首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There are currently no nonhuman primate models with fully defined major histocompatibility complex (MHC) class II genetics. We recently showed that six common MHC haplotypes account for essentially all MHC diversity in cynomolgus macaques (Macaca fascicularis) from the island of Mauritius. In this study, we employ complementary DNA cloning and sequencing to comprehensively characterize full length MHC class II alleles expressed at the Mafa-DPA, -DPB, -DQA, -DQB, -DRA, and -DRB loci on the six common haplotypes. We describe 34 full-length MHC class II alleles, 12 of which are completely novel. Polymorphism was evident at all six loci including DPA, a locus thought to be monomorphic in rhesus macaques. Similar to other Old World monkeys, Mauritian cynomolgus macaques (MCM) share MHC class II allelic lineages with humans at the DQ and DR loci, but not at the DP loci. Additionally, we identified extensive sharing of MHC class II alleles between MCM and other nonhuman primates. The characterization of these full-length-expressed MHC class II alleles will enable researchers to generate MHC class II transferent cell lines, tetramers, and other molecular reagents that can be used to explore CD4+ T lymphocyte responses in MCM.  相似文献   

2.
Cynomolgus macaques (Macaca fascicularis) are quickly becoming a useful model for infectious disease and transplantation research. Even though cynomolgus macaques from different geographic regions are used for these studies, there has been limited characterization of full-length major histocompatibility complex (MHC) class I immunogenetics of distinct geographic populations. Here, we identified 48 MHC class I cDNA nucleotide sequences in eleven Indonesian cynomolgus macaques, including 41 novel Mafa-A and Mafa-B sequences. We found seven MHC class I sequences in Indonesian macaques that were identical to MHC class I sequences identified in Malaysian or Mauritian macaques. Sharing of nucleotide sequences between these geographically distinct populations is also consistent with the hypothesis that Indonesia was a source of the Mauritian macaque population. In addition, we found that the Indonesian cDNA sequence Mafa-B7601 is identical throughout its peptide binding domain to Mamu-B03, an allele that has been associated with control of Simian immunodeficiency virus (SIV) viremia in Indian rhesus macaques. Overall, a better understanding of the MHC class I alleles present in Indonesian cynomolgus macaques improves their value as a model for disease research, and it better defines the biogeography of cynomolgus macaques throughout Southeast Asia.  相似文献   

3.
Cynomolgus macaques (Macaca fascicularis) provide increasingly common models for infectious disease research. Several geographically distinct populations of these macaques from Southeast Asia and the Indian Ocean island of Mauritius are available for pathogenesis studies. Though host genetics may profoundly impact results of such studies, similarities and differences between populations are often overlooked. In this study we identified 47 full-length MHC class I nucleotide sequences in 16 cynomolgus macaques of Filipino origin. The majority of MHC class I sequences characterized (39 of 47) were unique to this regional population. However, we discovered eight sequences with perfect identity and six sequences with close similarity to previously defined MHC class I sequences from other macaque populations. We identified two ancestral MHC haplotypes that appear to be shared between Filipino and Mauritian cynomolgus macaques, notably a Mafa-B haplotype that has previously been shown to protect Mauritian cynomolgus macaques against challenge with a simian/human immunodeficiency virus, SHIV89.6P. We also identified a Filipino cynomolgus macaque MHC class I sequence for which the predicted protein sequence differs from Mamu-B*17 by a single amino acid. This is important because Mamu-B*17 is strongly associated with protection against simian immunodeficiency virus (SIV) challenge in Indian rhesus macaques. These findings have implications for the evolutionary history of Filipino cynomolgus macaques as well as for the use of this model in SIV/SHIV research protocols. Kevin J. Campbell and Ann M. Detmer contributed equally to this work.  相似文献   

4.
Rhesus macaques (Macaca mulatta) are widely used in developing a strategy for vaccination against human immunodeficiency virus by using simian immunodeficiency virus infection as a model system. Because the genome diversity of major histocompatibility complex (MHC) is well known to control the immune responsiveness to foreign antigens, MHC loci in Indian- and Chinese-origin macaques used in the experiments have been characterized, and it was revealed that the diversity of MHC in macaques was larger than the human MHC. To further characterize the diversity of Mamu-A and Mamu-B loci, we investigated a total of 73 different sequences of Mamu-A, 83 sequences of Mamu-B, and 15 sequences of Mamu-I cDNAs isolated from Burmese-origin macaques. It was found that there were one to five expressing genes in each locus. Among the Mamu-A, Mamu-B, and Mamu-I sequences, 44 (60.2%), 45 (54.2%), and 8 (53.3%), respectively, were novel, and most of the other known alleles were identical to those reported from Chinese- or Indian-origin macaques, demonstrating a genetic mixture between the geographically distinct populations of present day China and India. In addition, it was found that a Mamu haplotype contained at least two highly transcribed Mamu-A genes, because multiple Mamu-A1 cDNAs were obtained from one haplotype. These findings further revealed the diversity and complexity of MHC locus in the rhesus macaques.  相似文献   

5.
Acute shortages of Indian origin Rhesus macaques significantly hinder HIV/AIDS research. Cellular immune responses are particularly difficult to study because only a subset of animals possess MHC class I (MHC I) alleles with defined peptide-binding specificities. To expand the pool of nonhuman primates suitable for studies of cellular immunity, we defined 66 MHC I alleles in Cynomolgus macaques (Macaca fascicularis) of Chinese, Vietnamese, and Mauritian origin. Most MHC I alleles were found only in animals from a single geographic origin, suggesting that Cynomolgus macaques from different origins are not interchangeable in studies of cellular immunity. Animals from Mauritius may be particularly valuable because >50% of these Cynomolgus macaques share the MHC class I allele combination Mafa-B*430101, Mafa-B*440101, and Mafa-B*460101. The increased MHC I allele sharing of Mauritian origin Cynomolgus macaques may dramatically reduce the overall number of animals needed to study cellular immune responses in nonhuman primates while simultaneously reducing the confounding effects of genetic heterogeneity in HIV/AIDS research.  相似文献   

6.
Cynomolgus macaques (Macaca fascicularis) are used widely in biomedical research, and the genetics of their MHC (Mhc-Mafa) has become the focus of considerable attention in recent years. The cohort of Indonesian pedigreed macaques that we present here was typed for Mafa-A, -B, and -DR, by sequencing, as described in earlier studies. Additionally, the DRB region of these animals was characterised by microsatellite analyses. In this study, full-length sequencing of Mafa-DPA/B and -DQA/B in these animals was performed. A total of 75 different alleles were observed; 22 of which have not previously been reported, plus 18 extended exon 2 alleles that were already known. Furthermore, two microsatellites, D6S2854 and D6S2859, were used to characterise the complex Mafa-A region. Sequencing and segregation analyses revealed that the length patterns of these microsatellites are unique for each Mafa-A haplotype. In this work, we present a pedigreed colony of approximately 120 cynomolgus macaques; all of which are typed for the most significant polymorphic MHC class I and class II markers. Offspring of these pedigreed animals are easily characterised for their MHC by microsatellite analyses on the Mafa-A and -DRB regions, which makes the cumbersome sequencing analyses redundant.  相似文献   

7.
The genomic sequences of 15 horse major histocompatibility complex (MHC) class I genes and a collection of MHC class I homozygous horses of five different haplotypes were used to investigate the genomic structure and polymorphism of the equine MHC. A combination of conserved and locus-specific primers was used to amplify horse MHC class I genes with classical and nonclassical characteristics. Multiple clones from each haplotype identified three to five classical sequences per homozygous animal and two to three nonclassical sequences. Phylogenetic analysis was applied to these sequences, and groups were identified which appear to be allelic series, but some sequences were left ungrouped. Sequences determined from MHC class I heterozygous horses and previously described MHC class I sequences were then added, representing a total of ten horse MHC haplotypes. These results were consistent with those obtained from the MHC homozygous horses alone, and 30 classical sequences were assigned to four previously confirmed loci and three new provisional loci. The nonclassical genes had few alleles and the classical genes had higher levels of allelic polymorphism. Alleles for two classical loci with the expected pattern of polymorphism were found in the majority of haplotypes tested, but alleles at two other commonly detected loci had more variation outside of the hypervariable region than within. Our data indicate that the equine major histocompatibility complex is characterized by variation in the complement of class I genes expressed in different haplotypes in addition to the expected allelic polymorphism within loci.  相似文献   

8.
In contrast to rhesus monkeys, substantial knowledge on cynomolgus monkey major histocompatibility complex (MHC) class II haplotypes is lacking. Therefore, 17 animals, including one pedigreed family, were thoroughly characterized for polymorphic Mhc class II region genes as well as their mitochondrial DNA (mtDNA) sequences. Different cynomolgus macaque populations appear to exhibit unique mtDNA profiles reflecting their geographic origin. Within the present panel, 10 Mafa-DPB1, 14 Mafa-DQA1, 12 Mafa-DQB1, and 35 Mafa-DRB exon 2 sequences were identified. All of these alleles cluster into lineages that were previously described for rhesus macaques. Moreover, about half of the Mafa-DPB1, Mafa-DQA1, and Mafa-DQB1 alleles and one third of the Mafa-DRB exon 2 sequences are identical to rhesus macaque orthologues. Such a high level of Mhc class II allele sharing has not been reported for primate species. Pedigree analysis allowed the characterization of nine distinct Mafa class II haplotypes, and seven additional ones could be deduced. Two of these haplotypes harbor a duplication of the Mafa-DQB1 locus. Despite extensive allele sharing, rhesus and cynomolgus monkeys do not appear to possess identical Mhc class II haplotypes, thus illustrating that new haplotypes were generated after speciation by recombination-like processes.  相似文献   

9.
In recent years, the use of cynomolgus macaques in biomedical research has increased greatly. However, with the exception of the Mauritian population, knowledge of the MHC class II genetics of the species remains limited. Here, using cDNA cloning and Sanger sequencing, we identified 127 full-length MHC class II alleles in a group of 12 Indonesian and 12 Vietnamese cynomolgus macaques. Forty two of these were completely novel to cynomolgus macaques while 61 extended the sequence of previously identified alleles from partial to full length. This more than doubles the number of full-length cynomolgus macaque MHC class II alleles available in GenBank, significantly expanding the allele library for the species and laying the groundwork for future evolutionary and functional studies.  相似文献   

10.
The rhesus macaque (Macaca mulatta) is an excellent model for human disease and vaccine research. Two populations exhibiting distinctive morphological and physiological characteristics, Indian- and Chinese-origin rhesus macaques, are commonly used in research. Genetic analysis has focused on the Indian macaque population, but the accessibility of these animals for research is limited. Due to their greater availability, Chinese rhesus macaques are now being used more frequently, particularly in vaccine and biodefense studies, although relatively little is known about their immunogenetics. In this study, we discovered major histocompatibility complex (MHC) class I cDNAs in 12 Chinese rhesus macaques and detected 41 distinct Mamu-A and Mamu-B sequences. Twenty-seven of these class I cDNAs were novel, while six and eight of these sequences were previously reported in Chinese and Indian rhesus macaques, respectively. We then performed microsatellite analysis on DNA from these 12 animals, as well as an additional 18 animals, and developed sequence specific primer PCR (PCR-SSP) assays for eight cDNAs found in multiple animals. We also examined our cohort for potential admixture of Chinese and Indian origin animals using a recently developed panel of single nucleotide polymorphisms (SNPs). The discovery of 27 novel MHC class I sequences in this analysis underscores the genetic diversity of Chinese rhesus macaques and contributes reagents that will be valuable for studying cellular immunology in this population.  相似文献   

11.
12.
By determining the nucleotide sequences of more than 700 cDNA clones isolated from 16 cynomolgus monkeys, we identified 26 Mafa-B alleles. In addition, nine sequences with similarity to Mamu-I alleles were identified. Since multiple Mafa-B alleles were found in each individual, it was strongly suggested that the cynomolgus MHC class I B locus might be duplicated and that the Mafa-I locus was derived from the B locus by gene duplication, as in the case of the Mamu-I locus of rhesus monkeys.  相似文献   

13.
MHC class I allele frequencies in pigtail macaques of diverse origin   总被引:2,自引:2,他引:0  
Pigtail macaques (Macaca nemestrina) are an increasingly common primate model for the study of human AIDS. Major Histocompatibility complex (MHC) class I-restricted CD8+ T cell responses are a critical part of the adaptive immune response to HIV-1 in humans and simian immunodeficiency virus (SIV) in macaques; however, MHC class I alleles have not yet been comprehensively characterized in pigtail macaques. The frequencies of ten previously defined alleles (four Mane-A and six Mane-B) were investigated in detail in 109 pigtail macaques using reference strand-mediated conformational analysis (RSCA). The macaques were derived from three separate breeding colonies in the USA, Indonesia and Australia, and allele frequencies were analysed within and between these groups. Mane-A*10, an allele that restricts the immunodominant SIV Gag epitope KP9, was the most common allele, present in 32.1% of the animals overall, with similar frequencies across the three cohorts. Additionally, RSCA identified a new allele (Mane-A*17) common to three Indonesian pigtail macaques responding to the same Gag CD8+ T cell epitope. This broad characterization of common MHC class I alleles in more than 100 pigtail macaques further develops this animal model for the study of virus-specific CD8+ T cell responses.  相似文献   

14.
15.
16.
 Analysis of cattle major histocompatibility complex (MHC) (BoLA) class I gene expression using serological and biochemical methods has demonstrated a high level of polymorphism. However, analysis of class I cDNA sequences has failed to produce conclusive evidence concerning the number and nature of expressed genes. Such information is essential for detailed studies of cattle immune responses, and to increase our understanding of the mechanisms of MHC evolution. In this study a selective breeding programme has been used to generate a number of MHC homozygous cattle expressing common serologically defined class I specificities. Detailed analysis of five class I haplotypes was carried out, with transcribed class I genes identified and characterized by cDNA cloning, sequence analysis, and transfection/expression studies. Surface expression of the gene products (on lymphocytes) was confirmed using monoclonal antibodies of defined BoLA specificity. Phylogenetic analysis of available transcribed cattle MHC class I sequences revealed complex evolutionary relationships including possible evidence for recombination. The study of individual haplotypes suggests that certain groupings of related sequences may correlate with loci, but overall it was not possible to define the origin of individual alleles using this approach. The most striking finding of this study is that none of the cattle class I genes is consistently expressed, and that in contrast to human, haplotypes differ from one another in both the number and composition of expressed classical class I genes. Received: 15 February 1999 / Revised: 23 June 1999  相似文献   

17.
18.
Since the onset of the HIV pandemic, the use of nonhuman primate models of infection has increasingly become important. An excellent model to study HIV infection and immunological responses, in particular cell-mediated immune responses, is SIV infection of rhesus macaques. CTL epitopes have been mapped using SIV-infected rhesus macaques, but, to date, a peptide binding motif has been described for only one rhesus class I MHC molecule, Mamu-A*01. Herein, we have established peptide-live cell binding assays for four rhesus MHC class I molecules: Mamu-A*11, -B*03, -B*04, and -B*17. Using such assays, peptide binding motifs have been established for all four of these rhesus MHC class I molecules. With respect to the nature and spacing of crucial anchor positions, the motifs defined for Mamu-B*04 and -B*17 present unique features not previously observed for other primate species. The motifs identified for Mamu-A*11 and -B*03 are very similar to the peptide binding motifs previously described for human HLA-B*44 and -B*27, respectively. Accordingly, naturally processed peptides derived from HLA-B*44 and HLA-B*27 specifically bind Mamu-A*11 and Mamu-B*03, respectively, indicating that conserved MHC class I binding capabilities exist between rhesus macaques and humans. The definition of four rhesus MHC class I-specific motifs expands our ability to accurately detect and quantitate immune responses to MHC class I-restricted epitopes in rhesus macaques and to rationally design peptide epitope-based model vaccine constructs destined for use in nonhuman primates.  相似文献   

19.
 In order to further our understanding of major histocompatibility complex (MHC) class I gene organization, we began a comparative analysis of the large scale organization of the class I region in diverse haplotypes. For these studies, the MHC in healthy Japanese donors who have the predominant MHC haplotypes and/or HLA-A or -B alleles was examined by pulsed field gel electrophoresis and Southern analysis using probes spanning the class I region. Hybridization with probes from the HLA-A to HLA-G region revealed that individuals expressing HLA-A30, -A31, or -A33 have an approximately 70 kilobase (kb) insertion near the HLA-A gene as compared with haplotypes containing the HLA-A11 or -A26 allele. Conversely, HLA-A24-containing haplotypes appear to have an approximately 50 kb deletion from the same region. Further, it appears that chromosomes carrying closely related alleles are similar to each other in this region, consistent with their presumed evolutionary relationship. While little is known about the gene content between the HLA-A and HLA-G region, it will be interesting to examine the prospect that functional genes do in fact reside within the inserted or deleted portions, thereby raising the possibility that distinct functional differences are conferred by different haplotypes. Overall, the results reported here should contribute to furthering our understanding of the association between diseases and HLA as well as provide new insights into the evolution of the MHC. Received: 11 December 1996  相似文献   

20.
The zebrafish is an important animal model for stem cell biology, cancer, and immunology research. Histocompatibility represents a key intersection of these disciplines; however, histocompatibility in zebrafish remains poorly understood. We examined a set of diverse zebrafish class I major histocompatibility complex (MHC) genes that segregate with specific haplotypes at chromosome 19, and for which donor-recipient matching has been shown to improve engraftment after hematopoietic transplantation. Using flanking gene polymorphisms, we identified six distinct chromosome 19 haplotypes. We describe several novel class I U lineage genes and characterize their sequence properties, expression, and haplotype distribution. Altogether, ten full-length zebrafish class I genes were analyzed, mhc1uba through mhc1uka. Expression data and sequence properties indicate that most are candidate classical genes. Several substitutions in putative peptide anchor residues, often shared with deduced MHC molecules from additional teleost species, suggest flexibility in antigen binding. All ten zebrafish class I genes were uniquely assigned among the six haplotypes, with dominant or codominant expression of one to three genes per haplotype. Interestingly, while the divergent MHC haplotypes display variable gene copy number and content, the different genes appear to have ancient origin, with extremely high levels of sequence diversity. Furthermore, haplotype variability extends beyond the MHC genes to include divergent forms of psmb8. The many disparate haplotypes at this locus therefore represent a remarkable form of genomic region configuration polymorphism. Defining the functional MHC genes within these divergent class I haplotypes in zebrafish will provide an important foundation for future studies in immunology and transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号