首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an effort to discover novel inhibitors of M. tuberculosis Caseinolytic proteases (ClpP1P2), a combination strategy of virtual high-throughput screening and in vitro assay was employed and a new pyrrole compound, 1-(2-chloro-6-fluorobenzyl)-2, 5-dimethyl-4-((phenethylamino)methyl)-1H-pyrrole-3-carboxylate was found to display inhibitory effects against H37Ra with an MIC value of 77 µM. In order for discovery of more potent anti-tubercular agents that inhibit ClpP1P2 peptidase in M. tuberculosis, a series of pyrrole derivatives were designed and synthesized based on this hit compound. The synthesized compounds were evaluated for in vitro studies against ClpP1P2 peptidase and anti-tubercular activities were also evaluated. The most promising compounds 2-(4-bromophenyl)-N-((1-(2-chloro-6-fluorophenyl)-2, 5-dimethyl-1H- pyrrolyl)methyl)ethan-1-aminehydrochloride 7d, ethyl 4-(((4-bromophenethyl) amino) methyl)-2,5-dimethyl-1-phenyl-1H-pyrrole-3-carboxylate hydrochloride 13i, ethyl 1-(4-chlorophenyl)-4-(((2-fluorophenethyl)amino)methyl)-2-methyl-5-phenyl-1H-pyrrole-3-carboxylate hydrochloride 13n exhibited favorable anti-mycobacterial activity with MIC value at 5 µM against Mtb H37Ra, respectively.  相似文献   

2.
In this Letter we report on the advances in our NPBWR1 antagonist program aimed at optimizing the 5-chloro-2-(3,5-dimethylphenyl)-4-(4-methoxyphenoxy)pyridazin-3(2H)-one lead molecule previously obtained from a high-throughput screening (HTS)-derived hit. Synthesis and structure–activity relationships (SAR) studies around the 3,5-dimethylphenyl and 4-methoxyphenyl regions resulted in the identification of a novel series of non-peptidic submicromolar NPBWR1 antagonists based on a 5-chloro-4-(4-alkoxyphenoxy)-2-(benzyl)pyridazin-3(2H)-one chemotype. Amongst them, 5-chloro-2-(9H-fluoren-9-yl)-4-(4-methoxyphenoxy)pyridazin-3(2H)-one 9h (CYM50769) inhibited NPW activation of NPBWR1 with a submicromolar IC50, and displayed high selectivity against a broad array of off-targets with pharmaceutical relevance. Our medicinal chemistry study provides innovative non-peptidic selective NPBWR1 antagonists that may enable to clarify the biological role and therapeutic utility of the target receptor in the regulation of feeding behavior, pain, stress, and neuroendocrine function.  相似文献   

3.
High throughput screening led to the identification of a novel series of quinolone α7 nicotinic acetylcholine receptor (nAChR) agonists. Optimization of an HTS hit (1) led to 4-phenyl-1-(quinuclidin-3-ylmethyl)quinolin-2(1H)-one, which was found to be potent and selective. Poor brain penetrance in this series was attributed to transporter-mediated efflux, which was in turn due to high pKa. A novel 4-fluoroquinuclidine significantly lowered the pKa of the quinuclidine moiety, reducing efflux as measured by a Caco-2 assay.  相似文献   

4.
Novel small molecule antagonists of NPBWR1 (GPR7) are herein reported. A high-throughput screening (HTS) of the Molecular Libraries-Small Molecule Repository library identified 5-chloro-4-(4-methoxyphenoxy)-2-(p-tolyl)pyridazin-3(2H)-one as a NPBWR1 hit antagonist with micromolar activity. Design, synthesis and structure–activity relationships study of the HTS-derived hit led to the identification of 5-chloro-2-(3,5-dimethylphenyl)-4-(4-methoxyphenoxy)pyridazin-3(2H)-one lead molecule with submicromolar antagonist activity at the target receptor and high selectivity against a panel of therapeutically relevant off-target proteins. This lead molecule may provide a pharmacological tool to clarify the molecular basis of the in vivo physiological function and therapeutic utility of NPBWR1 in diverse disease areas including inflammatory pain and eating disorders.  相似文献   

5.
(E)-2-(3-(3-((3-Bromophenyl)amino)-2-cyano-3-oxoprop-1-en-1-yl)-1H-indol-1-yl)acetic acid (1) was discovered in a HTS campaign for CRTh2 receptor antagonists. An SAR around this hit could be established and representatives with interesting activity profiles were obtained. Ring closing tactics to convert this hit series into a novel 2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole based CRTh2 receptor antagonist series is presented.  相似文献   

6.
Inspired by marine compounds the derivatization of the natural pyrrolo[2,3-d]pyrimidine lead scaffold led to a series of novel compounds targeting the histamine H3 receptor. The focus was set on improved binding towards the receptor and to establish an initial structure-activity relationship for this compound class based on the lead structure (compound V, Ki value of 126 nM). As highest binding affinities were found with 1,4-bipiperidines as basic part of the ligands, further optimization was focused on 4-([1,4′-bipiperidin]-1′-yl)-pyrrolo[2,3-d]pyrimidines. Related pyrrolo[2,3-d]pyrimidines that were isolated from marine sponges like 4-amino-5-bromopyrrolo[2,3-d]pyrimidine (compound III), showed variations in halogenation pattern, though in a next step the impact of halogenation at 2-position was evaluated. The chloro variations did not improve the affinity compared to the dehalogenated compounds. However, the simultaneous introduction of lipophilic cores with electron-withdrawing substitution patterns in 7-position and dehalogenation at 2-position (11b, 12b) resulted in compounds with significantly higher binding affinities (Ki values of 7 nM and 6 nM, respectively) than the initial lead structure compound V. The presented structures allow for a reasonable structure-activity relationship of pyrrolo[2,3-d]pyrimidines as histamine H3 receptor ligands and yielded novel lead structures within the natural compound library against this target.  相似文献   

7.
Inhibition of dipeptidyl peptidase IV (DPP-IV) has been emerged as a promising approach for the treatment of type 2 diabetes (T2D). Structure based virtual screening (SBVS) of Molecular Diversity Preservation International (MDPI) database was performed using Glide and Gold against DPP-IV enzyme. Six promising hits were identified and tested for DPP-IV inhibition. Three compounds were found to be active at low micromolar concentration. The 3-(1-hydrazinyl-1-(phenylamino)ethyl)-4-hydroxy-1-methylquinolin-2(1H)-one (compound A) was found to be the most potent hit with an IC50 of 0.73 μM. These three compounds (A, B and D) were then assessed for their glucose lowering effects in glucose fed hyperglycemic female Wistar rats. The glucose lowering effects of compounds also confirms their potential as anti-diabetic agents. The present study demonstrates a successful utilization of in silico SBVS tools in identification of novel and potential DPP-IV inhibitor.  相似文献   

8.
A new scaffold N-(9-(ortho/meta/para-(benzyloxy)phenyl)-3,3,6,6-tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl) isonicotinamide (H1-3) was discovered as a hSIRT1 inhibitor through virtual screening of in-house database. Based on these hits, a library of compounds were designed, synthesized and tested for in vitro hSIRT1 activity. The most potent compound 4d in the series showed a significant inhibition of SIRT1 activity. Further antitumor studies of compound 4d, showed a dose dependent increase in acetylation of p53K382 and decrease in SIRT1 with an IC50 of 0.25 μM in MDA-MB231 breast cancer cell lines. Individual 3D-QSAR analysis using Schrödinger showed distribution of hydrophobic and non polar positive co-efficient at ortho position essential for bioactivity based on 4d.  相似文献   

9.
1-((Substituted)methyl)quinoxaline-2,3(1H,4H)-dione (2ae) and 1-((substituted)acryloyl)quinoxaline-2,3(1H,4H)-dione (4ac) were synthesized from quinoxaline-2,3(1H,4H)-dione 1 and evaluated for their antimicrobial activities. Results of the antitubercular screening against Mycobacterium tuberculosis H37Rv showed that the compounds 2b, 3, and 4a were the most effective, with minimum inhibitory concentrations of 8.012, 8.561, and 8.928 μg/ml, respectively. All the compounds exhibited significant antibacterial and considerable antifungal activities.  相似文献   

10.
Direct anti-tuberculosis screening of commercially available compound libraries identified a novel piperidinol with interesting anti-tuberculosis activity and drug like characteristics. To generate a structure activity relationship about this hit a 22 member optimization library was generated using parallel synthesis. Products of this library 1-((R)-3-(4-chlorophenoxy)-2-hydroxypropyl)-4-(4-chloro-3-(trifluoromethyl) phenyl)piperidin-4-ol and 1-((S)-3-(4-(trifluoromethyl) phenoxy)-2-hydroxypropyl)-4-(4-chloro-3-(trifluoromethyl) phenyl) piperidin-4-ol demonstrated good anti-tuberculosis activity. Unfortunately, side effects were observed upon in vivo anti-tuberculosis testing of these compounds precluding their further advancement, which may be in part due to the secondary pharmacology associated with the aryl piperidinol core.  相似文献   

11.
Comprehensive structure activity relationship (SAR) studies were conducted on a focused screening hit, 2-(methylthio)-3-(phenylsulfonyl)-4H-pyrido[1,2-a]pyrimidin-4-imine (1, IC50: 4.0 nM), as 5-HT6 selective antagonists. Activity was improved some 2–4 fold when small, electron-donating groups were added to the central core as observed in 19, 20 and 26. Molecular docking of key compounds in a homology model of the human 5-HT6 receptor was used to rationalize our structure–activity relationship (SAR) findings. In pharmacokinetic experiments, compound 1 displayed good brain uptake in rats following intra-peritoneal administration, but limited oral bioavailability.  相似文献   

12.
A series of 1- and 2-naphthyloxy derivatives were synthesized and evaluated for histamine H3 receptor affinity. Most compounds showed high affinities with Ki values below 100?nM. The most potent ligand, 1-(5-(naphthalen-1-yloxy)pentyl)azepane (11) displayed high affinity for the histamine H3 receptor with a Ki value of 21.9?nM. The antagonist behaviour of 11 was confirmed both in vitro in the cAMP assay (IC50?=?312?nM) and in vivo in the rat dipsogenia model (ED50?=?3.68?nM). Moreover, compound 11 showed positive effects on scopolamine induced-memory deficits in mice (at doses of 10 and 15?mg/kg) and an analgesic effect in the formalin test in mice with ED50?=?30.6?mg/kg (early phase) and ED50?=?20.8?mg/kg (late phase). Another interesting compound, 1-(5-(Naphthalen-1-yloxy)pentyl)piperidine (13; H3R Ki?=?53.9?nM), was accepted for Anticonvulsant Screening Program at the National Institute of Neurological Disorders and Stroke/National Institute of Health (Rockville, USA). The screening was performed in the maximal electroshock seizure (MES), the subcutaneous pentylenetetrazole (scPTZ) and the 6-Hz psychomotor animal models of epilepsy. Neurologic deficit was evaluated by the rotarod test. Compound 13 inhibited convulsions induced by the MES with ED50 of 19.2?mg/kg (mice, i.p.), 17.8 (rats, i.p.), and 78.1 (rats, p.o.). Moreover, 13 displayed protection against the 6-Hz psychomotor seizures (32?mA) in mice (i.p.) with ED50 of 33.1?mg/kg and (44?mA) ED50 of 57.2?mg/kg.Furthermore, compounds 11 and 13 showed in vitro weak influence on viability of tested cell lines (normal HEK293, neuroblastoma IMR-32, hepatoma HEPG2), weak inhibition of CYP3A4 activity, and no mutagenicity. Thus, these compounds may be used as leads in a further search for histamine H3 receptor ligands with promising in vitro and in vivo activity.  相似文献   

13.
Prostaglandin D2 synthase (PGDS) catalyzes the isomerization of prostaglandin H2 (PGH2) to prostaglandin D2 (PGD2). PGD2 produced by hematopoietic prostaglandin D2 synthase (H-PGDS) in mast cells and Th2 cells is proposed to be a mediator of allergic and inflammatory responses. Consequently, inhibitors of H-PGDS represent potential therapeutic agents for the treatment of inflammatory diseases such as asthma. Due to the instability of the PGDS substrate PGH2, an in-vitro enzymatic assay is not feasible for large-scale screening of H-PGDS inhibitors. Herein, we report the development of a competition binding assay amenable to high-throughput screening (HTS) in a scintillation proximity assay (SPA) format. This assay was used to screen an in-house compound library of approximately 280,000 compounds for novel H-PGDS inhibitors. The hit rate of the H-PGDS primary screen was found to be 4%. This high hit rate suggests that the active site of H-PGDS can accommodate a large diversity of chemical scaffolds. For hit prioritization, these initial hits were rescreened at a lower concentration in SPA and tested in the LAD2 cell assay. 116 compounds were active in both assays with IC50s ranging from 6 to 807 nM in SPA and 82 nM to 10 μM in the LAD2 cell assay.  相似文献   

14.
High throughput screening of the Roche compound library identified benzanilides such as 1 and 2 as antagonists of TAAR1. Optimisation of this hit series led to the first selective TAAR1 antagonist (N-(3-Ethoxy-phenyl)-4-pyrrolidin-1-yl-3-trifluoromethyl-benzamide EPPTB (RO5212773, 9f) having IC50 of 28 nM at mouse TAAR1.  相似文献   

15.
Hit-to-lead optimization of a novel series of N-alkyl-N-[2-oxo-2-(4-aryl-4H-pyrrolo[1,2-a]quinoxaline-5-yl)-ethyl]-carboxylic acid amides, derived from a high throughput screening (HTS) hit, are described. Subsequent optimization led to identification of in vitro potent cannabinoid 1 receptor (CB1R) antagonists representing a new class of compounds in this area.  相似文献   

16.
A new series of pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine (PTP) derivatives has been developed in order to explore their affinity and selectivity profile at the four adenosine receptor subtypes. In particular, the PTP scaffold was conjugated at the C2 position with the 1-(3-trifluoromethyl-benzyl)-1H-pyrazole, a group believed to confer potency and selectivity toward the human (h) A2B adenosine receptor (AR) to the xanthine ligand 8-(1-(3-(trifluoromethyl)benzyl)-1H-pyrazol-4-yl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione (CVT 6975). Interestingly, the synthesized compounds turned out to be inactive at the hA2B AR but they displayed affinity at the hA3 AR in the nanomolar range. The best compound of the series (6) shows both high affinity (hA3 AR Ki = 11 nM) and selectivity (A1/A3 and A2A/A3 > 9090; A2B/A3 > 909) at the hA3 AR. To better rationalize these results, a molecular docking study on the four AR subtypes was performed for all the synthesized compounds. In addition, CTV 6975 and two close analogues have been subjected to the same molecular docking protocol to investigate the role of the 1-(3-trifluoromethyl-benzyl)-1H-pyrazole on the binding at the four ARs.  相似文献   

17.
G-protein-coupled receptor kinase (GRK)-2 and -5 are emerging therapeutic targets for the treatment of cardiovascular disease. In our efforts to discover novel small molecules to inhibit GRK-2 and -5, a class of compound based on 3-(benzo[d]oxazol-2-yl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)pyridin-2-amine was identified as a novel hit by high throughput screening campaign. Structural modification of parent benzoxazole scaffolds by introducing substituents on phenyl displayed potent inhibitory activities toward GRK-2 and -5.  相似文献   

18.
19.
N9-Benzyl-substituted imidazo-, pyrimido- and 1,3-diazepino[2,1-f]purinediones were designed as dual-target-directed ligands combining A2A adenosine receptor (AR) antagonistic activity with blockade of monoamine oxidase B (MAO-B). A library of 37 novel compounds was synthesized and biologically evaluated in radioligand binding studies at AR subtypes and for their ability to inhibit MAO-B. A systematic modification of the tricyclic structures based on a xanthine core by enlargement of the third heterocyclic ring or attachment of various substituted benzyl moieties resulted in the development of 9-(2-chloro-6-fluorobenzyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrimido[2,1-f]purine-2,4(1H,3H)-dione (9u; Ki human A2AAR: 189?nM and IC50 human MAO-B: 570?nM) as the most potent dual acting ligand of the series displaying high selectivity versus related targets. Moreover, some potent, selective MAO-B inhibitors were identified in the group of pyrimido- and 1,3-diazepino[2,1-f]purinediones. Compound 10d (10-(3,4-dichlorobenzyl)-1,3-dimethyl-7,8,9,10-tetrahydro-1H-[1,3]diazepino[2,1-f]purine-2,4(3H,6H)-dione) displayed an IC50 value at human MAO-B of 83?nM. Analysis of structure–activity relationships was complemented by molecular docking studies based on previously published X-ray structures of the protein targets. An extended biological profile was determined for selected compounds including in vitro evaluation of potential hepatotoxicity calculated in silico and antioxidant properties as an additional desirable activity. The new molecules acting as dual target drugs may provide symptomatic relief as well as disease-modifying effects for neurodegenerative diseases, in particular Parkinson’s disease.  相似文献   

20.
A series of 3-aryl-4-(arylhydrazono)-1H-pyrazol-5-one inhibitors of GSK3β was developed from a low molecular weight, highly ligand efficient screening hit 1. Hit-to-lead optimization led to a number of highly potent inhibitors, while maintaining the high ligand efficiency of the screening hit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号