首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Infection with attenuated simian immunodeficiency virus (SIV) in rhesus macaques has been shown to raise antibodies capable of neutralizing an animal challenge stock of primary SIVmac251 in CEMx174 cells that correlate with resistance to infection after experimental challenge with this virulent virus (M. S. Wyand, K. H. Manson, M. Garcia-Moll, D. C. Montefiori, and R. C. Desrosiers, J. Virol. 70:3724–3733, 1996). Here we show that these neutralizing antibodies are not detected in human and rhesus peripheral blood mononuclear cells (PBMC). In addition, neutralization of primary SIVmac251 in human and rhesus PBMC was rarely detected with plasma samples from a similar group of animals that had been infected either with SIVmac239Δnef for 1.5 years or with SIVmac239Δ3 for 3.2 years, although low-level neutralization was detected in CEMx174 cells. Potent neutralization was detected in CEMx174 cells when the latter plasma samples were assessed with laboratory-adapted SIVmac251. In contrast to primary SIVmac251, laboratory-adapted SIVmac251 did not replicate in human and rhesus PBMC despite its ability to utilize CCR5, Bonzo/STRL33, and BOB/gpr15 as coreceptors for virus entry. These results illustrate the importance of virus passage history and the choice of indicator cells for making assessments of neutralizing antibodies to lentiviruses such as SIV. They also demonstrate that primary SIVmac251 is less sensitive to neutralization in human and rhesus PBMC than it is in established cell lines. Results obtained in PBMC did not support a role for neutralizing antibodies as a mechanism of protection in animals immunized with attenuated SIV and challenged with primary SIVmac251.  相似文献   

4.
Among the many simian immunodeficiency virus (SIV) immunogens, only live attenuated viral vaccines have afforded strong protection to a natural pathogenic isolate. Since the promoter is crucial to the tempo of viral replication in general, it was reasoned that promoter exchange might confer a novel means of attenuating SIV. The core enhancer and promoter sequences of the SIV macaque 239nefstop strain (NF-κB/Sp1 region from −114 bp to mRNA start) have been exchanged for those of the human cytomegalovirus immediate-early promoter (CMV-IE; from −525 bp to mRNA start). During culture of the resulting virus, referred to as SIVmegalo, on CEMx174 or rhesus macaque peripheral blood mononuclear cells, deletions arose in distal regions of the CMV-IE sequences that stabilized after 1 or 2 months of culture. However, when the undeleted form of SIVmegalo was inoculated into rhesus macaques, animals showed highly controlled viremia during primary and persistent infection. Compared to parental virus infection in macaques, primary viremia was reduced by >1,000-fold to undetectable levels, with little sign of an increase of cycling cells in lymph nodes, CD4+ depletion, or altered T-cell activation markers in peripheral blood. Moreover, in contrast to wild-type infection in most infected animals, the nef stop mutation did not revert to the wild-type codon, indicating yet again that replication was dramatically curtailed. Despite such drastic attenuation, antibody titers and enzyme-linked immunospot reactivity to SIV peptides, although slower to appear, were comparable to those seen in a parental virus infection. When animals were challenged intravenously at 4 or 6 months with the uncloned pathogenic SIVmac251 strain, viremia was curtailed by ~1,000-fold at peak height without any sign of hyperactivation in CD4+- or CD8+-T-cell compartment or increase in lymph node cell cycling. To date, there has been a general inverse correlation between attenuation and protection; however, these findings show that promoter exchange constitutes a novel means to highly attenuate SIV while retaining the capacity to protect against challenge virus.  相似文献   

5.
目的体外增值、制备动物感染来源的RT-SHIV病毒中国恒河猴适应株,比较PBMCs和CEMx174两种细胞制备出病毒的差异,同时用TZM-bl、CEMx174、PBMC三种细胞滴定测定病毒TCID50。方法用RT-SHIV病毒静脉感染中国恒河猴,定期采血测定血浆病毒载量,当病毒载量达高峰时采血分离外周血单核淋巴细胞(PBMCs),与正常恒河猴PBMCs或CEMx174细胞共培养,定期测定培养液中的P24抗原水平,当病毒复制达高峰期时收集培养上清,分装并冻存;测定病毒RNA载量、P24抗原浓度,滴定病毒的TCID50。结果本研究共制备了78 mL PBMCs来源的RT-SHIV病毒和85 mL CEMx174细胞来源的RT-SHIV病毒。RT基因序列和原始序列的相似度为99%,仅在第254和265位的氨基酸发现突变。RT-SHIV(PBMC)和RT-SHIV(CEMx174)病毒载量分别为1.641×108 copies/mL和8.375×108 copies/mL,P24抗原水平分别为20.745 ng/mL和4.28 ng/mL,TZM-bl、CEMx174、PBMC细胞测定病毒的TCID50分别为3.16×105 TCID50/mL和1×104 TCID50/mL,5×102 TCID50/mL和5×105 TCID50/mL,5×102 TCID50/mL和5×103 TCID50/mL。结论 PBMCs细胞来源制备的病毒较CEMx174制备的病毒具有更高的感染性。  相似文献   

6.
The transmembrane (TM) glycoprotein gp41 of human immunodeficiency virus type 1 possesses an unusually long ( approximately 150 amino acids) and highly conserved cytoplasmic region. Previous studies in which this cytoplasmic tail had been deleted partially or entirely have suggested that it is important for virus infectivity and incorporation of the gp120-gp41 glycoprotein complex into virions. To determine which regions of the conserved C-terminal domains are important for glycoprotein incorporation and infectivity, several small deletions and amino acid substitutions which modify highly conserved motifs were constructed in the infectious proviral background of NL4.3. The effects of these mutations on infectivity and glycoprotein incorporation into virions produced from transfected 293-T cells and infected H9 and CEMx174 cells were determined. With the exception of a mutation deleting amino acids QGL, all of the constructs resulted in decreased infectivity of the progeny virus both in a single-round infectivity assay and in a multiple-infection assay in H9 and CEMx174 cells. For most mutations, the decreased infectivity was correlated with a decreased incorporation of glycoprotein into virions. Substitution of the arginines (residues 839 and 846) with glutamates also reduced infectivity, but without a noticeable decrease in the amount of glycoprotein incorporated into virus produced from infected T cells. These results demonstrate that minor alterations in the conserved C-terminal region of the gp41 cytoplasmic tail can result in reductions in infectivity that correlate for most but not all constructs with a decrease in glycoprotein incorporation. Observed cell-dependent differences suggest the involvement of cellular factors in regulating glycoprotein incorporation and infectivity.  相似文献   

7.
Previous work has shown that four deletions in simian immunodeficiency virus (SIV), termed SD1a, SD1b, SD1c, and SD6, which eliminated sequences at nucleotide positions 322 to 362, 322 to 370, 322 to 379, and 371 to 379, respectively, located downstream of the primer binding site, impaired viral replication capacity to different extents. Long-term culturing of viruses containing the SD1a, SD1b, and SD6 deletions led to revertants that possessed wild-type replication kinetics. We now show that these revertants retained the original deletions in each case but that novel additional mutations were also present. These included a large deletion termed D1 (nt +216 to +237) within the U5 region that was shown to be biologically relevant to reversion of both the SD1a and SD1b constructs. In the case of SD6, two compensatory point mutations, i.e., A+369G, termed M1, located immediately upstream of the SD6 deletion, and C+201T, termed M2, within U5, were identified and could act either singly or in combination to restore viral replication. Secondary structure suggests that an intact U5-leader stem is important in SIV for infectiousness and that the additional mutants described played important roles in restoration of this motif.  相似文献   

8.
Simian immunodeficiency virus (SIV) infection of macaques is remarkably similar to that of human immunodeficiency virus type 1 (HIV-1) in humans, and the SIV-macaque system is a good model for AIDS research. We have constructed an SIV proviral DNA clone that is deleted of 97 nucleotides (nt), i.e., construct SD, at positions (+322 to +418) immediately downstream of the primer binding site (PBS) of SIVmac239. When this construct was transfected into COS-7 cells, the resultant viral progeny were severely impaired with regard to their ability to replicate in C8166 cells. Further deletion analysis showed that a virus termed SD1, containing a deletion of 23 nt (+322 to +344), was able to replicate with wild-type kinetics, while viruses containing deletions of 21 nt (+398 to +418) (construct SD2) or 53 nt (+345 to +397) (construct SD3) displayed diminished capacity in this regard. Both the SD2 and SD3 viruses were also impaired with regard to ability to package viral RNA, while SD1 viruses were not. The SD and SD3 constructs did not revert to increased replication ability in C8166 cells over 6 months in culture. In contrast, long-term passage of the SD2 mutated virus resulted in a restoration of replication capacity, due to the appearance of four separate point mutations. Two of these substitutions were located in leader sequences of viral RNA within the PBS and the dimerization initiation site (DIS), while the other two were located within two distinct Gag proteins, i.e., CA and p6. The biological relevance of three of these point mutations was confirmed by site-directed mutagenesis studies that showed that SD2 viruses containing each of these substitutions had regained a significant degree of viral replication capacity. Thus, leader sequences downstream of the PBS, especially the U5-leader stem and the DIS stem-loop, are important for SIV replication and for packaging of the viral genome.  相似文献   

9.
We have devised a novel approach for producing simian immunodeficiency virus (SIV) strains and, potentially, human immunodeficiency virus type 1 (HIV-1) strains that are limited to a single cycle of infection. Unlike previous lentiviral vectors, our single-cycle SIV is capable of expressing eight of the nine viral gene products and infected cells release immature virus particles that are unable to complete subsequent rounds of infection. Single-cycle SIV (scSIV) was produced by using a two-plasmid system specifically designed to minimize the possibility of generating replication-competent virus by recombination or nucleotide reversion. One plasmid carried a full-length SIV genome with three nucleotide substitutions in the gag-pol frameshift site to inactivate Pol expression. To ensure inactivation of Pol and to prevent the recovery of wild-type virus by nucleotide reversion, deletions were also introduced into the viral pol gene. In order to provide Gag-Pol in trans, a Gag-Pol-complementing plasmid that included a single nucleotide insertion to permanently place gag and pol in the same reading frame was constructed. We also mutated the frameshift site of this Gag-Pol expression construct so that any recombinants between the two plasmids would remain defective for replication. Cotransfection of both plasmids into 293T cells resulted in the release of Gag-Pol-complemented virus that was capable of one round of infection and one round of viral gene expression but was unable to propagate a spreading infection. The infectivity of scSIV was limited by the amount of Gag-Pol provided in trans and was dependent on the incorporation of a functional integrase. Single-cycle SIV produced by this approach will be useful for addressing questions relating to viral dynamics and viral pathogenesis and for evaluation as an experimental AIDS vaccine in rhesus macaques.  相似文献   

10.
Experimental evidence from the simian immunodeficiency virus (SIV) model of AIDS has shown that the nef gene is critical in the pathogenesis of AIDS. Consequently, nef is of considerable interest in both antiviral drug and vaccine development. Preliminary findings in two rhesus macaques indicated that a deletion of only 12 bp found in the overlapping nef/3' long terminal repeat (LTR) region (9501 to 9512) of the SIVmacC8 molecular clone was associated with reduced virus isolation frequency. We show that this deletion can be repaired in vivo by a sequence duplication event and that sequence evolution continues until the predicted amino acid sequence of the repair is virtually indistinguishable from that of the virulent wild type. These changes occurred concomitantly with reversion to virulence, evidenced by a high virus isolation frequency and load, decline in anti-p27 antibody, substantial reduction in the CD4/CD8 ratio, and development of opportunistic infections associated with AIDS. These findings clearly illustrate the capacity for repair of small attenuating deletions in primate lentiviruses and also strongly suggest that the region from 9501 to 9512 in the SIV nef/3' LTR region is of biological relevance. In addition, the ability of attenuated virus to revert to virulence raises fundamental questions regarding the nature of superinfection immunity.  相似文献   

11.
HIV vaccine development has been hampered by issues such as undefined correlates of protection and extensive diversity of HIV. We addressed these issues using a previously established SIV-macaque model in which SIV mutants with deletions of multiple gp120 N-glycans function as potent live attenuated vaccines to induce near-sterile immunity against the parental pathogenic SIVmac239. In this study, we investigated the protective efficacy of these mutants against a highly pathogenic heterologous SIVsmE543-3 delivered intravenously to rhesus macaques with diverse MHC genotypes. All 11 vaccinated macaques contained the acute-phase infection with blood viral loads below the level of detection between 4 and 10 weeks postchallenge (pc), following a transient but marginal peak of viral replication at 2 weeks in only half of the challenged animals. In the chronic phase, seven vaccinees contained viral replication for over 80 weeks pc, while four did not. Neutralizing antibodies against challenge virus were not detected. Although overall levels of SIV specific T cell responses did not correlate with containment of acute and chronic viral replication, a critical role of cellular responses in the containment of viral replication was suggested. Emergence of viruses with altered fitness due to recombination between the vaccine and challenge viruses and increased gp120 glycosylation was linked to the failure to control SIV. These results demonstrate the induction of effective protective immune responses in a significant number of animals against heterologous virus by infection with deglycosylated attenuated SIV mutants in macaques with highly diverse MHC background. These findings suggest that broad HIV cross clade protection is possible, even in hosts with diverse genetic backgrounds. In summary, results of this study indicate that deglycosylated live-attenuated vaccines may provide a platform for the elucidation of correlates of protection needed for a successful HIV vaccine against diverse isolates.  相似文献   

12.
We used the simian immunodeficiency virus (SIV) molecular clone SIVmac239 to generate a deletion construct, termed SD2, in which we eliminated 22 nucleotides at positions +398 to +418 within the putative dimerization initiation site (DIS) stem. This SD2 deletion severely impaired viral replication, due to adverse effects on the packaging of viral genomic RNA, the processing of Gag proteins, and viral protein patterns. However, long-term culture of SD2 in either C8166 or CEMx174 cells resulted in restoration of replication capacity, due to two different sets of three compensatory point mutations, located within both the DIS and Gag regions. In the case of C8166 cells, both a K197R and a E49K mutation were identified within the capsid (CA) protein and the p6 protein of Gag, respectively, while the other point mutation (A423G) was found within the putative DIS loop. In the case of CEMx174 cells, two compensatory mutations were present within the viral nucleocapsid (NC) protein, E18G and Q31K, in addition to the same A423G substitution as observed with C8166 cells. A set of all three mutations was required in each case for restoration of replication capacity, and either set of mutations could be substituted for the other in both the C8166 and CEMx174 cell lines.  相似文献   

13.
The recent identification of coreceptors that mediate efficient entry of human immunodeficiency virus type 1 (HIV-1) suggests new therapeutic and preventive strategies. We analyzed simian immunodeficiency virus (SIV) entry cofactors to investigate whether the macaque SIV model can be used as an experimental model to evaluate these strategies. Similar to primary HIV-1 isolates, a well-characterized molecular clone, SIVmac239, which replicates poorly but efficiently enters into rhesus alveolar macrophages and an envelope variant, SIVmac239/316Env, with an approximately 1,000-fold-higher replicative capacity in macrophages used the beta-chemokine receptor CCR5 for efficient entry. The transmembrane portion of 316Env allowed low-level entry into cells expressing CCR1, CCR2B, and CCR3. A single amino acid substitution in the V3 loop of SIVmac239/316Env, 321P-->S, impaired the ability to enter into the T-B hybrid cell line CEMx174 but had relatively little effect on entry into primary cells and HOS.CD4 cells expressing CCR5. Although CEMx174 cells do not express CCR5, most SIVmac variants entered this hybrid cell line efficiently but did not enter the parental T-cell line CEM. It seems likely that CEMx174 cells express an as-yet-unidentified, perhaps B-cell-derived cofactor which allows efficient entry of SIVmac.  相似文献   

14.
In lentivirus infections, there are typically few cells in the host that harbor the provirus. For this reason, molecular clones of human and simian immunodeficiency viruses (HIV and SIV) are generally derived after passage and amplification of the virus in cell culture. To determine whether SIV variants that persist in culture are similar to the variants that predominate in the host, we examined the proviral sequence of the SIV envelope (env) gene before and after cocultivation of lymphocytes from a macaque with AIDS with naive macaque lymphocytes or human cell lines. Many of the predominant variants in the monkey replicated and persisted in macaque lymphocytes and CEMx174 cells in culture, but a more limited population of variants replicated in C8166 cells. Passage of virus, harvested after 4 weeks of coculture, onto naive cells further demonstrated that the majority of proviruses detected by polymerase chain reaction were also viral variants that were expressed and packaged into infectious virions.  相似文献   

15.
Recent recombinant viral vector-based AIDS vaccine trials inducing cellular immune responses have shown control of CXCR4-tropic simian-human immunodeficiency virus (SHIV) replication but difficulty in containment of pathogenic CCR5-tropic simian immunodeficiency virus (SIV) in rhesus macaques. In contrast, controlled infection of live attenuated SIV/SHIV can confer the ability to contain SIV superchallenge in macaques. The specific immune responses responsible for this control may be induced by live virus infection but not consistently by viral vector vaccination, although those responses have not been determined. Here, we have examined in vitro anti-SIV efficacy of CD8+ cells in rhesus macaques that showed prophylactic viral vector vaccine-based control of CXCR4-tropic SHIV89.6PD replication. Analysis of the effect of CD8+ cells obtained at several time points from these macaques on CCR5-tropic SIVmac239 replication in vitro revealed that CD8+ cells in the chronic phase after SHIV challenge suppressed SIV replication more efficiently than those before challenge. SIVmac239 superchallenge of two of these macaques at 3 or 4 years post-SHIV challenge was contained, and the following anti-CD8 antibody administration resulted in transient CD8+ T-cell depletion and appearance of plasma SIVmac239 viremia in both of them. Our results indicate that CD8+ cells acquired the ability to efficiently suppress SIV replication by controlled SHIV infection, suggesting the contribution of CD8+ cell responses induced by controlled live virus infection to containment of HIV/SIV superinfection.  相似文献   

16.
We used a series of deletion mutations in the untranslated leader region of human immunodeficiency virus type 2 (HIV-2) to seek cis-acting packaging signals. Sequences between the 5' major splice donor and the gag initiation codon, where such signals have been identified in HIV-1, appear to make a measurable but very minor contribution to genomic RNA packaging, and deletions here had little effect on viral replication in vitro. Immediately 5' to the splice donor, two regions were identified which, when deleted, caused a significant replication defect. The most proximal of these to the splice donor demonstrated a phenotype consistent with its being a major cis-acting packaging signal in HIV-2.  相似文献   

17.
We previously generated a mutant of simian immunodeficiency virus (SIV) lacking 5 of a total of 22 N-glycans in its external envelope protein gp120 with no impairment in viral replication capability and infectivity in tissue culture cells. Here, we infected rhesus macaques with this mutant and found that it also replicated robustly in the acute phase but was tightly, though not completely, contained in the chronic phase. Thus, a critical requirement for the N-glycans for the full extent of chronic infection was demonstrated. No evidence indicating reversion to a wild type was obtained during the observation period of more than 40 weeks. Monkeys infected with the mutant were found to tolerate a challenge infection with wild-type SIV very well. Analyses of host responses following challenge revealed no neutralizing antibodies against the challenge virus but strong secondary responses of cytotoxic T lymphocytes against multiple antigens, including Gag-Pol, Nef, and Env. Thus, the quintuple deglycosylation mutant appeared to represent a novel class of SIV live attenuated vaccine.  相似文献   

18.
Yang C  Yang Q  Compans RW 《Journal of virology》2000,74(13):6217-6222
The cytoplasmic tail (R peptide) sequence is able to regulate the fusion activity of the murine leukemia virus (MuLV) envelope (Env) protein. We have previously shown that this sequence exerts a profound inhibitory effect on the fusion activity of simian immunodeficiency virus (SIV)-MuLV chimeric Env proteins which contain the extracellular and transmembrane domains of the SIV Env protein. Recent studies have shown that SIV can utilize several alternative cellular coreceptors for its fusion and entry into the cell. We have investigated the fusion activity of SIV and SIV-MuLV chimeric Env proteins using cells that express different coreceptors. HeLa cells were transfected with plasmid constructs that carry the SIV or SIV-MuLV chimeric Env protein genes and were overlaid with either CEMx174 cells or Ghost Gpr15 cells, which express the Gpr15 coreceptor for SIV, or Ghost CCR5 cells, which express CCR5, an alternate coreceptor for SIV. The R-peptide sequence in the SIV-MuLV chimeric proteins was found to inhibit the fusion with CEMx174 cells or Ghost Gpr15 cells. However, a significant level of fusion was still observed when HeLa cells expressing the chimeric Env proteins were cocultivated with Ghost CCR5 cells. These results show that the R-peptide sequence exerts differential effects on the fusion activity of SIV Env proteins using target cells that express alternative coreceptors.  相似文献   

19.
Disruption of the vif gene of human immunodeficiency virus (HIV) type 1 affects virus infectivity to various degrees, depending on the T-cell line used. We have concentrated our studies on true phenotypic Vif- mutant particles produced from CEMx174 or H9 cells. In a single round of infection, Vif- virus is approximately 25 (from CEMx174 cells) to 100 (from H9 cells) times less infectious than wild-type virus produced from these cells or than the Vif- mutant produced from HeLa cells. Vif- virions recovered from restrictive cells, but not from permissive cells, are abnormal both in terms of morphology and viral protein content. Notably, they contain much reduced quantities of envelope proteins and altered quantities of Gag and Pol proteins. Although wild-type and Vif- virions from restrictive cells contain similar quantities of viral RNA, no viral DNA synthesis was detectable after acute infection of target cells with phenotypically Vif- virions. To examine the possible role of Vif in viral entry, attempts were made to rescue the Vif- defect in H9 cells by pseudotyping Vif+ and Vif- HIV particles with amphotropic murine leukemia virus envelope. Vif- particles produced in the presence of HIV envelope could not be propagated when pseudotyped. In contrast, when only the murine leukemia virus envelope was present, significant propagation of Vif- HIV particles could be detected. These results demonstrate that Vif is required for proper assembly of the viral particle and for efficient HIV Env-mediated infection of target cells.  相似文献   

20.
Human immunodeficiency viruses (HIV) isolated from infected individuals show tremendous genetic and biologic diversity. To delineate the genetic determinants underlying specific biologic characteristics, such as rate of replication, cytopathic effects, and ability to infect macrophages and T4 lymphoid cells, generation of hybrid HIV using viruses which exhibit distinct biologic features is essential. To develop methods for generating hybrid HIV, we constructed truncated HIV proviral DNA plasmids. Upon digestion with restriction enzymes, these plasmid DNAs were cotransfected into human rhabdomyosarcoma cells to generate hybrid HIV. The hybrid HIVs derived by this method were infectious upon transmission to both phytohemagglutinin-stimulated peripheral blood lymphocytes and established human leukemic T-cell lines. The virus derived from molecular clone pHXB2 (HIVHTLV-III) productively infected CEMx174 cells. On the other hand, molecular clone pARV (HIVSF2)-derived virus did not show productive infection of CEMx174 cells when used as a cell-free virus. The hybrid HIV containing the 3' end of the genome from pARV and the 5' end of the genome from pHXB2 was effective in infecting CEMx174 cells, but the converse hybrid containing 5' pARV and 3' pHXB2 was not effective in infecting CEMx174 cells. These results suggest that differences in the genes outside of env and nef play a role in the ability of the virus to infect a certain cell type. The intracellular ligation method should be useful in the analysis of related and unrelated HIV-1 isolates with common restriction enzyme cleavage sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号