共查询到20条相似文献,搜索用时 15 毫秒
1.
M. D. Bishop S. M. Kappes J. W. Keele R. T. Stone SLF. Sunden G. A. Hawkins S. S. Toldo R. Fries M. D. Grosz J. Yoo C. W. Beattie 《Genetics》1994,136(2):619-639
We report the most extensive physically anchored linkage map for cattle produced to date. Three-hundred thirteen genetic markers ordered in 30 linkage groups, anchored to 24 autosomal chromosomes (n = 29), the X and Y chromosomes, four unanchored syntenic groups and two unassigned linkage groups spanning 2464 cM of the bovine genome are summarized. The map also assigns 19 type I loci to specific chromosomes and/or syntenic groups and four cosmid clones containing informative microsatellites to chromosomes 13, 25 and 29 anchoring syntenic groups U11, U7 and U8, respectively. This map provides the skeletal framework prerequisite to development of a comprehensive genetic map for cattle and analysis of economic trait loci (ETL). 相似文献
2.
This paper presents a first genetic linkage map of the goat genome. Primers derived from the flanking sequences of 612 bovine, ovine and goat microsatellite markers were gathered and tested for amplification with goat DNA under standardized PCR conditions. This screen made it possible to choose a set of 55 polymorphic markers that can be used in the three species and to define a panel of 223 microsatellites suitable for the goat. Twelve half-sib paternal goat families were then used to build a linkage map of the goat genome. The linkage analysis made it possible to construct a meiotic map covering 2300 cM, i.e., >80% of the total estimated length of the goat genome. Moreover, eight cosmids containing microsatellites were mapped by fluorescence in situ hybridization in goat and sheep. Together with 11 microsatellite-containing cosmids previously mapped in cattle (and supposing conservation of the banding pattern between this species and the goat) and data from the sheep map, these results made the orientation of 15 linkage groups possible. Furthermore, 12 coding sequences were mapped either genetically or physically, providing useful data for comparative mapping. 相似文献
3.
A seed and flower color marker (P), nine seed protein, nine isozyme and 224 restriction fragment length polymorphism marker loci were used to construct a linkage map of the common bean, Phaseolus vulgaris L. (n = 11). The mapping population consisted of a backcross progeny between the Mesoamerican breeding line 'XR-235-1-1' and the Andean cultivar 'Calima'; the former was used as the recurrent parent. A bean PstI genomic library enriched for single copy sequences (95%) was the source of DNA probes. Sixty percent of the probes tested detected polymorphisms between the parental genotypes with at least one of the four restriction enzymes used here (DraI, EcoRI, EcoRV and HindIII). The computer software Mapmaker was used to determine the linkage relationships and linear order of segregating markers. These markers assorted into 11 linkage groups covering 960 cM of the bean genome. Partial linkage data were used to estimate the total length of the genome at 1200 cM. This estimate and that for the physical size of the genome yield an average ratio of 530 kb/cM. The relatively small size of the genome makes this crop species a good candidate for the isolation of genes via chromosome walking techniques. 相似文献
4.
A. M. Crawford K. G. Dodds A. J. Ede C. A. Pierson G. W. Montgomery H. G. Garmonsway A. E. Beattie K. Davies J. F. Maddox S. W. Kappes R. T. Stone T. C. Nguyen J. M. Penty E. A. Lord J. E. Broom J. Buitkamp W. Schwaiger J. T. Epplen P. Matthew M. E. Matthews D. J. Hulme K. J. Beh R. A. McGraw C. W. Beattie 《Genetics》1995,140(2):703-724
We report the first extensive ovine genetic linkage map covering 2070 cM of the sheep genome. The map was generated from the linkage analysis of 246 polymorphic markers, in nine three-generation fullsib pedigrees, which make up the AgResearch International Mapping Flock. We have exploited many markers from cattle so that valuable comparisons between these two ruminant linkage maps can be made. The markers, used in the segregation analyses, comprised 86 anonymous microsatellite markers derived from the sheep genome, 126 anonymous microsatellites from cattle, one from deer, and 33 polymorphic markers of various types associated with known genes. The maximum number of informative meioses within the mapping flock was 222. The average number of informative meioses per marker was 140 (range 18-209). Linkage groups have been assigned to all 26 sheep autosomes. 相似文献
5.
Luis M. Larraya Gúmer Prez Enrique Ritter Antonio G. Pisabarro Lucía Ramírez 《Applied microbiology》2000,66(12):5290-5300
We have constructed a genetic linkage map of the edible basidiomycete Pleurotus ostreatus (var. Florida). The map is based on the segregation of 178 random amplified polymorphic DNA and 23 restriction fragment length polymorphism markers; four hydrophobin, two laccase, and two manganese peroxidase genes; both mating type loci; one isozyme locus (est1); the rRNA gene sequence; and a repetitive DNA sequence in a population of 80 sibling monokaryons. The map identifies 11 linkage groups corresponding to the chromosomes of P. ostreatus, and it has a total length of 1,000.7 centimorgans (cM) with an average of 35.1 kbp/cM. The map shows a high correlation (0.76) between physical and genetic chromosome sizes. The number of crossovers observed per chromosome per individual cell is 0.89. This map covers nearly the whole genome of P. ostreatus. 相似文献
6.
Preliminary genetic linkage maps were constructed for the Pacific abalone (Haliotis discus hannai Ino) using amplified fragment length polymorphism (AFLP), randomly amplified polymorphic DNA (RAPD), and microsatellite markers
segregating in a F1 family. Nine microsatellite loci, 41 RAPD, and 2688 AFLP markers were genotyped in the parents and 86 progeny of the mapping
family. Among the 2738 markers, 384 (including 365 AFLP markers, 10 RAPD markers, and 9 microsatellite loci) were polymorphic
and segregated in one or both parents: 241 in the female and 146 in the male. The majority of these markers, 232 in the female
and 134 in the male, segregated according to the expected 1:1 Mendelian ratio (α = 0.05). Two genetic linkage maps were constructed
using markers segregating in the female or the male parent. The female framework map consisted of 119 markers in 22 linkage
groups, covering 1773.6 cM with an average intermarker space of 18.3 cM. The male framework map contained 94 markers in 19
linkage groups, spanning 1365.9 cM with an average intermarker space of 18.2 cM. The sex determination locus was mapped to
the male map but not to the female map, suggesting a XY-male determination mechanism. Distorted markers showing excess of
homozygotes were mapped in clusters, probably because of their linkage to a gene that is incompatible between two parental
populations. 相似文献
7.
Phycomyces blakesleeanus is a member of the subphylum Mucoromycotina. A genetic map was constructed from 121 progeny of a cross between two wild type isolates of P. blakesleeanus with 134 markers. The markers were mostly PCR-RFLPs. Markers were located on 46 scaffolds of the genome sequence, covering more than 97% of the genome. Analysis of the alleles in the progeny revealed nine or 12 linkage groups, depending on the log of the odds (LOD) score, across 1583.4 cM at LOD 5. The linkage groups were overlaid on previous mapping data from crosses between mutants, aided by new identification of the mutations in primary metabolism mutant strains. The molecular marker map, the phenotype map and the genome sequence are overall congruent, with some exceptions. The new genetic map provides a genome-wide estimate for recombination, with the average of 33.2 kb per cM. This frequency is one piece of evidence for meiosis during zygospore development in Mucoromycotina species. At the same time as meiosis, transmission of non-recombinant chromosomes is also evident in the mating process in Phycomyces. The new map provides scaffold ordering for the genome sequence and a platform upon which to identify the genes in mutants that are affected in traits of interest, such as carotene biosynthesis, phototropism or gravitropism, using positional cloning. 相似文献
8.
大豆遗传图谱的构建和分析 总被引:45,自引:2,他引:45
利用大豆栽培品种科丰1号和南农1138-2杂交得到的重组近交系NJRIKY,通过RFLP,SSR,RAPD和AFLP4种分子标记的遗传连锁分析,构建了包含24个连锁群,由792个遗传标记组成的大豆较高密度连锁图谱,该图谱覆盖2320.7cM,平均图距2.9cM,SSR标记的多态性较高,在基因组中的位置相对稳定,可以作为锚定标记,有利于连锁群的归并和不同图谱的比较整合;而AFLP标记对于增加图谱密度效率较高,但其容易出现聚集现象,从而造成连锁群上有很大的空隙(gap),另外,在连锁群中有21.7%的分子标记出现偏分离,该图谱为基因定位,比较基因组学和重要农艺性状的QTL定位等研究打下了基础。 相似文献
9.
《菌物研究》2017,(2)
食用菌遗传连锁图谱的构建工作虽然较晚于动植物研究,但随着基础研究不断完善,连锁图谱构建工作陆续开展。文中综述了双孢蘑菇(Agaricus bisporus)、香菇(Lentinula edodes)、双色蜡蘑(Laccaria bicolor)、草菇(Volvariella volvacea)、糙皮侧耳(Pleurotus ostreatus)、杏鲍菇(Pleurotus eryngii)、金针菇(Flammulina velutipes)、斑玉蕈(Hypsizigus marmoreus)等食用菌的遗传连锁图谱研究进展,展望了其应用现状及前景,并对笔者所在的国家食用菌产业技术体系黑木耳育种与菌种繁育团队的黑木耳遗传连锁图谱研究进展进行了简介。 相似文献
10.
A Linkage Map of the Canine Genome 总被引:2,自引:0,他引:2
Cathryn S. Mellersh Amelia A. Langston Gregory M. Acland Melissa A. Fleming Kunal Ray Neil A. Wiegand Leigh V. Francisco Mark Gibbs Gustavo D. Aguirre Elaine A. Ostrander 《Genomics》1997,46(3):326
A genetic linkage map of the canine genome has been developed by typing 150 microsatellite markers using 17 three-generation pedigrees, composed of 163 F2individuals. One hundred and thirty-nine markers were linked to at least one other marker with a lod score ≥ 3.0, identifying 30 linkage groups. The largest chromosome had 9 markers spanning 106.1 cM. The average distance between markers was 14.03 cM, and the map covers an estimated 2073 cM. Eleven markers were informative on the mapping panel, but were unlinked to any other marker. These likely represent single markers located on small, distinct canine chromosomes. This map will be the initial resource for mapping canine traits of interest and serve as a foundation for development of a comprehensive canine genetic map. 相似文献
11.
A Primary Linkage Map of the Porcine Genome Reveals a Low Rate of Genetic Recombination 总被引:12,自引:0,他引:12
下载免费PDF全文

H. Ellegren B. P. Chowdhary M. Johansson L. Marklund M. Fredholm I. Gustavsson L. Andersson 《Genetics》1994,137(4):1089-1100
A comprehensive genetic linkage map of the porcine genome has been developed by typing 128 genetic markers in a cross between the European Wild Boar and a domestic breed (Large White). The marker set includes 68 polymerase chain reaction-formatted microsatellites, 60 anchored reference markers informative for comparative mapping and 47 markers which have been physically assigned by in situ hybridization. Novel multipoint assignments are provided for 54 of the markers. The map covers about 1800 cM, and the average spacing between markers is 11 cM. We used the map data to estimate the genome size in pigs, thereby addressing the total recombination distance in a third mammalian species. A sex-average genome length of 1873 +/- 139 cM was obtained by comparing the recombinational and physical distances in defined regions of the genome. This is strikingly different from the length of the human genome (3800-4000 cM) and is more similar to the mouse estimate (1600 cM). The recombination rate in females was significantly higher than in males. 相似文献
12.
A Genetic Linkage Map of the Mouse Using Restriction Landmark Genomic Scanning (Rlgs) 总被引:5,自引:1,他引:5
下载免费PDF全文

Y. Hayashizaki S. Hirotsune Y. Okazaki H. Shibata A. Akasako M. Muramatsu J. Kawai T. Hirasawa S. Watanabe T. Shiroishi K. Moriwaki B. A. Taylor Y. Matsuda R. W. Elliott K. F. Manly V. M. Chapman 《Genetics》1994,138(4):1207-1238
We have developed a multiplex method of genome analysis, restriction landmark genomic scanning (RLGS) that has been used to construct genetic maps in mice. Restriction landmarks are end-labeled restriction fragments of genomic DNA that are separated by using high resolution, two-dimensional gel electrophoresis identifying as many as two thousand landmark loci in a single gel. Variation for several hundred of these loci has been identified between laboratory strains and between these strains and Mus spretus. The segregation of more than 1100 RLGS loci has been analyxed in recombinant inbred (RI) strains and in two separate interspecific genetic crosses. Genetic maps have been derived that link 1045 RLGS loci to reference loci on all of the autosomes and the X chromosome of the mouse genome. The RLGS method can be applied to genome analysis in many different organisms to identify genomic loci because it used end-labeling of restriction landmarks rather than probe hybridization. Different combinations of restriction enzymes yield different sets of RLGS loci providing expanded power for genetic mapping. 相似文献
13.
We have used a panel of somatic cell hybrids containing different rearrangements of human chromosome 13 to integrate genetic and physical maps of this chromosome. The positions of 17 translocation/deletion breakpoints on human chromosome 13 have been determined relative to the microsatellite markers on the genetic linkage map compiled by Généthon. Because markers on maps from several other Consortium groups have also been analyzed using many of the same hybrids, it was possible to relate these with the Généthon map. The position of all of the chromosome breakpoints have been placed, wherever possible, between two adjacent markers on the genetic linkage maps using PCR analysis for the presence/absence of the markers in the somatic cell hybrids. The positions of the breakpoints have already been determined cytogenetically, and some of these breakpoints are located at landmark positions on the chromosome. The relative density of markers along the chromosome differs between independently derived maps, and, based on the known locations of certain breakpoints in the physical map, inconsistencies in the genetic maps have been identified. 相似文献
14.
Detecting Marker-Qtl Linkage and Estimating Qtl Gene Effect and Map Location Using a Saturated Genetic Map 总被引:34,自引:6,他引:34
下载免费PDF全文

A simulation study was carried out on a backcross population in order to determine the effect of marker spacing, gene effect and population size on the power of marker-quantitative trait loci (QTL) linkage experiments and on the standard error of maximum likelihood estimates (MLE) of QTL gene effect and map location. Power of detecting a QTL was virtually the same for a marker spacing of 10 cM as for an infinite number of markers and was only slightly decreased for marker spacing of 20 or even 50 cM. The advantage of using interval mapping as compared to single-marker analysis was slight. ``Resolving power' of a marker-QTL linkage experiment was defined as the 95% confidence interval for the QTL map location that would be obtained when scoring an infinite number of markers. It was found that reducing marker spacing below the resolving power did not add appreciably to narrowing the confidence interval. Thus, the 95% confidence interval with infinite markers sets the useful marker spacing for estimating QTL map location for a given population size and estimated gene effect. 相似文献
15.
Thirty endogenous proviruses belonging to the modified polytropic (Mpmv) class of murine leukemia virus (MLV) were identified by proviral-cellular DNA junction fragment segregation in several sets of recombinant inbred mice. Twenty-six Mpmv loci were mapped to chromosomal regions by matching proviral strain distribution patterns to those of previously assigned genes. Like other endogenous nonecotropic MLVs, Mpmv loci were present on several chromosomes in all strains examined. We pooled recombinant inbred strain linkage data from 110 MLV loci and selected marker genes in order to construct a chromosomal linkage map. Every mouse chromosome was found to harbor at least one proviral insertion, and several regions contained multiple integrations. However, the overall distribution of the 110 mapped proviruses did not deviate significantly from a random distribution. Because of their polymorphism in inbred strains of mice, and the ability to score as many as 57 proviruses per strain using only three hybridization probes, the nonecotropic MLVs mapped in common strains of mice offer a significant advantage over older methods (e.g., biochemical or individual restriction fragment polymorphisms) as genetic markers. These endogenous insertion elements should also be useful for assessing strain purity, and for studying the relatedness of common and not-so-common inbred strains. 相似文献
16.
17.
18.
A Comprehensive Genetic Map of Murine Chromosome 11 Reveals Extensive Linkage Conservation between Mouse and Human 总被引:17,自引:3,他引:17
下载免费PDF全文

Interspecific backcross animals from a cross between C57BL/6J and Mus spretus mice were used to generate a comprehensive linkage map of mouse chromosome 11. The relative map positions of genes previously assigned to mouse chromosome 11 by somatic cell hybrid or genetic backcross analysis were determined (Erbb, Rel, 11-3, Csfgm, Trp53-1, Evi-2, Erba, Erbb-2, Csfg, Myhs, Cola-1, Myla, Hox-2 and Pkca). We also analyzed genes that we suspected would map to chromosome 11 by virtue of their location in human chromosomes and the known linkage homologies that exist between murine chromosome 11 and human chromosomes (Mpo, Ngfr, Pdgfr and Fms). Two of the latter genes, Mpo and Ngfr, mapped to mouse chromosome 11. Both genes also mapped to human chromosome 17, extending the degree of linkage conservation observed between human chromosome 17 and mouse chromosome 11. Pdgfr and Fms, which are closely linked to II-3 and Csfgm in humans on chromosome 5, mapped to mouse chromosome 18 rather than mouse chromosome 11, thereby defining yet another conserved linkage group between human and mouse chromosomes. The mouse chromosome 11 linkage map generated in these studies substantially extends the framework for identifying homologous genes in the mouse that are involved in human disease, for elucidating the genes responsible for several mouse mutations, and for gaining insights into chromosome evolution and genome organization. 相似文献
19.
Rusama Marubodee Eri Ogiso-Tanaka Takehisa Isemura Sompong Chankaew Akito Kaga Ken Naito Hiroshi Ehara Norihiko Tomooka 《PloS one》2015,10(9)
Vigna vexillata (L.) A. Rich. (tuber cowpea) is an underutilized crop for consuming its tuber and mature seeds. Wild form of V. vexillata is a pan-tropical perennial herbaceous plant which has been used by local people as a food. Wild V. vexillata has also been considered as useful gene(s) source for V. unguiculata (cowpea), since it was reported to have various resistance gene(s) for insects and diseases of cowpea. To exploit the potential of V. vexillata, an SSR-based linkage map of V. vexillata was developed. A total of 874 SSR markers successfully amplified single DNA fragment in V. vexillata among 1,336 SSR markers developed from Vigna angularis (azuki bean), V. unguiculata and Phaseolus vulgaris (common bean). An F2 population of 300 plants derived from a cross between salt resistant (V1) and susceptible (V5) accessions was used for mapping. A genetic linkage map was constructed using 82 polymorphic SSR markers loci, which could be assigned to 11 linkage groups spanning 511.5 cM in length with a mean distance of 7.2 cM between adjacent markers. To develop higher density molecular linkage map and to confirm SSR markers position in a linkage map, RAD markers were developed and a combined SSR and RAD markers linkage map of V. vexillata was constructed. A total of 559 (84 SSR and 475 RAD) markers loci could be assigned to 11 linkage groups spanning 973.9 cM in length with a mean distance of 1.8 cM between adjacent markers. Linkage and genetic position of all SSR markers in an SSR linkage map were confirmed. When an SSR genetic linkage map of V. vexillata was compared with those of V. radiata and V. unguiculata, it was suggested that the structure of V. vexillata chromosome was considerably differentiated. This map is the first SSR and RAD marker-based V. vexillata linkage map which can be used for the mapping of useful traits. 相似文献
20.
Stadler DR 《Genetics》1956,41(4):528-543