首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Soil Microbial Abundance and Diversity Along a Low Precipitation Gradient   总被引:2,自引:0,他引:2  
The exploration of spatial patterns of abundance and diversity patterns along precipitation gradients has focused for centuries on plants and animals; microbial profiles along such gradients are largely unknown. We studied the effects of soil pH, nutrient concentration, salinity, and water content on bacterial abundance and diversity in soils collected from Mediterranean, semi-arid, and arid sites receiving approximately 400, 300, and 100 mm annual precipitation, respectively. Bacterial diversity was evaluated by terminal restriction fragment length polymorphism and clone library analyses and the patterns obtained varied with the climatic regions. Over 75% of the sequenced clones were unique to their environment, while ∼2% were shared by all sites, yet, the Mediterranean and semi-arid sites had more common clones (∼9%) than either had with the arid site (4.7% and 6%, respectively). The microbial abundance, estimated by phospholipid fatty acids and real-time quantitative PCR assays, was significantly lower in the arid region. Our results indicate that although soil bacterial abundance decreases with precipitation, bacterial diversity is independent of precipitation gradient. Furthermore, community composition was found to be unique to each ecosystem.  相似文献   

2.
通过调查岷江干旱河谷两河口、飞虹、撮箕和牟托4个样地优势灌丛及其灌丛间空地的表土土壤物理化学性质和微生物群落组成,探讨植物灌丛群落对土壤微生物群落组成的影响。研究发现不同灌丛种类对土壤微生物群落组成以及土壤物理化学性质并没有显著影响,而同一样地灌丛与空地间的差异却较为显著。灌丛下比空地土壤中具有更高的有机质、养分含量,更高的土壤含水量和更低的容重,而灌丛下相对富集的养分资源是造成灌丛与空地间微生物群落组成差异的主要原因。不同样地影响微生物群落的主要因子存在一定差异,但与氮相关的因子(总氮、有效氮、碳/氮比)对土壤微生物群落着非常重要的影响,特别是对土壤微生物群落总生物量和细菌类群(革兰氏阳性菌、革兰氏阴性菌、细菌等)。虽然不同灌丛和空地下土壤中细菌群落都没有显著地变化,但真菌和菌根真菌却明显的在灌丛下富集。在飞虹和牟托样地,总磷和碳/磷比与真菌类群,主要指真菌和菌根真菌,表现出显著正相关性,这或许反映了真菌类群对于该区域磷循环的重要作用。研究结果揭示了灌丛植被在干旱河谷地区地下生态系统中的重要作用,以及氮、磷这两种养分元素对土壤微生物群落的重要影响。同时,未来对于干旱河谷地区植物-土壤关系的研究应该关注真菌和菌根真菌类群的作用。  相似文献   

3.
蒋嘉瑜  刘任涛  张安宁  陈蔚 《生态学报》2023,43(5):1981-1994
在干旱区(内蒙古乌拉特后旗)和半干旱区(宁夏盐池)荒漠草原区,选择柠条灌丛内外微生境为研究样地,以红砂枯落物为研究对象,利用2种规格网孔分解袋(30目和250目网孔),探索中小型节肢动物在红砂枯落物分解过程中的作用规律,研究灌丛微生境中红砂枯落物质量损失变化特征及节肢动物群落的贡献。结果表明:(1)在干旱与半干旱区,红砂枯落物分解常数K均表现为灌丛内外微生境间无显著差异,且有无节肢动物参与对K的影响均较小。(2)分解至12个月时,无节肢动物参与的情况下,干旱与半干旱区红砂枯落物残留率均表现为裸地显著低于灌丛;但有节肢动物参与时,枯落物残留率则表现为灌丛内外微生境间无显著差异。分解至44个月时,无节肢动物参与的情况下,仅在干旱区枯落物残留率表现为裸地显著高于灌丛;而有节肢动物参与时,干旱与半干旱区枯落物残留率均表现为灌丛内外微生境间无显著差异。(3)节肢动物对红砂枯落物质量损失的贡献率呈现单峰值现象,且在分解至24个月时达到峰值。枯落物分解至12个月时,仅半干旱区节肢动物对红砂枯落物分解的贡献率表现为裸地显著低于灌丛;分解至44个月时,仅干旱区节肢动物对红砂枯落物分解的贡献率表现为裸地显...  相似文献   

4.
Abstract. In arid zones dominant woody plants are capable of causing changes in microclimate and soil properties likely to affect species composition, as well as the establishment and spatial distribution of plant species. In North American and European deserts species richness appears to be higher under the canopy of shrubs and trees, in contrast with Chilean deserts where it seems to be lower. Since Prosopis flexuosa (Fabaceae, Mimosoideae) is the most conspicuous tree in the central Monte desert, Argentina, we analysed the effect of this species on the composition and abundance of the shrub and herbaceous layers and on soil properties. We considered two mesohabitats: ‘under P. flexuosa canopy’ and ‘intercanopy areas’. In addition, we analysed the differences between two microhabitats under canopies: ‘northern part of the canopy’ and ‘southern part of the canopy’. Results indicate that species composition and soil properties are affected by both mesohabitats and microhabitats. We found a higher number of shrubs under canopies, whereas that of grasses and perennial forbs increased in intercanopy areas. Concentrations of organic matter, nitrogen, potassium and phosphorus, factors limiting biological productivity in Monte desert soils, were significantly higher under than outside P. flexuosa canopies. Electrical conductivity and concentrations of Na+, Ca++, Mg++ were higher in the northern than in the southern microhabitats. No differences in species richness, evenness or diversity were found between mesohabitats or between microhabitats. We conclude that P. flexuosa modifies the spatial pattern of plant species in the shrub and herbaceous layers and the chemical conditions of the soil, generating spatial heterogeneity on different scales.  相似文献   

5.
Arid and semi-arid ecosystems are often characterized by vegetation patchiness and variable availability of resources. Phospholipid fatty acid (PLFA) and 16S rRNA gene fragment analyses were used to compare the bulk soil microbial community structure at patchy arid and semi-arid landscapes. Multivariate analyses of the PLFA data and the 16S rRNA gene fragments were in agreement with each other, suggesting that the differences between bulk soil microbial communities were primarily related to shrub vs intershrub patches, irrespective of climatic or site differences. This suggests that the mere presence of a living shrub is the dominant driving factor for the differential adaptation of the microbial communities. Lipid markers suggested as indicators of Gram-positive bacteria were higher in soils under the shrub canopies, while markers suggested as indicators of cyanobacteria and anaerobic bacteria were elevated in the intershrub soils. Secondary differences between soil microbial communities were associated with intershrub characteristics and to a lesser extent with the shrub species. This study provides an insight into the multifaceted nature of the factors that shape the microbial community structure in patchy desert landscapes. It further suggests that these drivers not only act in concert but also in a way that is dependent on the aridity level.  相似文献   

6.
Shrubs are the largest plant life form in tundra ecosystems; therefore, any changes in the abundance of shrubs will feedback to influence biodiversity, ecosystem function, and climate. The snow–shrub hypothesis asserts that shrub canopies trap snow and insulate soils in winter, increasing the rates of nutrient cycling to create a positive feedback to shrub expansion. However, previous work has not been able to separate the abiotic from the biotic influences of shrub canopies. We conducted a 3‐year factorial experiment to determine the influences of canopies on soil temperatures and nutrient cycling parameters by removing ~0.5 m high willow (Salix spp.) and birch (Betula glandulosa) shrubs, creating artificial shrub canopies and comparing these manipulations to nearby open tundra and shrub patches. Soil temperatures were 4–5°C warmer in January, and 2°C cooler in July under shrub cover. Natural shrub plots had 14–33 cm more snow in January than adjacent open tundra plots. Snow cover and soil temperatures were similar in the manipulated plots when compared with the respective unmanipulated treatments, indicating that shrub canopy cover was a dominant factor influencing the soil thermal regime. Conversely, we found no strong evidence of increased soil decomposition, CO2 fluxes, or nitrate or ammonia adsorbtion under artificial shrub canopy treatments when compared with unmanipulated open tundra. Our results suggest that the abiotic influences of shrub canopy cover alone on nutrient dynamics are weaker than previously asserted.  相似文献   

7.
Two shrub species (Piliostigma reticulatum (D.C.) Hochst (Caesalpinioideae) and Guiera senegalensis J.F. Gmel (Combretaceae) are commonly found in farmers’ fields at varying densities in semi-arid Senegal and throughout the Sahel where soils have chronically low phosphorus (P) availability. It seems plausible that shrub litter and the rhizospheres could influence P fractions and other chemical soil properties that affect crop productivity. Thus, a study was done at two sites, on the distribution of inorganic and organic soil P pools, organic C levels, and pH in soil beneath and outside the canopies of P. reticulatum and G. senegalensis (0-30 cm depth). Both sites had low total P ranging from 64 mg P kg?1 to 135 mg P kg-1, and low extractable PO4 (resin Pi) (1–6 mg P kg?1) with P fractions dominated by NaOH-P. Organic P (Po) made up about 50% of total P, and most of the organic P (>60%) was found in the NaOH-P fractions. The labile P, particularly bicarb-Po was higher in soil beneath shrub canopies (8.4 mg P kg ?1), than outside the canopy (6.2 mg P kg ?1). Similarly, C, N and P to a lesser extent, were more concentrated beneath shrub canopies. P. reticulatum soil was dominated by the NaOH-Po fraction, whereas G. senegalensis had higher bicarb-Po at one of the study sites. An index of biologically available organic P (Bicarb-Po) / (Bicarb-Po?+?Bicar-Pi?+?Resin Pi) was ?>?60% and indicates that biological processes represent an important part of P cycling in these shrub ecosystems. The differential ability of shrubs in modifying soil chemical properties under their canopies has major implications for biogeochemical cycling of nutrients and C in sandy soils of semi arid Sahelian ecosystems.  相似文献   

8.
火烧迹地柽柳灌丛资源岛特征及植被的自然恢复   总被引:2,自引:0,他引:2  
干旱半干旱地区灌丛资源岛特征及形成机制多有报道,但资源岛土壤对群落稳定性与火烧迹地植被的自然恢复作用尚不明确。以酒泉盐碱地柽柳灌丛地火烧3年后,自然恢复的柽柳(Tamarix ramosissima)及其冠下草本群落为研究对象,构建柽柳枯立株体量指数(SSI, Shrub Size Index)和恢复力综合指数,探讨了资源岛特征与植被恢复、冠下草本群落多样性的关系,量化不同大小柽柳灌丛的恢复力稳定性。结果表明:(1)在不同SSI的柽柳枯立株下土壤有机质和含水率明均显高于灌丛间地,形成了明显的资源岛特征。土壤有机质最大值出现在0—10 cm土层,中灌丛的肥力积聚效果最明显。(2)土壤主要以中性盐为主,在0—40 cm土层,灌丛区域土壤可溶性盐低于冠外,呈明显的盐谷特征,中灌丛的盐谷分布最为明显。(3)随着枯立株SSI的增大,柽柳新生枝条的数量及其高度均有所增大,冠下植物的高度、盖度、密度和地上植物量也明显高于灌丛间地,且灌丛越大恢复效果越明显。(4)灌下植物Simpson指数、Shannon-Wiener指数、Margalef指数和Pielou指数随着枯立株SSI的增大均先降后升,多样性...  相似文献   

9.
调查了内蒙古草原化荒漠区3种锦鸡儿[垫状锦鸡儿(Caragana tibetica)、荒漠锦鸡儿(C.roborovskyi)和狭叶锦鸡儿(C.stenophylla)]灌丛内、外土壤线虫群落多样性、组成和代谢足迹,以及相关的土壤理化性质和植物群落特征,旨在探讨锦鸡儿属灌丛对土壤线虫群落的影响,并分析这种影响是否具有灌木种间差异,同时从线虫功能团水平上探究灌丛如何通过非生物因素和生物因素影响线虫群落组成。结果表明:锦鸡儿属灌丛对土壤线虫多度、丰富度和多样性无显著影响,但却显著影响土壤线虫群落组成。原因是灌丛对土壤线虫群落具有物种选择性;灌丛可能主要是通过根系分泌物、凋落物质量等因素,而不是通过土壤理化性质和林下植物影响线虫群落组成。土壤线虫组成的变化引起线虫代谢足迹发生明显变化。灌丛内土壤线虫功能代谢足迹大于灌丛外(除狭叶锦鸡儿外),说明灌丛内土壤线虫群落对碳的利用率更高。3种锦鸡儿属灌木中,狭叶锦鸡儿的结构代谢足迹最大,表明狭叶锦鸡儿对捕食杂食类线虫代谢活性的促进作用更强。土壤线虫组成的变化通过线虫代谢足迹导致土壤食物网结构发生显著性变化。狭叶锦鸡儿灌丛土壤干扰程度低,营养富集状况好...  相似文献   

10.
Soil microbial communities mediate critical ecosystem carbon and nutrient cycles. How microbial communities will respond to changes in vegetation and climate, however, are not well understood. We reciprocally transplanted soil cores from under oak canopies and adjacent open grasslands in a California oak–grassland ecosystem to determine how microbial communities respond to changes in the soil environment and the potential consequences for the cycling of carbon. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid analysis (PLFA), microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups by quantifying 13C uptake from a universal substrate (pyruvate) into PLFA biomarkers. Soil in the open grassland experienced higher maximum temperatures and lower soil water content than soil under the oak canopies. Soil microbial communities in soil under oak canopies were more sensitive to environmental change than those in adjacent soil from the open grassland. Oak canopy soil communities changed rapidly when cores were transplanted into the open grassland soil environment, but grassland soil communities did not change when transplanted into the oak canopy environment. Similarly, microbial biomass, enzyme activities, and microbial respiration decreased when microbial communities were transplanted from the oak canopy soils to the grassland environment, but not when the grassland communities were transplanted to the oak canopy environment. These data support the hypothesis that microbial community composition and function is altered when microbes are exposed to new extremes in environmental conditions; that is, environmental conditions outside of their “life history” envelopes.  相似文献   

11.
干旱区绿洲-荒漠过渡带灌丛土壤属性研究   总被引:15,自引:1,他引:15  
以天山北坡绿洲 荒漠过渡带为研究区,选择3种类型的灌丛并采集不同位置和深度的灌丛土壤样品进行分析,研究灌丛土壤资源的聚集效应.结果表明,干旱区绿洲 荒漠过渡带不同类型灌丛对土壤粒度分布的影响不显著,土壤以砂和粉砂为主,红柳+裸地灌丛土壤粒度分布的聚集效应明显;灌丛土壤有机质、全氮和速效钾含量在冠幅下最高,其次为灌丛间低矮植物下,灌丛间裸地最低,呈现出明显的“肥岛”现象;不同灌丛类型和采样位置对土壤盐分离子和总盐含量的变化影响显著,且不同灌丛土壤资源的聚集效应各异;导致不同类型灌丛土壤资源富集率不同的原因有气候因素、灌木分布的土壤环境、灌丛高度和冠幅、灌丛间有无低矮植物等.  相似文献   

12.
Patchy desert shrubs magnify the horizontal heterogeneities of carbon source and nutrient availability in an arid ecosystem, significantly affecting the abundance and activity of the soil microbial community. Since each shrub species develops special ecophysiological adaptations to the extreme harsh desert environments, previous studies elucidated that the effects of perennial shrubs on microbial diversity are unequal. The aim of the present study, conducted in the Negev Desert, Israel, was to illustrate the vertical changes of soil microbial community functionality in the root zone of perennial shrubs. Soil samples were collected from the 0–50 cm depth at 10-cm intervals under the canopy of Zygophyllum dumosum, Hammada scoparia, and from the open spaces between them, in the wet and dry seasons. Soil moisture and organic matter exhibited a significant (P < 0.001) plant and depth dependence. The mean basal respiration rates and microbial biomass in soils collected beneath perennial shrubs were relatively higher than the control during the wet season, however, a contrasting trend was observed at some soil depths during the dry season. Relatively high abundance and activity of aromatic and carboxylic acid utilizers were observed in the vicinity of perennial shrubs, and the values recorded during the dry season were generally higher than the corresponding values during the wet season. In addition, a “mirror effect” in vertical changes of the community-level physiological profile was observed between Z. dumosum and H. scoparia. This study demonstrated the stratification of the functional aspects in soils under the canopy of perennial shrubs, thus indicating that the scattered distribution of vegetation not only causes horizontal heterogeneities of the microbial community in an arid system, but also that the ecophysiological adaptations developed by xerophytes regulate the abundance and saprotrophic functionality of microorganisms in the root zone.  相似文献   

13.
Shifts between facilitation and interference and their importance in shaping plant population and community dynamics have received wide recognition. Nevertheless, the causes and spatio-temporal scales of these shifts are poorly understood, yet strongly debated. This study tested the hypothesis that age-related changes in canopy structure shift the effect of a nurse shrub on their protégé from facilitation to interference, using as a model system the interaction between the dwarf shrub Sarcopoterium spinosum and conspecific new recruits, in the shrubland of the transition area between the Mediterranean and the semi-arid climatic zones of Israel. Foliation level (i.e. the percentage of canopy surface area covered with leaves), a measure of shrub canopy structure, increased with age. Shading level was significantly and positively related to foliation level. Densities of new recruits in the shrubland showed a unimodal response to canopy structure and cover: the highest densities were associated with canopies presenting low and medium foliation levels (providing 71 and 82% shade, respectively), while high foliation levels (93% shade) and open spaces among canopies were characterized by very low densities. A related field experiment using shading nets revealed that seedling survival rates followed a similar unimodal pattern, with the highest survival (ca 60%) detected in moderate shade (70%), twice as much as in full sun, and the lowest survival (ca 10%) observed in extreme shade (90%). These results support the study hypothesis on age-dependent interactions. Thus, in a semi-arid shrubland ecosystem, the transition of the "nurse shrub" from "young" to "old" stage can shift facilitation to interference. Hence, the age structure of established shrub populations determines a) the availability of suitable sites for seedling recruitment and b) the balance between facilitation versus interference effects on seedling establishment.  相似文献   

14.
To determine the susceptibility of different forest types to lianes, and to investigate which ecological factors are limiting for lianes, a field survey covering 28 naturally forested sites in Golden Bay (Northwest Nelson) and on Banks Peninsula (Canterbury) was carried out. Results from Detrended Canonical Correspondence Analysis of liane species abundance data in relation to tree and shrub species abundance data and abiotic site variables, showed that the liane community composition was highly correlated with the composition of the tree and shrub community. Forest remnants with introduced lianes in the canopy were characterised by high soil pH, low altitude and high mean temperatures. Native lianes were more widespread geographically and showed a wider ecological tolerance range than introduced lianes. Native liane species were found in both early successional and mature forest, whereas introduced lianes occurred more often with early- successional vegetation. Forest canopy height was also an important factor affecting liane distribution and abundance. Both climbing mechanism and liane stem longevity seemed to affect the height of canopy accessible to lianes. The three twining lianes with longer-lived woody stems (Muehlenbeckia australis, Parsonsia spp. and Ripogonum scandens) reached higher host canopies than a twiner with herbaceous stems (Calystegia tuguriorum), a tendril climber (Passiflora mollisima), and a hook climber (Rubus cissoides). The susceptibility of individual tree and shrub species to canopy invasion by lianes was affected both by the light environment of the potential host, and the architectural properties (height and support availability) of the host.  相似文献   

15.
Microbial communities in soils may change in accordance with distance, season, climate, soil texture and other environmental parameters. Microbial diversity patterns have been extensively surveyed in temperate regions, but few such studies attempted to address them with respect to spatial and temporal scales and their correlations to environmental factors, especially in arid ecosystems. In order to fill this gap on a regional scale, the molecular fingerprints and abundance of three taxonomic groups – Bacteria, α-Proteobacteria and Actinobacteria – were sampled from soils 0.5–100 km apart in arid, semi-arid, dry Mediterranean and shoreline Mediterranean regions in Israel. Additionally, on a local scale, the molecular fingerprints of three taxonomic groups – Bacteria, Archaea and Fungi – were sampled from soils 1 cm–500 m apart in the semi-arid region, in both summer and winter. Fingerprints of the Bacteria differentiated between all regions (P<0.02), while those of the α-Proteobacteria differentiated between some of the regions (0.01<P<0.09), and actinobacterial fingerprints were similar among all regions (P>0.05). Locally, fingerprints of archaea and fungi did not display distance-decay relationships (P>0.13), that is, the dissimilarity between communities did not increase with geographic distance. Neither was this phenomenon evident in bacterial samples in summer (P>0.24); in winter, however, differences between bacterial communities significantly increased as the geographic distances between them grew (P<0.01). Microbial community structures, as well as microbial abundance, were both significantly correlated to precipitation and soil characteristics: texture, organic matter and water content (R2>0.60, P<0.01). We conclude that on the whole, microbial biogeography in arid and semi-arid soils in Israel is determined more by specific environmental factors than geographic distances and spatial distribution patterns.  相似文献   

16.
Plant communities are structured by both competition and facilitation. The interplay between the two interactions can vary depending on environmental factors, nature of stress, and plant traits. However, whether positive or negative interactions dominate in regions of high biotic and abiotic stress remains unclear. We studied herbaceous plant communities associated with a dwarf shrub Caragana versicolor in semi-arid, high altitude Trans-Himalayan rangelands of Spiti, India. We surveyed 120 pairs of plots (within and outside shrub canopies) across four watersheds differing in altitude, aspect, and dominant herbivores. Herbaceous communities within shrub canopies had 25% higher species richness, but similar abundance when compared to communities outside the canopy, with the shrub edge having higher diversity than the centre of the canopy. Grasses and erect forbs showed positive associations with the shrub, while prostrate plants occurred at much lower abundance within the canopy. Rare species showed stronger positive associations with Caragana than abundant species. Experimental removal of herbaceous vegetation from within shrub canopies led to 42% increase in flowering in Caragana, indicating a cost to the host shrubs. Our study indicates a robust pattern of a dwarf shrub facilitating local community diversity across this alpine landscape, increasing diversity at the plot level, facilitating rare species, and yet incurring a cost to hosts from the presence of herbaceous plants. Given these large influences of this shrub on the vegetation of these high altitude rangelands, we suggest that the shrub microhabitat be explicitly considered in any analyses of ecosystem health in such rangelands.  相似文献   

17.
Understorey vegetation in patches of Retama sphaerocarpa shrubsin semi-arid environments is dependent on the overstorey shrublife history. Community structure changes with shrub age asa result of physical amelioration of environmental conditionsby the canopy and organic matter accumulation in the soil. Weinvestigated the effect of the canopy on understorey speciesdiversity in the field and its relationships with the soil seedbank under 50 shrubs from 5 to 25+ years old, and compared speciescomposition in the field in a wet and a dry year. Species compositionof the soil seed bank under R. sphaerocarpa shrubs did not differsignificantly with shrub age, but seed density increased asthe shrubs aged. In the field, community composition changedwith shrub age, increasing species richness in a process thatdepended on the amount of spring rainfall. Our results suggestthat the soil seed bank is rather uniform and that the shrubcanopy strongly selects which species appear in the understorey.There were seeds of many species present under both young andold shrubs but which only established under old shrubs. Thisshowed dispersal was not limiting species abundance and suggestedthat the canopy was an important sorting factor for speciespresent in the understorey. Less frequent species contributedthe most to patch diversity, and rainfall effectively controlledspecies emergence. Understorey community composition dependedon multiple interspecific interactions, such as facilitationby the shrub and competition from neighbours, as well as ondispersal processes. Facilitation in this environment is a keyfeature in the structuring of plant communities and in governingecosystem functioning. Copyright 2000 Annals of Botany Company Community structure, competition, dispersal, facilitation, species composition, rainfall variability, Retama sphaerocarpa, seed bank, semi-arid environments  相似文献   

18.
We sampled shrub canopy volume (height times area) and environmental factors (soil wetness, soil depth of thaw, soil pH, mean July air temperature, and typical date of spring snow loss) on 471 plots across five National Park Service units in northern Alaska. Our goal was to determine the environments where tall shrubs thrive and use this information to predict the location of future shrub expansion. The study area covers over 80,000 km2 and has mostly tundra vegetation. Large canopy volumes were uncommon, with volumes over 0.5 m3/m2 present on just 8% of plots. Shrub canopy volumes were highest where mean July temperatures were above 10.5°C and on weakly acid to neutral soils (pH of 6 to 7) with deep summer thaw (>80 cm) and good drainage. On many sites, flooding helped maintain favorable soil conditions for shrub growth. Canopy volumes were highest where the typical snow loss date was near 20 May; these represent sites that are neither strongly wind-scoured in the winter nor late to melt from deep snowdrifts. Individual species varied widely in the canopy volumes they attained and their response to the environmental factors. Betula sp. shrubs were the most common and quite tolerant of soil acidity, cold July temperatures, and shallow thaw depths, but they did not form high-volume canopies under these conditions. Alnus viridis formed the largest canopies and was tolerant of soil acidity down to about pH 5, but required more summer warmth (over 12°C) than the other species. The Salix species varied widely from S. pulchra, tolerant of wet and moderately acid soils, to S. alaxensis, requiring well-drained soils with near neutral pH. Nearly half of the land area in ARCN has mean July temperatures of 10.5 to 12.5°C, where 2°C of warming would bring temperatures into the range needed for all of the potential tall shrub species to form large canopies. However, limitations in the other environmental factors would probably prevent the formation of large shrub canopies on at least half of the land area with newly favorable temperatures after 2°C of warming.  相似文献   

19.
Recent studies have shown that some species of Mimosa (Leguminosae-Mimosoideae) create resource islands (RI), rich in soil organic matter and nutrients, as well as in arbuscular mycorrhyzal fungal (AMF) spores, in the semi-arid Valley of Tehuacán-Cuicatlán. The relevance of this fact is that arid and semi-arid regions are characterized by low fertility soils and scarce precipitation, limiting plant species growth and development; this explains why the presence of AM fungi may be advantageous for mycorrhizal desert plants. Fluctuations in AMF spore numbers could be related to environmental, seasonal and soil factors which affect AMF sporulation, in addition to the life history of the host plant. The aim of this study was to asses the impact of spatial (resource islands vs open areas, OA) and seasonal (wet season vs start of dry season vs dry season) soil heterogeneity in the distribution and abundance of AMF spores in four different study sites within the Valley. We registered AMF spores in the 120 soil samples examined. Significant differences in the number of AMF spores were reported in the soil below the canopy of Mimosa species (RI) comparing with OA (RI > OA), and between Mimosa RI themselves when comparing along a soil gradient within the RI (soil near the trunk > soil below the middle of the canopy > soil in the margin of the canopy > OA); however, there were no significant differences between the soil closest to the trunk vs middle, and margin 's OA. Finally, more spores were reported in the soil collected during the wet season than during the dry season (wet > start of dry > dry). Therefore, the distribution of AMF spores is affected by spatial and seasonal soil heterogeneity. This study points out the relevance of Mimosa RI as AMF spore reservoirs and the potential importance of AM fungi for plant species survivorship and establishment in semi-arid regions. AM fungi have recently been recognized as an important factor determining plant species diversity in arid and temperate ecosystems.  相似文献   

20.
滨海盐土是重要的农业土地后备资源。微生物是土壤中物质循环的关键动力,然而盐度对土壤微生物群落特征影响的研究还很缺乏。本研究采集滨海地区的土壤样品,研究非盐、轻盐和高盐3组不同盐度对土壤细菌数量、多样性和群落构建的影响。结果表明: 与非盐和轻盐土壤相比,高盐土壤的脱氢酶活性和细菌数量显著降低,而细菌α多样性没有变化,细菌群落结构发生分异。利用零模型反演群落构建过程,发现盐度是细菌群落构建过程的主控因子,盐度主导的高确定性过程控制了滨海盐土细菌的群落结构。说明在现有的盐度范围内,高盐土壤中同样含有丰富的微生物种质资源,具有盐土改良的生物学基础,然而由于高确定性的群落构建机制,外源物种很难定殖于滨海盐土。因此,在利用微生物技术改良滨海盐土时,应尽可能筛选耐盐的土著菌种,提高定殖效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号