首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Olfactory receptor (OR) genes constitute the molecular basis for the sense of smell and are encoded by the largest gene family in mammalian genomes. Previous studies suggested that the proportion of pseudogenes in the OR gene family is significantly larger in humans than in other apes and significantly larger in apes than in the mouse. To investigate the process of degeneration of the olfactory repertoire in primates, we estimated the proportion of OR pseudogenes in 19 primate species by surveying randomly chosen subsets of 100 OR genes from each species. We find that apes, Old World monkeys and one New World monkey, the howler monkey, have a significantly higher proportion of OR pseudogenes than do other New World monkeys or the lemur (a prosimian). Strikingly, the howler monkey is also the only New World monkey to possess full trichromatic vision, along with Old World monkeys and apes. Our findings suggest that the deterioration of the olfactory repertoire occurred concomitant with the acquisition of full trichromatic color vision in primates.  相似文献   

3.
A polymorphism of the variable number of tandem repeat (VNTR) type is located 97 bp downstream of exon VI of the parathyroid hormone-related peptide (PTHrP) gene in humans. The repeat unit has the general sequence G(TA)nC, where n equals 4–11. In order to characterize the evolutionary history of this VNTR, we initially tested for its presence in 13 different species representing four main groups of living primates. The sequence is present in the human, great apes, and Old World monkeys, but not in New World monkeys; and this region failed to PCR amplify in the Loris group. Thus, the evolution of the sequence as part of the PTHrP gene started at least 25–35 millions years ago, after divergence of the Old World and New World monkeys, but before divergence of Old World monkeys and great apes and humans. The structural changes occurring during evolution are characterized by a relatively high degree of sequence divergence. In general, the tandem repeat region tends to be longer and more complex in higher primates with the repeat unit motifs all being based on a TA-dinucleotide repeat sequence. Intra-species variability of the locus was demonstrated only in humans and gorilla. The divergence of the TA-dinucleotide repeat sequence and the variable mutation rates observed in different primate species are in contrast to the relative conservation of the flanking sequences during primate evolution. This suggests that the nature of the TA-dinucleotide repeat sequence, rather than its flanking sequences, is responsible for generating variability. Particular features of the sequence may allow it to form stable secondary structures during DNA replication, and this, in turn, could promote slipped-strand mispairing to occur.  相似文献   

4.
5.
The cross-reactivity of five different rabbit polyclonal antibodies to human IgG and IgG subclass (IgG1, IgG2, IgG3, and IgG4) was determined by competitive ELISA with nine nonhuman primate species including five apes, three Old World monkeys, and one New World monkey. As similar to those previously reported, the reactivity of anti-human IgG antibody with plasma from different primate species was closely related with phylogenic distance from human. Every anti-human IgG subclass antibody showed low cross-reactivity with plasma from Old World and New World monkeys. The plasma from all apes except for gibbons (Hylobates spp.) showed 60 to 100% of cross-reactivity with anti-human IgG2 and IgG3 antibodies. On the other hand, chimpanzee (Pan troglodytes andPan paniscus) and orangutan (Pongo pygmaeus) plasma showed 100% cross-reactivity with anti-human IgG1 antibody, but gorilla (Gorilla gorilla) and gibbon plasma showed no cross-reactivity. The chimpanzee and gorilla plasma cross-reacted with anti-human IgG4 antibody at different reactivity, 100% in chimpanzee and 50% in gorilla, but no cross-reactivity was observed in orangutan and gibbon plasma. These results suggest the possibilities that the divergence of “human-type” IgG subclasses might occur at the time of divergence ofHomo sapience fromHylobatidae, and that the molecular evolution of IgG1 as well as IgG4 is different from that of IgG2 and IgG3 in great apes, this is probably caused by different in development of immune function in apes during the course of evolution.  相似文献   

6.
Neurotrypsin is one of the extra-cellular serine proteases that are predominantly expressed in the brain and involved in neuronal development and function. Mutations in humans are associated with autosomal recessive non-syndromic mental retardation (MR). We studied the molecular evolution of neurotrypsin by sequencing the coding region of neurotrypsin in 11 representative non-human primate species covering great apes, lesser apes, Old World monkeys and New World monkeys. Our results demonstrated a strong functional constraint of neurotrypsin that was caused by strong purifying selection during primate evolution, an implication of an essential functional role of neurotrypsin in primate cognition. Further analysis indicated that the purifying selection was in fact acting on the SRCR domains of neurotrypsin, which mediate the binding activity of neurotrypsin to cell surface or extra-cellular proteins. In addition, by comparing primates with three other mammalian orders, we demonstrated that the absence of the first copy of the SRCR domain (exon 2 and 3) in mouse and rat was due to the deletion of this segment in the murine lineage.  相似文献   

7.
An elongated clavicle is one of the distinct features of apes and humans. It plays an important role in providing mobility as well as stability for the shoulder joints. The relative length of the clavicle is an especially important factor in limiting the range of shoulder joint excursion. It is said that among primates, Asian apes, i.e., gibbons and orang-utans, have very long clavicles. At the same time, they also have a wide upper thoracic cage, which may diminish the effective length of the clavicle. To clarify the length of the clavicle in apes, from the standpoint of the functional anatomy of the shoulder girdle, we examined clavicular length in 15 anthropoid species exhibiting various positional behaviors. The results confirm that clavicle length in Asian apes is long, and chimpanzees have a short clavicle like that of Old and New World monkeys, when scaled to body mass. The clavicular length of chimpanzees, however, is intermediate between Old World monkeys and Asian apes when scaled against thoracic width. Therefore, living apes can be grouped together, albeit just barely, by possession of a relatively long clavicle for their thoracic cage size. Interestingly, New World monkeys tend to exhibit a longer clavicle than Old World monkeys of equivalent body mass or thoracic cage width. Although it is unclear whether the ancestral condition of clavicular length in anthropoids was similar to that of living Old or New World monkeys, an elongation of clavicle was an important step toward evolution of the modern body plan of hominoids.  相似文献   

8.
Cytochrome c oxidase subunit II (COII), encoded by the mitochondrial genome, exhibits one of the most heterogeneous rates of amino acid replacement among placental mammals. Moreover, it has been demonstrated that cytochrome c oxidase has undergone a structural change in higher primates which has altered its physical interaction with cytochrome c. We collected a large data set of COII sequences from several orders of mammals with emphasis on primates, rodents, and artiodactyls. Using phylogenetic hypotheses based on data independent of the COII gene, we demonstrated that an increased number of amino acid replacements are concentrated among higher primates. Incorporating approximate divergence dates derived from the fossil record, we find that most of the change occurred independently along the New World monkey lineage and in a rapid burst before apes and Old World monkeys diverged. There is some evidence that Old World monkeys have undergone a faster rate of nonsynonymous substitution than have apes. Rates of substitution at four-fold degenerate sites in primates are relatively homogeneous, indicating that the rate heterogeneity is restricted to nondegenerate sites. Excluding the rate acceleration mentioned above, primates, rodents, and artiodactyls have remarkably similar nonsynonymous replacement rates. A different pattern is observed for transversions at four-fold degenerate sites, for which rodents exhibit a higher rate of replacement than do primates and artiodactyls. Finally, we hypothesize specific amino acid replacements which may account for much of the structural difference in cytochrome c oxidase between higher primates and other mammals.   相似文献   

9.
Evidence from DNA sequences on the phylogenetic systematics of primates is congruent with the evidence from morphology in grouping Cercopithecoidea (Old World monkeys) and Hominoidea (apes and humans) into Catarrhini, Catarrhini and Platyrrhini (ceboids or New World monkeys) into Anthropoidea, Lemuriformes and Lorisiformes into Strepsirhini, and Anthropoidea, Tarsioidea, and Strepsirhini into Primates. With regard to the problematic relationships of Tarsioidea, DNA sequences group it with Anthropoidea into Haplorhini. In addition, the DNA evidence favors retaining Cheirogaleidae within Lemuriformes in contrast to some morphological studies that favor placing Cheirogaleids in Lorisiformes. While parsimony analysis of the present DNA sequence data provides only modest support for Haplorhini as a monophyletic taxon, it provides very strong support for Hominoidea, Catarrhini, Anthropoidea, and Strepsirhini as monophyletic taxa. The parsimony DNA evidence also rejects the hypothesis that megabats are the sister group of either Primates or Dermoptera (flying lemur) or a Primate-Dermoptera clade and instead strongly supports the monophyly of Chiroptera, with megabats grouping with microbats at considerable distance from Primates. In contrast to the confused morphological picture of sister group relationships within Hominoidea, orthologous noncoding DNA sequences (spanning alignments involving as many as 20,000 base positions) now provide by the parsimony criterion highly significant evidence for the sister group relationships defined by a cladistic classification that groups the lineages to all extant hominoids into family Hominidae, divides this ape family into subfamilies Hylobatinae (gibbons) and Homininae, divides Homininae into tribes Pongini (orangutans) and Hominini, and divides Hominini into subtribes Gorillina (gorillas) and Hominina (humans and chimpanzees). A likelihood analysis of the largest body of these noncoding orthologues and counts of putative synapomorphies using the full range of sequence data from mitochondrial and nuclear genomes also find that humans and chimpanzees share the longest common ancestry. © 1994 Wiley-Liss, Inc.  相似文献   

10.
Nonhuman primates express varying responses to Mycobacterium tuberculosis: New World monkeys appear to be resistant to tuberculosis (TB) while Old World monkeys seem to be particularly susceptible. The aim of this study was to elucidate the presence of the regulatory guanine–thymine (GT) repeat polymorphisms in intron 2 of Toll-like receptor 2 (TLR2) associated with the development of TB in humans and to determine any variations in these microsatellite polymorphisms in primates. We sequenced the region encompassing the regulatory GT repeat microsatellites in intron 2 of TLR2 in 12 different nonhuman primates using polymerase chain reaction amplification, TA cloning, and automatic sequencing. The nonhuman primates included for this study were as follows: chimpanzee (Pan troglodytes), bonobo (Pan paniscus), gorilla (Gorilla gorilla), orangutan (Pongo pygmaeus), Celebes ape (Macaca nigra), rhesus monkey (Macaca mulatta), pigtail macaque (Macaca nemestrina), patas monkey (Erythrocebus patas), spider monkey (Ateles geoffroyi), Woolly monkey (Lagothrix lagotricha), tamarin (Saguinus labiatus), and ring-tailed lemur (Lemur catta). Nucleotide sequences encompassing the regulatory GT repeat region are similar across species and are completely conserved in great apes. However, Old World monkeys lack GT repeats altogether, while New World monkeys and ring-tailed lemurs have much more complex structures around the position of the repeats. In conclusion, the genetic structures encompassing the regulatory GT repeats in intron 2 of human TLR2 are similar among nonhuman primates. The sequence is most conserved in New World monkeys and less in Old World monkeys.  相似文献   

11.
We surveyed the literature and obtained information from primate researchers and zookeepers to study the distribution of dorsal carriage among 77 simian species including New and Old World monkeys and apes in relation to arboreality and terrestriality, birth (litter) weight relative to maternal weight, and presence or absence of distinct natal coat colors. All New World monkeys are arboreal and commonly carry their infants dorsally. Conversely, arboreal Old World monkeys do not use dorsal carriage, and only some predominantly terrestrial Old World monkeys do so. Whereas lesser apes (which are highly arboreal) do not use dorsal carriage, arboreal as well as more terrestrial great apes commonly carry their infants dorsally. These findings indicate that simple arboreality or terrestriality is inadequate to explain dorsal carriage by monkeys. Infants of small- to medium-sized New World monkeys have relatively high birth weight compared with maternal weight, and are most likely to be carried dorsally than ventrally even on the first postnatal day. In contrast, infants of large-bodied New World monkeys are carried ventrally first and then dorsally up to the end of their second year, albeit increasingly infrequently. Among Old World monkeys, no association was found between mode of infant transport and birth weight relative to maternal weight, but some terrestrial Old World monkeys displaying dorsal carriage tend to do so with older infants, indicating that such behavior enables the mother to transport the infant with lower energy expenditure. Among terrestrial Old World monkeys, infants with distinctive natal coat colors are rarely carried dorsally until the natal coat color changes to adult coloration: infants with distinctive coat colors clinging to the backs of carriers could be highly visible and thus vulnerable to predation. Dorsal carriage by mothers may prolong the affiliative mother–infant relationship.  相似文献   

12.
Chorionic gonadotropin (CG) is a critical signal in establishing pregnancy in humans and some other primates, but this placentally expressed hormone has not been found in other mammalian orders. The gene for one of its two subunits (CG beta subunit [CGbeta]) arose by duplication from the luteinizing hormone beta subunit gene (LHbeta), present in all mammals tested. In this study, 14 primate and related mammalian species were examined by Southern blotting and DNA sequencing to determine where in mammalian phylogeny the CGbeta gene originated. Bats (order Chiroptera), flying lemur (order Dermoptera), strepsirrhine primates, and tarsiers do not have a CGbeta gene, although they possess one copy of the LHbeta gene. The CGbeta gene first arose in the common ancestor of the anthropoid primates (New World monkeys, Old World monkeys, apes, and humans), after the anthropoids diverged from tarsiers. At least two subsequent duplication events occurred in the catarrhine primates, all of which possess multiple CGbeta copies. The LHbeta-CGbeta family of genes has undergone frequent gene conversion among the catarrhines, as well as periods of strong positive selection in the New World monkeys (platyrrhines). In addition, newly generated DNA sequences from the promoter of the CG alpha subunit gene indicate that platyrrhine monkeys use a different mechanism of alpha gene expression control than that found in catarrhines.  相似文献   

13.
Fatty acids in milk reflect the interplay between species-specific physiological mechanisms and maternal diet. Anthropoid primates (apes, Old and New World monkeys) vary in patterns of growth and development and dietary strategies. Milk fatty acid profiles also are predicted to vary widely. This study investigates milk fatty acid composition of five wild anthropoids (Alouatta palliata, Callithrix jacchus, Gorilla beringei beringei, Leontopithecus rosalia, Macaca sinica) to test the null hypothesis of a generalized anthropoid milk fatty acid composition. Milk from New and Old World monkeys had significantly more 8:0 and 10:0 than milk from apes. The leaf eating species G. b. beringei and A. paliatta had a significantly higher proportion of milk 18:3n-3, a fatty acid found primarily in plant lipids. Mean percent composition of 22:6n-3 was significantly different among monkeys and apes, but was similar to the lowest reported values for human milk. Mountain gorillas were unique among anthropoids in the high proportion of milk 20:4n-6. This seems to be unrelated to requirements of a larger brain and may instead reflect species-specific metabolic processes or an unknown source of this fatty acid in the mountain gorilla diet.  相似文献   

14.
To investigate the evolution of the Rh blood-group system in anthropoid apes, New and Old World monkeys, and nonprimate animals, serologic typing of erythrocytes from these species with antibodies specific for the human Rh blood-group antigens was performed. In addition, genomic DNA from these animals was analyzed on Southern blots with a human Rh-specific cDNA.Consistent with earlier reports, serologic results showed that gorilla and chimpanzee erythrocytes had epitopes recognized by human Rh D and c antisera, and gibbon erythrocytes were recognized by the c antisera. Surprisingly, some Old and New World monkeys also expressed a Rh c epitope on their erythrocytes. No erythrocytes from the nonprimate animals reacted specifically with any of the human Rh antisera.Southern blot analysis with a human Rh-specific cDNA probe detected Rh-related sequences in anthropoid apes, all New and Old World monkeys, and in most nonprimate animals tested. Although some Rh-related restriction fragments were conserved across species lines in primates, the Rh locus was more polymorphic in chimpanzees and gorillas than in humans. In addition, restriction fragments segregating with the presence of the D antigen in humans were present in the primate species that expressed the D antigen.  相似文献   

15.
The localisation of tRNA(Asn) gene clusters in the karyotypes of primates has been studied by means of in situ hybridisation. In the human and orangutan (Pongo pygmaeus) karyotypes there are two such gene clusters, one each on the long and short arms of chromosome 1. Old World monkeys, however, contain both gene clusters on their equivalent of the human chromosome 1 short arm, which can be explained by a pericentric inversion which (amongst other chromosome changes) distinguishes the human and Old World monkey chromosomes 1. The capuchin (Cebus appella), however, a New World monkey, has only one tRNA(Asn) gene cluster, at least on the elements equivalent to human chromosome 1. This cluster is located proximal to the centromere on a chromosome that has been tentatively identified (by others) as the equivalent of the long arm of human chromosome 1. Should this prove to be correct, it would indicate that the large primate metacentric came into being in the form found today in the great apes, rather than in the form currently found in Old World monkeys. These data further show that the tRNA(Asn) gene cluster has been split in two since before the Old World monkeys and hominids diverged, i.e., over 30 million years ago, and also that the original transfer of these genes from one arm of chromosome 1 to the other was unlikely to have involved a pericentric inversion but, rather, some form of replicative transposition.  相似文献   

16.
17.
SARS-CoV-2 infects humans through the binding of viral S-protein (spike protein) to human angiotensin I converting enzyme 2 (ACE2). The structure of the ACE2-S-protein complex has been deciphered and we focused on the 27 ACE2 residues that bind to S-protein. From human sequence databases, we identified nine ACE2 variants at ACE2–S-protein binding sites. We used both experimental assays and protein structure analysis to evaluate the effect of each variant on the binding affinity of ACE2 to S-protein. We found one variant causing complete binding disruption, two and three variants, respectively, strongly and mildly reducing the binding affinity, and two variants strongly enhancing the binding affinity. We then collected the ACE2 gene sequences from 57 nonhuman primates. Among the 6 apes and 20 Old World monkeys (OWMs) studied, we found no new variants. In contrast, all 11 New World monkeys (NWMs) studied share four variants each causing a strong reduction in binding affinity, the Philippine tarsier also possesses three such variants, and 18 of the 19 prosimian species studied share one variant causing a strong reduction in binding affinity. Moreover, one OWM and three prosimian variants increased binding affinity by >50%. Based on these findings, we proposed that the common ancestor of primates was strongly resistant to and that of NWMs was completely resistant to SARS-CoV-2 and so is the Philippine tarsier, whereas apes and OWMs, like most humans, are susceptible. This study increases our understanding of the differences in susceptibility to SARS-CoV-2 infection among primates.  相似文献   

18.
李明文 《兽类学报》2022,42(6):728-740
非人灵长类动物是生物多样性的重要组成部分,也是生物医学研究的珍贵实验动物,然而,由于人类活动、栖息地破坏、狩猎和遗传隔离等原因,许多非人灵长类动物的野生种群数量急剧下降,甚至处于灭绝的边缘。种质冷冻保存对拯救非人灵长类动物和保存遗传物质资源具有重要意义。本文综述了新大陆猴、旧大陆猴和巨猿等类群动物精子、卵子、胚胎和性腺组织等种质冷冻保存的研究进展,介绍了狨猴、松鼠猴、恒河猴、食蟹猴和黑猩猩等种质冷冻保存的主要方法,并对未来种质冷冻保存的研究方向进行了讨论。  相似文献   

19.
The suborder Anthropoidea of the primates has traditionally been divided in three superfamilies: the Hominoidea (apes and humans) and the Cercopithecoidea (Old World monkeys), together comprising the infraorder Catarrhini, and the Ceboidea (New World monkeys) belonging to the infraorder Platyrrhini.We have sequenced an approximately 390-base-pair part of the mitochondrial 12S rRNA gene for 26 species of the major groups of African monkeys and apes and constructed an extensive phylogeny based upon DNA evidence. Not only is this phylogeny of great importance in classification of African guenons, but it also suggests rearrangements in traditional monkey taxonomy and evolution. Baboons and mandrills were found to be not directly related, while we could confirm that the known four superspecies of mangabeys do not form a monophyletic group, but should be separated into two genera, one clustering with baboons and the other with mandrills. Patas monkeys are clearly related to members of the genus Cercopithecus despite their divergence in build and habitat, while the talapoin falls outside the Cercopithecus clade (including the patas monkey). Correspondence to: A.C. van der Kuyl  相似文献   

20.
Cao G  Liu FL  Zhang GH  Zheng YT 《动物学研究》2012,33(1):99-107
TRIM5-CypA融合基因(TRIMCyp)是一种独特的TRIM5基因形式。迄今已发现新大陆猴中包括鹰猴在内的夜猴属所有代表种,以及在北平顶猴、巽他平顶猴、食蟹猴、印度恒河猴和熊猴等旧大陆猴中均存在这种基因融合现象,但在新大陆猴与旧大陆猴中的TRIMCyp融合基因的基因融合模式和表达剪接方式不同。新大陆猴TRIMCyp融合基因是由CypA假基因的cDNA序列通过LINE-1逆转座子介导的逆转座方式插入至TRIM5α基因的第7和第8外显子之间的内含子中形成,而旧大陆猴TRIMCyp融合基因则是由CypA假基因的cDNA序列以相似的逆转座方式插入至TRIM5基因的3’非翻译区(untranslatedregions,UTR)形成。TRIMCyp融合基因在不同灵长类动物中的存在比例、基因型、TRIMCyp融合蛋白的表达以及对逆转录病毒的限制活性均有所差异。鹰猴和平顶猴的TRIMCyp融合基因研究较多,鹰猴TRIMCyp融合蛋白可能以与TRIM5α相似机制限制HIV-1的感染,而平顶猴TRIMCyp融合蛋白则丧失了限制HIV-1的作用。这两个功能截然不同的融合基因为TRIM5α作用机制研究提供了难得的实验材料,也为建立HIV-1感染的新型灵长类动物艾滋病模型奠定了科学依据。该文综述了TRIMCyp融合基因在灵长类动物中的分布、存在形式及其限制逆转录病毒复制的作用机制等方面的研究情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号