LLC-PK1 cells suggesting that the IBMX-sensitive effect of these agents to stimulate cAMP formation is not due to inhibition of cAMP phosphodiesterase. Histidine and imidazole but not alanine (the histidine core structure) increase basal, GTP-, forskolin-, and AVP-stimulated adenylate cyclase activity in LLC-PK1 membranes. Two other amino acids with charged side chains (aspartic and glutamic acids) increase AVP-stimulated but neither basal- nor forskolin-stimulated adenylate cyclase activity. This suggests that multiple amino acids with charged side chains can regulate selected aspects of adenylate cyclase activity. To better define the mechanism of histidine regulation of adenylate cyclase, membranes were detergent-solubilized which prevents histidine and imidazole potentiation of forskolin-stimulated adenylate cyclase activity and suggests that an intact plasma membrane environment is required for potentiation. Neither pertussis toxin nor indomethacin pretreatment alter imidazole potentiation of adenylate cyclase. IBMX pretreatment of LLC-PK1 membranes also prevents imidazole to potentiate adenylate cyclase activity. Since IBMX inhibits adenylate cyclase coupled adenosine receptors, LLC-PK1 cells were incubated in vitro with 5'-N-ethylcarboxyamideadenosine (NECA) which produced a homologous pattern of desensitization of NECA to stimulate adenylate cyclase activity. Despite homologous desensitization, histidine and imidazole potentiation of adenylate cyclase was unaltered. These data suggest that histidine, acting via an imidazole ring, potentiates adenylate cyclase activity and thereby increases cAMP formation in cultured LLC-PK1 epithelial cells. This potentiation requires an intact plasma membrane environment, occurs independent of a pertussis toxin-sensitive substrate and of products of cyclooxygenase, and is inhibited by IBMX. This IBMX-sensitive pathway does not involve either inhibition of cAMP phosphodiesterase activity or a stimulatory adenosine receptor coupled to adenylate cyclase.  相似文献   

19.
The ability of glucagon (10 nM) to increase hepatocyte intracellular cyclic AMP concentrations was reduced markedly by the tumour-promoting phorbol ester TPA (12-O-tetradecanoyl phorbol-13-acetate). The half-maximal inhibitory effect occurred at 0.14 ng/ml TPA. This action occurred in the presence of the cyclic AMP phosphodiesterase inhibitor isobutylmethylxanthine (1 mM) indicating that TPA inhibited glucagon-stimulated adenylate cyclase activity. TPA did not affect either the binding of glucagon to its receptor or ATP concentrations within the cell. TPA did inhibit the increase in intracellular cyclic AMP initiated by the action of cholera toxin (1 microgram/ml) under conditions where phosphodiesterase activity was blocked. TPA did not inhibit glucagon-stimulated adenylate cyclase activity in a broken plasma membrane preparation unless Ca2+, phosphatidylserine and ATP were also present. It is suggested that TPA exerts its inhibitory effect on adenylate cyclase through the action of protein kinase C. This action is presumed to be exerted at the point of regulation of adenylate cyclase by guanine nucleotides.  相似文献   

20.
Adenylate cyclase (ATP pyrophosphate-lyase (cylizing), EC 4.6.1.1) activity, measured in homogenates of normal, malignant and hybrid mammalian cell lines, is enhanced and subsequently inhibited by increasing concentrations of trypsin (EC 3.4.21.4). Treatment of intact cells with trypsin appears to cause latent activation of adenylate cyclase (i.e. activation which is only expressed after homogenization of the cells). Conversely, adenylate cyclase activity of a normal Chinese hamster fibroblast cell line is inhibited in intact cells by trypsin through the degradation of some site on the outer surface of the plasma membrane. The prostaglandin E1 receptor is not affected by trypsinization of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号