首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Differences have been noted in metabolic activity of bacteria isolated from water, mud and from Canadian pondweed (Elodea canadensis).The epiphytic bacteria showed the greatest metabolic activity in every instance, benthic bacteria were least active and the water isolates were intermediate.Non-chromogenic bacteria were metabolically more active than the chromogens.Casamino acids proved to be the most readily oxidized substrate among the compounds studied. Glucose, succinate, fumarate and gluconate were readily used by most epiphytic and planktonic bacteria. Acetate was intermediate and fructose was the least suitable substrate for these organisms. Casamino acids proved to be the best substrate for all three groups, although the benthic bacteria were less active with this substrate than the former two groups of bacteria. Gluconate, succinate, pyruvate and acetate were intermediate, and glucose and fructose were least suitable for most of the benthic bacteria.  相似文献   

2.
The summarized experimental data on ombrophilic bacteria isolated from dystrophic waters formed by a mycobacterial community during the process of spruce wood decomposition are presented. It was demonstrated that the ombrophilic microbial community was characterized by wide phylogenetic diversity at the initial stage of spruce wood decomposition by xylotrophic fungi under low mineralization conditions. It was noted that bacteria were able to grow under acidic and ultrafresh conditions and most of them were referred to oligotrophs. It was determined that all isolated ombrophilic bacteria divided into three groups depending on the substrate specifity: saccharolytic, acidotrophic bacteria, and bacteria, which used C1-compounds as the substrate. The position of the ombrophilic bacteria in the trophic chain was determined.  相似文献   

3.
This work is the first to report the isolation and identification of bacteria colonizing the roots of tropical epiphytic orchids Acampe papillosa (Lindl.) Lindl. and Dendrobium moschatum (Buch.-Ham.) Swartz. and bacteria inhabiting inner layers of the aerial and substrate roots of A. papillosa. We showed by the example of this epiphyte that associative bacteria are present in large amounts on the aerial but not substrate roots. We isolated and identified bacteria from the substrate roots of D. moschatum and from its growth substrate (pine bark). The structure of the intercellular matrix of the associative bacteria was studied.  相似文献   

4.
The surface properties of the individual members of degradative biocommunities isolated from different laboratory and natural populations were characterized. The bacterial strains isolated from a given origin and degrading a given substrate varied with respect to their hydrophobic and electrostatic properties (e.g. contact angle, adsorption to hexadecane, isoelectric point, adsorption of anionic orcationic dyes). However, despite their specific surface characteristics, in most cases the net charge properties of different bacterial strains (characterized by the zeta potential profiles of the bacteria in relation to the pH) were found to be related to the substrate the bacteria were able to degrade as well as to the consortium the bacteria were isolated from. For one group of specialized bacteria, only oneor at most two characteristic zeta potential profiles were measured. Compared to the differences between different strains, the zeta potential profiles of individual strains were only slightly affected by either growth state or changes in the actual nutrient composition. Even if isolated strains were cultivated in standard nutrient broth for several months, only slight differences in the zeta potential profiles were measured. Only the isoelectric focusing experiments indicated thatcultivation in a complex medium favoured a progressively decreased uniformity of surface charge properties. Thus, measurement of zeta potential profiles under standardized conditions may be a useful means to compare the surface structures of bacteria from different origins.  相似文献   

5.
A new medium, mX-Gal, has been developed for the membrane filter enumeration of beta-galactosidase-positive bacteria in municipal water supplies. mX-Gal medium contains the chromogenic beta-galactosidase substrate 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal). All Aeromonas, Citrobacter, and Enterobacter strains isolated from raw water on mX-Gal medium were beta-galactosidase positive. In contrast, only 10 to 20% of these strains produced a red colony with a metallic sheen on m-Endo agar LES medium. Of 674 chlorinated water samples analyzed for total coliforms on m-Endo agar LES medium and for beta-galactosidase-positive bacteria on mX-Gal medium, 18 that were negative for coliforms on m-Endo agar LES showed beta-galactosidase-positive bacteria on mX-Gal. Of a total of 50 beta-galactosidase-positive bacteria isolated from these samples, 76% were identified as Aeromonas hydrophila.  相似文献   

6.
The functional potential of bacteria isolated from the rhizosphere of barley (Hordeum vulgare L.) in May, July, and August and cultivated on nutrient-rich substrate (1/10 TSBA) and nutrient-poor substrate (cold soil extract agar) was determined. There was no significant difference in numbers of CFU when counted on nutrient rich or poor substrate. Bacterial numbers increased approximately 3-fold in the rhizosphere soil from May to August but was unchanged in bulk soil over the same period. A total of 4474 randomly isolated bacteria were screened for enzymatic activities involved in carbon turnover (amylase, cellulase, mannanase, xylanase, and chitinase), nitrogen turnover (protease, nitrate and nitrite reductase), and phosphate turnover (phosphatase). In the rhizosphere soil, bacteria carrying C and P turnover enzymes were not stimulated by the growing plant whereas protease and nitrate and nitrite reductase were stimulated by the growing plant. No changes were observed in the bulk soil. Two taxonomic groups were followed: Cytophaga-like bacteria (CLB) and fluorescent pseudomonads, the latter being abundant in the rhizosphere and important contributors to the cycling of organic matter in soil. Unexpectedly in the spring samples, CLB were around 25% of all bacteria isolated, whereas fluorescent pseudomonads made up less than 10%. The relative proportion of these bacterial groups then decreased during the plant growth season but at all times showing a clear rhizosphere effect. Furthermore, up to 70% of the isolates carrying enzymes involved in the turnover of carbon, in the May sample, were identified as CLB, indicating the importance of this group in early colonization of the rhizosphere. The fluorescent pseudomonad group contributed less than 3%.  相似文献   

7.
This work is the first to report the isolation and identification of bacteria colonizing the roots of the tropical epiphytic orchids Acampe papillosa (Lindl.) Lindl. and Dendrobium moschatum (Buch.-Ham.) Swartz. and bacteria inhabiting inner layers of the aerial and substrate roots of A. papillosa. We showed by the example of this epiphyte that associative bacteria are present in large amounts on the aerial but not the substrate roots. We isolated and identified bacteria from the substrate roots of D. Moschatum and from its growth substrate (pine bark). The structure of the intercellular matrix of the associative bacteria was studied.Translated from Mikrobiologiya, Vol. 73, No. 6, 2004, pp. 825–831.Original Russian Text Copyright © 2004 by Tsavkelova, Cherdyntseva, Netrusov.  相似文献   

8.
The rates of bacterial growth in nature are often restricted by low concentrations of oxygen or carbon substrates. In the present study the metabolic properties of 24 isolates that had been isolated using various concentrations of 3-chlorobenzoate, benzoate and oxygen as well as using continuous culture at high and low growth rates were determined to investigate the effects of these parameters on the metabolism of monoaromatic compounds. Bacteria were enriched from different sampling sites and subsequently isolated. In batch culture this was done both under low oxygen (2% O(2)) and air-saturated concentrations. Chemostat enrichments were performed under either oxygen or 3-chlorobenzoate limiting conditions. Bacteria metabolizing aromatics with gentisate or protocatechuate as intermediates (gp bacteria) as well as bacteria metabolizing aromatic compounds via catechols (cat bacteria) were isolated from batch cultures when either benzoate or 3CBA were used as C sources, regardless of the enrichment conditions applied. In contrast, enrichments performed in chemostats at low dilution rates resulted in gp-type organisms only, whereas at high dilution rates cat-type organisms were enriched, irrespective of the oxygen and 3-chlorobenzoate concentration used during enrichment. It is noteworthy that the gp-type of bacteria possessed relatively low μ(max) values on 3CBA and benzoate along with relatively high substrate and oxygen affinities for these compounds. This is in contrast with cat-type of bacteria, which seemed to be characterized by high maximum specific growth rates on the aromatic substrates and relatively high apparent half saturation constants. In contrast, bacteria degrading chlorobenzoate via gentisate or protocatechuate may possibly be better adapted to conditions leading to growth at reduced rates such as low oxygen and low substrate concentrations.  相似文献   

9.
Obligately anaerobic oxalate-degrading bacteria were isolated from an enriched population of rumen bacteria in an oxalate-containing medium that had been depleted of other readily metabolized substrates. These organisms, which are the first reported anaerobic oxalate degraders isolated from the rumen, were gram negative, nonmotile rods. They grew in a medium containing sodium oxalate, yeast extract, cysteine, and minerals. The only substrate that supported growth was oxalate. Growth was directly related to the concentration of oxalate in the medium (1 to 111 mM), and cell yields were approximately 1.1 g (dry weight)/mol of oxalate degraded. Oxalate was stoichiometrically degraded to CO2 and formate. These anaerobes occupy a unique ecological niche and are distinct from any previously described oxalate-degrading bacteria.  相似文献   

10.
Co-metabolism of the Ixodicide Amitraz   总被引:1,自引:1,他引:0  
Bacteria capable of degrading the ixodicide amitraz were isolated from cattle dipping tanks by the enrichment culture technique. The conditions for amitraz degradation were characterized and the bacteria identified as Pseudomonas and Achromobacter spp. The bacteria degraded amitraz without utilizing the ixodicide as a substrate or energy source. The degradation of amitraz by bacteria is an example of co-metabolism with yeast extract or an ingredient of yeast extract acting as the co-metabolite. Bacteria were unable to degrade amitraz at pH >11.5. Although bacteria can degrade amitraz, it is giving excellent tick control under practical field conditions.  相似文献   

11.
Screening for microorganisms that produce only endo-inulinase   总被引:1,自引:0,他引:1  
Sixteen fungal strains reported in the literature as endo-inulinase producers and three bacterial strains, isolated from the dahlia rhizosphere, were analysed for endo-inulinase production. From four isolated strains (one fungus and three bacteria) the results were evaluated in terms of substrate consumption, cell growth and production of endo-inulinases. All three bacterial strains were sole endo-inulinase producers and, among these, strain Paenibacillus sp. CDB 003 was the most suitable for endo-inulinase production, as this enzyme produced inulobiose as the principal substrate as well as inulo-oligosaccharides with polymerisation degrees of 3-5.  相似文献   

12.
The fibrolytic microbiota of the human large intestine was examined to determine the numbers and types of cellulolytic and hemicellulolytic bacteria present. Fecal samples from each of five individuals contained bacteria capable of degrading the hydrated cellulose in spinach and in wheat straw pretreated with alkaline hydrogen peroxide (AHP-WS), whereas degradation of the relatively crystalline cellulose in Whatman no. 1 filter paper (PMC) was detected for only one of the five samples. The mean concentration of cellulolytic bacteria, estimated with AHP-WS as a substrate, was 1.2 X 10(8)/ml of feces. Pure cultures of bacteria isolated on AHP-WS were able to degrade PMC, indicating that interactions with other microbes were primarily responsible for previous low success rates in detecting fecal cellulolytic bacteria with PMC as a substrate. The cellulolytic bacteria included Ruminococcus spp., Clostridium sp., and two unidentified strains. The mean concentration of hemicellulolytic bacteria, estimated with larchwood xylan as a substrate, was 1.8 X 10(10)/ml of feces. The hemicellulose-degrading bacteria included Butyrivibrio sp., Clostridium sp., Bacteroides sp., and two unidentified strains, as well as four of the five cellulolytic strains. This work demonstrates that many humans harbor intestinal cellulolytic bacteria and that a hydrated cellulose source such as AHP-WS is necessary for their consistent detection and isolation.  相似文献   

13.
The fibrolytic microbiota of the human large intestine was examined to determine the numbers and types of cellulolytic and hemicellulolytic bacteria present. Fecal samples from each of five individuals contained bacteria capable of degrading the hydrated cellulose in spinach and in wheat straw pretreated with alkaline hydrogen peroxide (AHP-WS), whereas degradation of the relatively crystalline cellulose in Whatman no. 1 filter paper (PMC) was detected for only one of the five samples. The mean concentration of cellulolytic bacteria, estimated with AHP-WS as a substrate, was 1.2 X 10(8)/ml of feces. Pure cultures of bacteria isolated on AHP-WS were able to degrade PMC, indicating that interactions with other microbes were primarily responsible for previous low success rates in detecting fecal cellulolytic bacteria with PMC as a substrate. The cellulolytic bacteria included Ruminococcus spp., Clostridium sp., and two unidentified strains. The mean concentration of hemicellulolytic bacteria, estimated with larchwood xylan as a substrate, was 1.8 X 10(10)/ml of feces. The hemicellulose-degrading bacteria included Butyrivibrio sp., Clostridium sp., Bacteroides sp., and two unidentified strains, as well as four of the five cellulolytic strains. This work demonstrates that many humans harbor intestinal cellulolytic bacteria and that a hydrated cellulose source such as AHP-WS is necessary for their consistent detection and isolation.  相似文献   

14.
Abstract Anaerobic thermophilic xylan-degrading bacteria present in unenriched and enriched 70°C samples from two Icelandic hot springs were enumerated at 68, 78, 90 and 99°C by the use of the Most-Probable-Number method. Xylan was used as substrate. From the samples taken at 70°C and incubated at the temperatures previously described no growth was observed above 78°C. A total of ten strains were isolated and characterized from the positive MPN enrichment cultures from the MPN experiments. A higher number of different strains could be isolated in the enriched samples compared with the unenriched, control samples from the same hot spring. Introduction of xylan, i.e., in situ enrichment, into one of the hot springs changed the bacterial population, as none of the bacteria isolated from the unenriched samples were isolated from the enriched samples. All the isolated bacteria were asporogenous, non-motile and gram-negative rods. One long thin rod had morphological similarities to members of the genus Dictyoglomus and was found in both hot spring samples.  相似文献   

15.
Alginate lyases (EC 4.2.2.3) from two marine bacteria were isolated and partially characterized. A cell-bound lyase from isolate A3 had a molecular weight of approximately 100,000 and cleaved mannuronate blocks, apparently in an exo manner. A lyase recovered from the culture medium of isolate W3 was soluble in saturated ammonium sulfate, cleaved guluronate blocks, apparently in an endo manner, and had a molecular weight of 35,000. The thiobarbiturate test and urea-polyacrylamide gel electrophoresis were used to determine substrate specificity and mode of substrate cleavage by the enzymes.  相似文献   

16.
We characterized bacteria from contaminated aquifers for their ability to utilize aromatic hydrocarbons under hypoxic (oxygen-limiting) conditions (initial dissolved oxygen concentration about 2 mg/l) with nitrate as an alternate electron acceptor. This is relevant to current intense efforts to establish favorable conditions forin situ bioremediation. Using samples of granular activated carbon slurries from an operating groundwater treatment system, we isolated bacteria that are able to use benzene, toluene, ethylbenzene, orp-xylene as their sole source of carbon under aerobic or hypoxic-denitrifying conditions. Direct isolation on solid medium incubated aerobically or hypoxically with the substrate supplied as vapor yielded 103 to 105 bacteria ml–1 of slurry supernatant, with numbers varying little with respect to isolation substrate or conditions. More than sixty bacterial isolates that varied in colony morphology were purified and characterized according to substrate utilization profiles and growth condition (i.e., aerobic vs. hypoxic) specificity. Strains with distinct characteristics were obtained using benzene compared with those isolated on toluene or ethylbenzene. In general, isolates obtained from direct selection on benzene minimal medium grew well under aerobic conditions but poorly under hypoxic conditions, whereas many ethylbenzene isolates grew well under both incubation conditions. We conclude that the conditions of isolation, rather than the substrate used, will influence the apparent characteristic substrate utilization range of the isolates obtained. Also, using an enrichment culture technique, we isolated a strain ofPseudomonas fluorescens, designated CFS215, which exhibited nitrate dependent degradation of aromatic hydrocarbons under hypoxic conditions.Abbreviations BTEX benzene, toluene, ethylbenzene, andp-xylene - HPLC high performance liquid chromatography - GAC granular activated carbon  相似文献   

17.
Both positive and negative interactions among bacteria take place in the environment. We hypothesize that the complexity of the substrate affects the way bacteria interact with greater cooperation in the presence of recalcitrant substrate. We isolated lignocellulolytic bacteria from salt marsh detritus and compared the growth, metabolic activity and enzyme production of pure cultures to those of three-species mixed cultures in lignocellulose and glucose media. Synergistic growth was common in lignocellulose medium containing carboxyl methyl cellulose, xylan and lignin but absent in glucose medium. Bacterial synergism promoted metabolic activity in synergistic mixed cultures but not the maximal growth rate (μ). Bacterial synergism also promoted the production of β-1,4-glucosidase but not the production of cellobiohydrolase or β-1,4-xylosidase. Our results suggest that the chemical complexity of the substrate affects the way bacteria interact. While a complex substrate such as lignocellulose promotes positive interactions and synergistic growth, a labile substrate such as glucose promotes negative interactions and competition. Synergistic interactions among indigenous bacteria are suggested to be important in promoting lignocellulose degradation in the environment.  相似文献   

18.
Rate studies on the utilization or degradation (or both) of isolated hemicelluloses were conducted with six strains of rumen cellulolytic bacteria. Utilization was estimated by total pentose loss, and degradation values were based on solubilization of the hemicellulose in acidified 80% ethyl alcohol. With the various strains of ruminococci, degradation of flax and fescue grass hemicellulose was near the maximum within the first 12 hr of incubation. However, where applicable, the rates of utilization were considerably slower. Both degradation and utilization of corn hull hemicellulose occurred at much slower rates than observed with the other two substrates. With flax and fescue grass hemicellulose, the rates of degradation did not appear to be influenced by the organism's ability, or inability, to utilize the substrate as an energy source. The rates and extent of isolated hemicellulose degradation and utilization were compared between the cellulolytic ruminococci and three strains of bacteria isolated from the rumen with a xylan medium. Similar values were obtained with both types of bacteria. These observations would suggest that the cellulolytic ruminococci may be important in the overall fermentation of forage hemicelluloses in the rumen. The acidified 80% ethyl alcohol supernatant fluids, obtained from fermentations of isolated fescue grass hemicellulose by two strains of Ruminococcus flavefaciens, of which only one was able eventually to utilize the substrate, were investigated by thin-layer chromatography. Results indicated that soluble oligosaccharides were produced, which were observed to disappear gradually with time in fermentations with the utilizing strain and to accumulate in fermentations with the nonutilizing strain. Examination of the acidified 80% ethyl alcohol-insoluble residue hydrolysates, obtained from fermentations with the utilizing strain, revealed that the concentration of all the constituent sugars decreased uniformly.  相似文献   

19.
Three strains of haloalkaliphilic bacteria were isolated from microbial mats of soda-saline lakes of the Badain Jaran Desert, Inner Mongolia (China). Based on the data on ribosomal phylogeny, they were identified as members of the genus Halomonas. These bacteria were moderate alkaliphiles and extreme halophiles. The peptidases secreted by these bacteria were shown to have narrow substrate specificity. They hydrolyzed proteins and para-nitroanilide substrates and showed maximal activity in the hydrolysis of L-leucyl-p-nitroanilides (LpNA). The maximum activity of the peptidases occurred at alkaline pH values (8–10) and elevated salinity (50–100 g/L); the enzymes were thermostable (up to 50°С). The results of inhibitor analysis and substrate specificity examination of extracellular enzymes indicated them to belong to the class of aminopeptidase-like metallopeptidases.  相似文献   

20.

DGGE analysis combined with a metagenomic approach was used to get insights into heterotrophic anoxic enrichment cultures of four hot springs of Vale das Furnas, Portugal, using the recalcitrant substrate spent coffee ground (SCG). Parallel enrichment cultures were performed using the major components of spent coffee ground, namely arabinogalactan, galactomannan, cellulose, and proteins. DGGE revealed that heterotrophic thermophilic bacteria are highly abundant in the hydrothermal springs and significant differences in community composition depending on the substrate were observed. DNA, isolated from enrichment cultures of different locations that were grown on the same substrate were pooled, and the respective metagenomes were analyzed. Results indicated that cultures grown on recalcitrant substrate SCG consists of a totally different thermophilic community, dominated by Dictyoglomus. Enrichments with galactomannan and arabinogalactan were dominated by Thermodesulfovibrio, while cultures with casein and cellulose were dominated by Thermus. This study indicates the high potential of thermophilic bacteria degrading recalcitrant substrate such as SCG and furthermore how the accessibility to complex polymers shapes the bacterial community.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号