首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that the cell surface expression of thymus leukemia antigen (TL) on ASL-1w leukemia cells varies with the progression of the cells through the growth cycle. Expression of TL is maximal in S phase, and its quantitative expression varies directly with DNA synthesis. In the present study, the effect of anti-TL serum on the growth of ASL-1w cells was examined. The antiserum, tested in the absence of complement, affected the growth of these cells in biphasic manner. When the antiserum concentration was 0.1% or greater, there was a rapid decline in the rate of DNA synthesis, and after 5 to 7 hr, cell death. When the antiserum concentration was 0.067% or less, the decline in the rate of synthesis of DNA did not become apparent until 5 to 6 hr after treatment. Under these conditions, there was approximately a 20% increase in cell number after 24 hr of culture. The hypothesis that treatment of ASL-1w cells with the lesser concentration of anti-TL serum blocks the cells in G2 phase of the cell cycle is discussed.  相似文献   

2.
The quantity of thymus-leukemia (TL) antigens expressed by murine leukemia cells is significantly greater than that expressed by somatic hybrids of such cells. Based upon the results of 125I-lactoperoxidase labeling and antibody absorption procedures, and corrected for size differences between the two cell types, the quantity of TL antigens expressed by RADA-1 cells, a radiation-induced murine leukemia cell line of strain A/J mice, is approximately 5.0 times greater than that of somatic hybrids of RADA-1 and LM(TK)? cells. LM(TK)? cells are a thymidine kinase-deficient TL(-) mouse fibroblast cell line. The quantity of TL antigens expressed is related only in part to their susceptibility to lysis by TL antibodies and guinea pig complement (GPC). RADA-1 cells resist lysis. The quantity of TL antigens expressed by RADA-1 cells is analogous to that formed by nonneoplastic thymocytes obtained from F1 hybrids of two strains of TL(+) and TL(-) mice; cells from both strains are sensitive to TL antiserum and GPC. ASL-1 cells, a spontaneously occurring leukemia cell line of A/J mice, express TL antigens in significantly higher quantities than any of the cell types examined. Exposed to TL antisera, the quantity of TL antigens of ASL-1 cells, but not that of hybrid cells, gradually diminishes. ASL-1 cells convert over a 6-h period of exposure to antibody and guinea pig complement (GPC) resistance; hybrid cells remain sensitive. However, ASL-1 cells converted to TL antibody and GPC resistance continue for a time to express TL antigens in quantities similar to that of sensitive F1 thymocytes and resistant RADA-1 cells. RADA-1 X LM(TK)? hybrid cells, which are sensitive to TL antibodies and GPC, express the lowest quantities of TL antigens of any of the cell types examined. It is likely that differences in the quantities of TL antigens expressed by different cell lines reflect genetic mechanisms controlling TL antigen expression. The failure of TL antisera to affect the quantities of TL antigens expressed by hybrid cells is taken as an indication that genetic controls governing antigen expression may be distinguished from those involved in regulating responsiveness to specific antiserum.  相似文献   

3.
It has been shown that flap endonuclease-1 (FEN-1), a structure-specific nuclease, acts on the removal of RNA primers during Okazaki fragment maturation in DNA synthesis. To study whether the gene expression of FEN-1 is inducible during cell proliferation, we analyzed the FEN-1 mRNA levels in actively growing cells and non-growing cells. The gene expression of FEN-1 was higher in mitotic cells than in resting cells, and was markedly decreased, especially, when terminal differentiation was induced in promyelocytic leukemia cells (HL-60 cells). The decline correlated substantially with the ceasing of DNA synthesis. In the examination of tissue-specific gene expression, the human testis, spleen, thymus and mucosal lining of colon tissues expressed this gene actively, whereas the prostate, ovary, small intestine and peripheral blood leukocyte hardly expressed it. In addition, FEN-1 was co-localized with the proliferating cell nuclear antigen (PCNA) in young rat kidney according to immunohistochemistry. These findings suggest that FEN-1 gene expression is inducible during cell proliferation for DNA synthesis, and is down-regulated during cell differentiation.  相似文献   

4.
BACKGROUND: Tumor cells such as leukemia and lymphoma cells are possible targets for gene therapy. However, previously leukemia and lymphoma cells have been demonstrated to be resistant to most of non-viral gene transfer methods. METHODS: The aim of this study was to analyze various methods for transfection of primary leukemia cells and leukemia cell lines and to improve the efficiency of gene delivery. Here, we evaluated a novel electroporation based technique called nucleofection. This novel technique uses a combination of special electrical parameters and specific solutions to deliver the DNA directly to the cell nucleus under mild conditions. RESULTS: Using this technique for gene transfer up to 75% of primary cells derived from three acute myeloid leukemia (AML) patients and K562 cells were transfected with the green flourescent protein (GFP) reporter gene with low cytotoxicity. In addition, 49(+/- 9.7%) of HL60 leukemia cells showed expression of GFP. CONCLUSION: The non-viral transfection method described here may have an impact on the use of primary leukemia cells and leukemia cell lines in cancer gene therapy.  相似文献   

5.
The intestinal epithelium is comprised of a monolayer of intestinal epithelial cells (IEC), which provide, among other functions, a physical barrier between the high Ag content of the intestinal lumen and the sterile environment beyond the epithelium. IEC express a nonclassical MHC class I molecule known as the thymus leukemia (TL) Ag. TL is known to interact with CD8αα-expressing cells, which are abundant in the intestinal intraepithelial lymphocyte compartment. In this report, we provide evidence indicating that expression of TL by IEC modulates the cytokine profile of CD4(+) T cells favoring IL-17 production. We show in an adoptive transfer model of colitis that donor-derived cells become more pathogenic when TL is expressed on IEC in recipient animals. Moreover, TL(+)IEC promote development of IL-17-mediated responses capable of protecting mice from Citrobacter rodentium infection. We also show that modulation of IL-17-mediated responses by TL(+)IEC is controlled by the expression of CD8α on CD4(+) T cells. Overall, our results provide evidence for an important interaction between IEC and CD4(+) T cells via TL, which modulates mucosal immune responses.  相似文献   

6.
BACKGROUND: (E)-2'-deoxy-2'-(fluoromethylene)-cytidine (FMdC), an irreversible inhibitor of ribonucleotide reductase, displays a strong toxicity towards many cell lines derived from human solid tumors, while its activity on leukemia lines is less well-known. The aim of this study was to assess the effect of FMdC on the cell cycle and cell death of human leukemia lines HL-60 and MOLT-4, and murine leukemia L-1210 in vitro. It has been assumed that a prerequisite of FMdC cytotoxicity is intracellular phosphorylation by deoxycytidine kinase (dCK). METHODS:Cell cultures in the exponential phase of growth were exposed to different concentrations of FMdC (10 nM to 10 microM) for 6 and 24 hours. In a parallel set of experiments 1 mM deoxycytidine was added to prevent phosphorylation of the drug by dCK. The DNA and protein content in the cells, as well as Annexin V/PI binding were assessed by flow cytometry. The cell cycle was analyzed by the MacCycle software. RESULTS: The cytotoxic effects of FMdC, i.e., G(1)/S block and cell death were observed, associated with pronounced changes in the protein content. These effects were of variable intensity among the cell lines studied (HL-60 being the most susceptible), and in some cases, were not completely reversed by deoxycytidine excess. CONCLUSIONS: FMdC is a potent cytotoxic/cytostatic agent against human leukemia cell lines in vitro. It also changes the cellular protein content. Unphosphorylated FMdC may slightly influence the cell cycle of some leukemic lines.  相似文献   

7.
Nitracrine (Ledakrin) is an antitumor drug which is activated by cellular enzymes and binds covalently to DNA. Previous studies have shown that covalent binding and crosslinking of DNA is associated with the cytotoxic and antitumor activities of this compound. In this study, cell cycle perturbations, effects on DNA synthesis and the cell death process initiated by Nitracrine were studied in murine leukemia L1210 cells. We show that exposure of L1210 cells to Nitracrine at the IC99 concentration delayed progression through the S phase and transiently arrested cells in G2/M as found by flow cytometry. Higher drug concentration (2 × IC99) inhibited cell cycle progression in the S phase and induced rapid cell death. Both studied concentrations of the drug produced different effects on DNA synthesis as determined by bromodeoxyuridine incorporation, with a delay in the S phase progression at EC99 concentration and irreversible arrest in early S phase at the higher dose (2 × IC99). At both concentrations of Nitracrine cell death occurred preferentially in the S phase as revealed by the TUNEL assay. When cells treated with the drug for 4 hours were post-incubated in the presence of 1 mM caffeine this led to rapid cell death and suppression of the G2 arrest. This was associated with a about 10-fold increase in the cytotoxicity of Nitracrine. Similar effects were observed for another DNA crosslinking agent, cis-platinum, and to a lesser extent, for DNA topoisomerase I inhibitor, camptothecin. Together, our studies show that suppression of G2 arrest induced by Nitracrine greatly enhances its cytotoxicity toward L1210 cells.  相似文献   

8.
Some (1,3')-bis-tetrahydroisoquinolines were reported as scaffold intermediates for the synthesis of pentacyclic piperazine core alkaloids and their cytotoxicity against cancerous cell lines was evaluated. The NMR and X-ray structural assignments revealed an anti C3-C11 backbone stereochemistry of piperazine structures. Inhibition of cancer cell proliferation of (1,3')-bis-tetrahydroisoquinoline scaffolds and pentacyclic piperazine systems was assessed against three human cancer cell lines (K562 myelogenous leukemia, A549 lung carcinoma, MCF-7 breast adenocarcinoma) and both mouse tumor cell lines of blood (P388) and lymphocytic (L1210) leukemia with considerable activity against the latter. The cell cycle analysis was also studied by flow cytometry measurement on K562 cell line.  相似文献   

9.
Pancreatic adenocarcinoma is characterized by a poor prognosis and lack of response to conventional therapy. The purpose of this study was to investigate the effects of triptolide (TL) on proliferation and apoptosis of pancreatic cancer cells in vitro. We found that TL induced prominent growth inhibition and apoptosis in human pancreatic cell lines. In addition, TL treatment significantly down-regulated 5-lipoxygenase (5-LOX) expression, as well as downstream leukotriene B4 (LTB4) production, in these cell lines. Furthermore, overexpression of 5-LOX in SW1990 cell lines or exogenous LTB4 made them more resistant to TL-induced apoptosis, which was correlated with increased Bcl-2 expression. Taken together, these findings suggest that inhibition of the 5-LOX pathway of arachidonic acid metabolism is associated with the anti-proliferation activity of TL. We also provide evidence that TL has clinical therapeutic value for patients with pancreatic cancer.  相似文献   

10.
11.
The natural polyphenolic alkanone (6)-gingerol (6G) has established anti-inflammatory and antitumoral properties. However, its precise mechanism of action in myeloid leukemia cells is unclear. In this study, we investigated the effects of 6G on myeloid leukemia cells in vitro and in vivo. The results of this study showed that 6G inhibited proliferation of myeloid leukemia cell lines and primary myeloid leukemia cells while sparing the normal peripheral blood mononuclear cells, in a concentration- and time-dependent manner. Mechanistic studies using U937 and K562 cell lines revealed that 6G treatment induced reactive oxygen species (ROS) generation by inhibiting mitochondrial respiratory complex I (MRC I), which in turn increased the expression of the oxidative stress response-associated microRNA miR-27b and DNA damage. Elevated miR-27b expression inhibited PPARγ, with subsequent inhibition of the inflammatory cytokine gene expression associated with the oncogenic NF-κB pathway, whereas the increased DNA damage led to G2/M cell cycle arrest. The 6G induced effects were abolished in the presence of anti-miR-27b or the ROS scavenger N-acetylcysteine. In addition, the results of the in vivo xenograft experiments in mice indicated that 6G treatment inhibited tumor cell proliferation and induced apoptosis, in agreement with the in vitro studies. Our data provide new evidence that 6G-induced myeloid leukemia cell death is initiated by reactive oxygen species and mediated through an increase in miR-27b expression and DNA damage. The dual induction of increased miR-27b expression and DNA damage-associated cell cycle arrest by 6G may have implications for myeloid leukemia treatment.  相似文献   

12.
Human natural killer (NK) cell activity can be augmented by pretreatment with partially purified preparations of human interferon (IF). Studies have now been performed to determine the metabolic processes required for and involved in spontaneous NK activity and augmentation of cytotoxicity. A 4-hr 51Cr release cellular cytotoxicity assay was used to measure the NK activity, and peripheral blood leukocyte cells (PBL) were treated with: a) x-ray or mitomycin C; b) actinomycin D; or c) emetine, cycloheximide, pactamyhcin, or puromycin to assess the roles of DNA, RNA, and protein synthesis, respectively, in spontaneous NK activity and in boosting by IF. Prolonged incubation (18 hr) of PBL after blockage of synthesis of DNA almost completely abrogated NK activity; however, NK activity could be partially or totally restored to these populations by incubation of the effector cells for 1 hr at 37 degrees C with IF. Blockage of DNA synthesis for 1 hr had no effect on spontaneous NK activity or on boosting by IF. Inhibition of RNA synthesis also had no effect on spontaneous NK activity. Treatment of PBL with actinomycin before exposure to IF prevented boosting, but treatment with the RNA synthesis inhibitor after boosting with IF for 5 to 6 hr no longer had an appreciable effect on cytotoxicity. The effect of protein synthesis inhibitors on spontaneous NK activity was dependent on the inhibitor selected. Emetine and puromycin totally abrogated spontaneous NK activity at concentrations of inhibitor that blocked 3H-leucine incorporation 90% or more. In contrast, cycloheximide and pactamycin had only minimal effects on spontaneous NK activity but totally abrogated the boosting of IF.  相似文献   

13.
The effects of several metabolic inhibitors of DNA synthesis on the antiproliferative activity of 6-thioguanine (6-TG) were examined using cultured L1210 leukemia cels. The presence of hydroxyurea (HU), 1-beta-D-arabinofuranosylcytosine (araC), or 5-fluorodeoxyuridine (FUdR) in cultures of L1210 leukemic cells during exposure of 6-TG did not increase the degree of inhibition of cellular replication produced by the 6-thiopurine, but instead partially protected cells against the delayed cytotoxicity of 6-TG, implying that DNA replication was essential for the expression of cytotoxicity by the purine antimetabolite. Consistent with these results was the finding that synchronized L1210 cells exposed to 6-TG were the most susceptible to the cytotoxic action of the 6-thiopurine during G1/S and S phase. However, G2 phase cells were also sensitive to 6-TG indicating that at least two metabolic lesions are responsible for the production of cytotoxicity. Alkaline sucrose gradient sedimentation of L1210 cells exposed to 6-TG revealed that the purine analog causes structural changes in DNA suggesting that these hitherto unreported lesions may be involved in the cytotoxicity caused by this agent.  相似文献   

14.
Fusion of ASL-1 cells, a murine leukemia forming thymus leukemia (TL) antigens, with LM(TK)- cells, a TL(--) murine cell line, resulted in a stable hybrid forming TL antigens. The hybrids failed to undergo modulation, the reversible dissappearance of TL antigens from the surfaces of the cells, stimulated by TL antiserum. Unlike ASL-1 cells, the rate of disappearance of the antigens from modulation negative hydrid cells was unaffected by TL antiserum. The t 1/2 of TL antigens of the hybrid was approximately 30 h. The t 1/2 of TL antigens of ASL-1 cells was 10 h in the presence of TL antiserum, 18 h in the absence of TL antiserum. The rate of metabolism of a putative tumor-associated antigen of ASL-1 cells formed by the hybrid was unaffected by exposure to specific antiserum, as was the metabolism of H-2 antigens formed by the cell types.  相似文献   

15.
L-Canavanine, a natural L-arginine analog, is known to possess cytotoxicity to tumor cells in culture and experimental tumors in vivo. In this study, we first show that apoptotic cell death is associated with antitumor activity of L-canavanine against human acute leukemia Jurkat T cells. When Jurkat T cells were treated with 1.25-5.0mM L-canavanine for 36 h, apoptotic cell death accompanying several biochemical events such as caspase-3 activation, degradation of poly(ADP-ribose) polymerase (PARP), and apoptotic DNA fragmentation was induced in a dose-dependent manner; however, cytochrome c release from mitochondria was not detected. Under these conditions, the expression of Bcl-2 and its functional homolog Bcl-xL was markedly upregulated. The L-canavanine-induced caspase-3 activation, degradation of PARP, and apoptotic DNA fragmentation were suppressed by ectopic expression of Bcl-2 or Bcl-xL, both of which are known to play roles as anti-apoptotic regulators. These results demonstrate that the cytotoxic effect of L-canavanine on Jurkat T cells is attributable to the induced apoptosis and that L-canavanine-induced apoptosis is mediated by a cytochrome c-independent caspase-3 activation pathway that can be interrupted by Bcl-2 or Bcl-xL.  相似文献   

16.
The sequential treatment of normal C57BL/6 mouse spleen cell populations with neuraminidase (NA) and galactose oxidase (GO) resulted in cell proliferation, but not in the differentiation of cytotoxic T cells. In contrast, C57BL/6 spleen cells derived from animals primed 5 to 8 months earlier with alloantigen (P815 mastocytoma cells of the DBA/2 strain) both proliferated and demonstrated T cell-mediated cytotoxicity after NAGO stimulation. T cells differentiating into cytotoxic cells after NAGO treatment demonstrated properties similar to alloantigen-specific 'memory' T cells. These were: 1) cytotoxicity developed only from 'primed' cell populations, 2) cytotoxicity developed within 24 hr after NAGO treatment, 3) DNA synthesis was not required for the differentiation of cytotoxic cells during the first 24 hr of culture but both DNA synthesis and cell proliferation were required for the cytotoxicity developing after 24 hr, and 4) all cytotoxicity induced by NAGO showed specificity for the priming alloantigen. It was found, furthermore, that cytotoxicity could be induced at much lower GO concentrations than needed for increased DNA synthesis. We interpret this finding as an indication that NAGO can differentially deliver two 'signals' to T lymphocytes: one leading to cell proliferation, the other causing the differentiation of memory T cells into cytotoxic effectors.  相似文献   

17.
18.
beta 2-Microglobulin is the smaller, relatively non-polymorphic chain of class I major histocompatibility complex proteins. We have previously described a mutant mouse cell line which had been selected for loss of the class I thymus leukemia (TL) antigen and had concomitantly lost surface expression of H-2k antigens. Expression of class I antigens on the cell surface was restored by fusion to an antigenically distinct mouse lymphoma line, and the defect in the mutant was shown to be the loss of a functional beta 2-microglobulin gene. We now describe three additional mutants with the same phenotype, all selected for loss of TL but after different types of mutagenesis. All of these mutants have genomic rearrangements resulting in the absence of a functional beta 2-microglobulin gene. These data provide strong evidence for the requirement of beta 2-microglobulin for cell surface expression of the heavy chain of class I major histocompatibility complex proteins. We further show that the defects in at least one beta 2-microglobulin gene in each mutant cell line map to the same small DNA segment within the first intron. The breakpoints of these mutations define a hypermutable site within the mouse beta 2-microglobulin gene.  相似文献   

19.
The nuclear enzyme DNA topoisomerase II catalyzes the breakage and resealing of duplex DNA and plays an important role in several genetic processes. It also mediates the DNA cleavage activity and cytotoxicity of clinically important anticancer agents such as etoposide. We have examined the activity of topoisomerase II during the first cell cycle of quiescent BALB/c 3T3 cells following serum stimulation. Etoposide-mediated DNA break frequency in vivo was used as a parameter of topoisomerase II activity, and enzyme content was assayed by immunoblotting. Density-arrested A31 cells exhibited a much lower sensitivity to the effects of etoposide than did actively proliferating cells. Upon serum stimulation of the quiescent cells, however, there was a marked increase in drug sensitivity which began during S phase and reached its peak just before mitosis. Maximal drug sensitivity during this period was 2.5 times greater than that of log-phase cells. This increase in drug sensitivity was associated with an increase in intracellular topoisomerase II content as determined by immunoblotting. The induction of topoisomerase II-mediated drug sensitivity was aborted within 1 h of exposure of cells to the protein synthesis inhibitor cycloheximide, but the DNA synthesis inhibitor aphidicolin had no effect. In contrast to the sensitivity of cells to drug-induced DNA cleavage, maximal cytotoxicity occurred during S phase. A 3-h exposure to cycloheximide before etoposide treatment resulted in nearly complete loss of cytotoxicity. Our findings indicate that topoisomerase II activity fluctuates with cell cycle progression, with peak activity occurring during the G2 phase. This increase in topoisomerase II is protein synthesis dependent and may reflect a high rate of enzyme turnover. The dissociation between maximal drug-induced DNA cleavage and cytotoxicity indicates that the topoisomerase-mediated DNA breaks may be necessary but are not sufficient for cytotoxicity and that the other factors which are particularly expressed during S phase may be important as well.  相似文献   

20.
3-Aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) polymerase, is a potent inducer of sister chromatid exchanges (SCEs). Because of the possible relation between SCEs and DNA synthesis, the effects of 3AB on DNA synthesis and cell cycle progression in Chinese hamster ovary (CHO) cells were examined. Unlike all other SCE-inducing agents whose effects on DNA synthesis have been studied, short term exposures (30–120 min) of 3AB did not inhibit the overall rate of DNA synthesis and this result was independent of the amount of bromodeoxyuridine (BrdU) in the DNA. Longer exposure times (>24 h) did result in an extended S phase, but this was not due to an effect on the rate of DNA chain elongation. 3AB also delayed the entry of cells into S phase. The overall cell cycle delay was dose dependent, approaching 9 h after a 54 h exposure to 10 mM 3AB. Earlier reports that 3AB is neither mutagenic nor cytotoxic were confirmed. Thus 3AB acts to increase SCE frequency by a mechanism distinct from that which causes cytotoxicity and mutagenicity, and does not involve any inhibition in the rate of DNA chain growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号