首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
About 50% of the strains of cultured fibroblasts from patients with familial polyposis coli (FPC) exhibited increased susceptibility to cytotoxicity of 4-nitroquinoline-1-oxide (4NQO) compared with cells from normal individuals. The FPC cells that showed hyper-sensitivity to 4NQO were also hyper-sensitive to mitomycin C (MMC), but susceptibilities of these cells to UV radiation, methyl methanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) were within the normal range. The extent of single-strand scission of DNA in the 4NQO-sensitive FPC cells was greater than in normal cells, and the amount of [14C]4NQO bound to DNA in the FPC cells was twice as high as in normal cells. The rate of release of [14C]4NQO from DNA by the post-culture was the same as in both FPC and normal cells. The 4NQO-sensitive FPC cells exhibited increased 4NQO-reductase activity; the level of this activity was consistent with the extent of the decrease in colony formation by 4NQO. These results suggest that the enhanced ability to activate 4NQO might be an important factor in the mechanism of susceptibility of FPC cells to 4NQO rather than the reduced ability to repair DNA.  相似文献   

2.
The clone-forming capacity and level of DNA repair was examined on normal human cells and repair-deficient Xeroderma pigmentosum (XP) fibroblasts exposed to various chemical carcinogens and mutagens.The cultured fibroblasts were treated for 90 min with the carcinogenic and mutagenic 4-nitroquinoline 1-oxide (4NQO), 4-hydroxyaminoquinoline 1-oxide (4HAQO), 2-methyl-4-nitroquinoline 1-oxide (2-Me-4NQO), 3-methyl-4-nitropyridine 1-oxide 3-Me-4NPO) and the non-carcinogenic 6-nitroquinoline 1-oxide (6NQO). The response of the cells to the N-oxides was compared to that induced by the mutagen and carcinogen N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and UV-irradiation.The XP cells showed (1) a reduced level of DNA repair synthesis when exposed to various carcinogenic N-oxides, (2) no unscheduled DNA synthesis following 6NQO and (3) a normal degree of DNA repair synthesis after treatment with MNNG.When the clone-forming capacity was examined the XP cells exhibited (1) a higher increased sensitivity to the various carcinogenic N-oxides, (2) no reduction in the clone formation following 6NQO and (3) a sensitivity virtually comparable to that of normal cells after treatment with MNNG.The results suggest a link between extent of DNA damage, level of DNA repair and degree of sensitivity in human cells exposed to various chemical carcinogens and which induce DNA alterations that cannot be repaired by DNA repair synthesis.  相似文献   

3.
Immortalized B lymphocytes from Werner syndrome subjects are shown to be hypersensitive to 4-nitroquinoline-1-oxide (4NQO), supporting earlier work on T lymphocytes. We also show that B cell lines from clinically normal heterozygous carriers exhibit sensitivities to this genotoxic agent, which are intermediate to those of wild-type and homozygous mutants. 4NQO is shown to induce an apoptotic response. These data encourage research on DNA repair with such cell lines and raise the question of an enhanced sensitivity of the relatively prevalent heterozygous carriers to certain environmental genotoxic agents. Received: 21 April 1997 / Accepted: 25 July 1997  相似文献   

4.
This paper describes experiments involving the measurement of DNA damage and repair after treatment with 4-nitroquinoline 1-oxide (4NQO) or aflatoxin B1 (AFB1) epoxide in a number of mammalian cell cultures primarily associated with defects in the excision repair of UV-induced DNA damage. The results with transformed derivatives of XP cells belonging to different complementation groups showed that the extent of repair of 4NQO adducts at the N2 or C8 of guanosine did not correlate to the extent of repair reported by others after UV-irradiation. An examination of 4NQO repair in rodent UV-sensitive cell lines from different ERCC groups indicated that again there was little correlation between the extent of 4NQO and UV repair. However, regardless of complementation group those mutants that were defective in the repair of pyrimidine dimers and 6,4-photoproducts did exhibit a reduced ability to repair the 4NQO N2 guanosine adduct, whereas those mutants defective in pyrimidine dimer repair alone were able to repair this lesion as normal. In all of these cell lines there was a normal capacity to repair the 4NQO C8 guanosine adduct. Less extensive experiments involving AFB1 epoxide showed an XPC-transformed cell line was able to repair 40% of lesions after 6 h, whereas only 20% of repair is seen after UV. The rodent mutant V-C4 which belongs to the same ionising radiation group as irs2, was partially defective in repairing AFB1-induced damage. These experiments highlight the fact that although there are many commonalities between the repair of UV damages and lesions classed as large DNA adducts differences clearly exist, the most striking example here being the repair of the C8 guanosine 4NQO adduct which rarely correlates with a defect in UV repair.  相似文献   

5.
The extent of DNA excision repair was determined in dermal fibroblast strains from clinically normal and xeroderma pigmentosum (XP; complementation group A) human donors after single or combined exposures to 254-nm ultraviolet light and 4-nitroquinoline 1-oxide (4NQO). The repair was monitored by incubation of the treated cultures in the presence of 1-beta-D-arabinofuranosylcytosine (araC), a potent inhibitor of long-patch excision repair, followed by quantitation of araC-accumulated DNA single-strand breaks (representing repair events) by velocity sedimentation analysis in alkaline sucrose gradients. The amount of repair in normal fibroblast strains increased as a function of UV fluence and reached a plateau at 15 J/m2; strand breaks were not detected when these same cultures were irradiated with as much as 60 J/m2 UV and incubated in the absence of araC, implying that an initial (incision) step is rate-limiting in the repair of UV damage. In normal fibroblasts (i) the incidence of araC-detectable lesions removed during fixed intervals following exposure to 4NQO (4 microM; 30 min) was approximately 2.5 times greater than that seen following irradiation with repair-saturating fluences (greater than or equal to 15 J/m2) of UV-rays; and (ii) the amount of repair in cultures treated simultaneously with 4NQO (0.5-6 microM; 30 min) and a repair-saturating fluence of UV (20 J/m2) was found to approach the sum of that arising from exposure to each separately. The XP cells (XP12BE) exhibited a deficiency in the removal of araC-detectable DNA lesions following exposure to either of the carcinogens. Since araC is known to inhibit the repair of alkali-stable 4NQO-DNA adducts (i.e., lesions assumed to be removed by the UV-like excision pathway) but not that of alkali-labile sites (i.e., DNA lesions operated on by the X-ray-like repair pathway), our results strongly imply that the multistep excision-repair pathway operative on UV photoproducts in human fibroblasts differs from that responsible for removing alkali-stable (araC-detectable) 4NQO adducts by at least one step, presumably the rate-limiting incision reaction mediated by a lesion-recognizing endonuclease.  相似文献   

6.
In bacteria, 4-nitroquinoline-1-oxide (NQO) causes primarily mutations of the base-substitution type although frameshift mutations are also induced. The adducts formed are presumably recognized by error-prone DNA repair enzymes as evidenced by the much greater activity in plasmid pKM101-bearing tester strains. Although reduction of the nitro group appears to be required for mutagenic activity, this reduction is not catalyzed by the nitroreductase required for the demonstration of the mutagenicity in bacteria of other nitro-containing mutagens (nitrofurans, 2-nitronaphthalene, nitrofluorenes). The reduction of the nitro group appears to be catalyzed by a different nitroreductase. The mutagenicity of the non-carcinogenic 3-methyl-4-nitroquinoline-1-oxide (meNQO) may be related to this newly recognized nitroreductase. It is proposed, further, that the ultimate mutagenic intermediates derived from NQO and MeNQO differ.  相似文献   

7.
Excision repair of DNA damage was measured by the photolysis of bromodeoxy-uridine incorporated during repair in normal human and xeroderma pigmentosum group C fibroblasts (XP C) treated with a combination of the carcinogens N-acetoxy-2-acetylamino-fluorene (AAAF), and 4-nitroquinoline 1-oxide (4NQO). Repair was additive in normal and XP C cells treated with AAAF plus 4NQO, indicating that there are different rate limiting steps for removal of 4NQO and AAAF lesions.  相似文献   

8.
4-nitroquinoline-1-oxide (NQO) induces high frequencies of intragenic revertants of amber (UAG) but not ochre (UAA) mutants of yeast. Distinction of the amber and ochre codons was made with well-characterized nonsense mutants of the iso-1-cytochrome c gene (cyc1 mutants) as well as with nonsense mutants having nutritional requirements. Thus the NQO-induced reversion frequencies corroborated the assignments that were based on the pattern of amino acid replacements in intragenic revertants and on the speficity of suppression. It was concluded from these results and from the results of a previous investigation with other cyc1 mutants (Prakash, Stewart and Sherman 1974) that NQO induces transversions of G:C base pairs at many sites and that the specificity is not strongly influenced by neighboring base pairs in at least the strains examined in these studies. NQO was previously shown to induce G:C → A:T transitions at least at one site and this and the previous study established that it does not significantly mutate A:T base pairs at numerous sites. Thus NQO can be used to selectively mutate G:C base pairs and to determine if the pathways of reverse mutations involve G:C base pairs. Suppressors that act on either amber or ochre mutants were induced with NQO, indicating that they can arise by mutations of G:C base pairs.  相似文献   

9.
10.
Summary A radiation-sensitive mutant, TW8(radC), of Dictyostelium discoideum is more sensitive to ultraviolet light (UV) killing than the parental wild strain NC4(RAD +), but is resistant to 4-nitroquinoline 1-oxide (4NQO) at almost the same level as NC4. In TW8 amoebae, single-strand breaks of DNA molecules were hardly detectable immediately after UV irradiation, and the removal of pyrimidine dimers was depressed during the postirradiation incubation when compared with that of NC4 amoebae. After treatment with 4NQO, however, single-strand breaks were detected in TW8 amoebae. The almost complete rejoining of these breaks was also detected after the removal of 4HAQO-adducts. The TW8 amoebae have an efficient repair capacity against DNA damage caused by 4NQO, MMS, MMC and MNNG but not UV.Abbreviations 4NQO 4-nitroquinoline 1-oxide - MMS methyl methanesulphonate - MMC mitomycin C - MNNG N-methyl-N-nitro-N-nitrosoguanidine  相似文献   

11.
Aqueous extract prepared from garlic bulbs markedly suppressed the mutagenesis in both E. coli WP2 trp- and E. coli WP2 trp- uvrA- induced by 4-nitroquinoline 1-oxide (4NQO), but not that induced by UV. Cellular toxicity, inhibition of the expression of the Trp+ phenotype and delay of the first cell division after 4NQO treatment were not observed in the presence of the extract. Since the extract showed identical antimutagenic effects against 4NQO in both test strains but no effect on the mutagenesis of UV, it seems that the extract might act by inactivating the electrophilic group(s) of 4NQO or inhibiting its metabolic activation.  相似文献   

12.
Primary cultures of rat urothelial cells were exposed to hydroxyurea, [3H]thymidine, and 4-nitroquinoline 1-oxide (NQO) or N-hydroxy-4-aminoquinoline 1-oxide (HAQO) in a serum-free media for 2 h; unscheduled DNA synthesis (UDS) was measured by autoradiography. Both NQO and HAQO produced unscheduled DNA synthesis. Dicumarol, an inhibitor of NQO nitroreductase, inhibited the activity of NQO and, to a lesser extent, HAQO. Pyrophosphate, an inhibitor of seryl-AMP synthetase, inhibited the activity of both compounds. Neither dicumarol nor pyrophosphate, under similar experimental conditions, inhibited the activity of N-hydroxy-N-2-acetylaminofluorene (N-OH-AAF). These results support the idea that nitro-reductase and seryl-AMP synthetase may be involved in the activation of NQO.  相似文献   

13.
Repair of mutagen-induced lesions that result in sister-chromatid exchanges was evaluated in 10 normal individuals. The mutagens used were mitomycin C (MMC), 4-nitroquinoline 1-oxide (4NQO), and N-methyl-N'nitro-N-nitrosoguanidine (MNNG). Cultures of whole blood, freshly purified lymphocytes, or purified lymphocytes cryopreserved for 6 months were analyzed after the mutagen treatments. All 3 mutagens induced reparable damage as evaluated by comparison of sister-chromatid exchanges between cultures that were given time to repair induced damage before 5-bromo-2'-deoxyuridine (BrdUrd) was added to the culture medium with those where BrdUrd was added immediately after the administration of the mutagens (MMC or 4NQO) or at culture initiation (MNNG). Repair of mutagen-induced DNA damage was detected in all 3 culture types; thus cryopreservation did not appear to alter the capacity of lymphocytes to repair mutagen-induced lesions. Quantitative differences in apparent repair capabilities were observed among individuals. Variability also existed among the different culture types within an individual, suggesting that caution should be exercised in interpreting these apparent differences.  相似文献   

14.
S A Winkle  I Tinoco 《Biochemistry》1978,17(7):1352-1356
The interactions of 4-nitroquinoline 1-oxide (NQO) with the four 5'-deoxyribonucleotides were probed using absorption spectra of the charge transfer bands and 1H and 13C nuclear magnetic resonance (NMR) spectra of nucleotide-NQO mixtures. Spectral data yielded equilibrium constants (K(dpG:NQO) = 16 M-1, K(dpA:NQO) = 12 M-1, K(dpT:NQO) = K(dpC:NQO) = 4 M-1) which suggest the preference of NQO for the guanine residue in a DNA. This is in agreement with the data of Okano, T., et al. [(1969) Gann 60, 295]. From 13C and 1H NMR data on nucleosides, a structure for the dpG:NQO complex is proposed.  相似文献   

15.
Growth inhibition of Crithidia fasciculata by 4-nitroquinoline 1-oxide (NQO) was observed in defined and complex media at 28 C. Aromatic amino acids, cystein, and nicotinic acid, among several other substances, were ineffective in overcoming NQO toxicity. Dicoumarol and bovine albumin reversed NQO inhibition. While bovine albumin probably acted by the extra-cellular binding of NQO, dicoumarol inhibited the activity of DT-diaphorase, which reduces NQO to 4-hydroxyaminonitroquinoline 1-oxide (HAQO). The DT-diaphorase from C. fasciculata had the same characteristics as the enzyme from rat liver. The specific protection by dicoumarol against NQO inhibition suggests that HAQO is the active toxic substance for C. fasciculata.  相似文献   

16.
The effect of 4-nitroquinoline-1-oxide (4NQO) upon 3 fibroblast cell lines derived from normal and xeroderma pigmentosum subjects have been compared. Excision-deficient XP cells (XP2BI), complementation group G, are nearly 200-fold more sensitive than normal cells to the lethal effect of 4NQO while XP variants (XP7TA), are 2-fold more sensitive. This cytotoxicity correlates with the levels of unscheduled DNA synthesis performed by the 3 cell lines. 4NQO causes a dose-related inhibition of DNA replication in all cell lines. However, newly replicated DNA synthesised immediately after treatment of cells with 4NQO is slightly smaller in XP7TA variant cells than in normal cells receiving the same dose of 4NQO, but DNA fragments in excision-deficient XP2BI are 50% smaller. It is likely that replicon elongation and joining together of newly replicated DNA fragments is dependent upon the excision of certain 4NQO-induced lesions, possibly normally repaired by a 'short-patch' repair process defective in XP2BI.  相似文献   

17.
The base-pair changes induced by the highly carcinogenic agent, 4-nitroquinoline-1-oxide, have been determined from the reversion rates of defined tester strains and from the amino acid replacements of revertant iso-1-cytochromes c. The mutant codons and the base-pair changes of reverse mutations of 14 cyc1 mutants were previously determined from alterations of iso-1-cytochromes c in intragenic revertants. These 14 cyc1 mutants, which were used as tester strains, included nine mutants with altered AUG initiation codons, an ochre (UAA) mutant, an amber (UAG) mutant and three frameshift mutants (Stewart et al., 1971,1972; Stewart &; Sherman, 1972,1974; Sherman &; Stewart, 1973). NQO2 induced a high rate of reversion in the initiation mutant cyc1-131, the only mutant in the group which reverts to normal iso-1-cytochrome c by a G · C → A · T transition. In addition, NQO produces a significant rate of reversion of all cyc1 mutants which revert by G · C transversions, e.g. the amber (UAG) mutant and the initiation mutants containing AGG, and probably CUG mutant codons. It did not revert the ochre mutant which contains no G · C base pairs. Ten NQO-induced revertants of the amber mutant cyc1-179 contained the expected replacements of residues of tyrosine, and ten NQO-induced revertants of each of the cyc1-131 and cyc1-133 initiation mutants all contained the expected normal iso-1-cytochrome c. The structures of these iso-1-cytochromes c and the pattern of reversion of the tester strains indicate that base-pair substitutions arise at G · C base pairs which are the site of NQO attack. Thus NQO induces G · C → A · T transitions, G · C → T · A transversions and possibly G · C → C · G transversions. Because of its mode of action, NQO may be useful in less-defined systems for identifying G · C base pairs in mutant codons.  相似文献   

18.
Excision repair was measured in normal human and xeroderma pigmentosum group C fibroblasts treated with ultraviolet radiation and the carcinogens acridine mustard (ICR-170) or 4-nitroquinoline 1-oxide (4NQO) by the techniques of unscheduled synthesis, photolysis of bromodeoxyuridine incorporated into parental DNA during repair, and assays of sites sensitive to ultraviolet (UV)-endonuclease. Doses of ICR-170 and 4NQO, low enough not to inhibit unscheduled DNA synthesis (UDS), caused damage to DNA that was repaired by a long patch type mechanism and the rates of UDS decreased rapidly in the first 12 h after treatment. Repair after a combined action of UV plus ICR-170 or UV plus 4NQO was additive in normal cells and no inhibition of loss of endonuclease sensitive sites was detected. In xeroderma pigmentosum (XP) C cells there was less repair after UV plus ICR-170 than after each treatment separately; whereas there was an additive effect after UV plus 4NQO and no inhibition of loss of endonuclease sensitive sites. The results indicate that in normal human fibroblasts there are different rate limiting steps for removal of chemical and physical damages from DNA and that XP cells have a different repair system for ICR-170, not just a lower level, than normal cells. Possibly the same long patch repair system works on 4NQO damage in both normal and XP cells.  相似文献   

19.
Three mutagen-sensitive mutants, MS-1, M10 and Q31, were isolated from mouse L5178Y cells. MS-1 cells are sensitive to methyl methanesulfonate (MMS), M10 cells are cross-sensitive to X-rays, MMS and 4-nitroquinoline-1-oxide (4NQO); and Q31 cells are cross-sensitive to UV and 4NQO. MMS-, X-ray- and UV-sensitive markers in these mutants behaved recessively in hybrids between pairs of these mutants as in hybrids between L5178Y and these mutants as reported before (Shiomi et al., 1982b). Complementation analyses were carried out by forming hybrids between two MMS-sensitive mutants (MS-1 and M10) and between two 4NQO-sensitive mutants (M10 and Q31). MMS and 4NQO survivals were measured in these hybrid cells. MS-1 and M10 were found to belong to different complementation groups for MMS-sensitive phenotypes. The hybrid clones between M10 and Q31 were as sensitive to 4NQO as each of the mutants, indicating codominance of 4NQO sensitivity in these mutants. The hybrids constructed with L5178Y and three mutants were stable as to their chromosome constitution for 100 days of cultivation without selective pressure. From the segregation studies on these hybrids, it is concluded that neither the X-ray-sensitive mutation in M10 nor the UV-sensitive mutation in Q31 is located on the X chromosome.  相似文献   

20.
Growth inhibition of Crithidia fasciculata by 4-nitroquinoline 1-oxide (NQO) was observed in defined and complex media at 28 C. Aromatic amino acids, cysteine, and nicotinic acid, among several other substances, were ineffective in overcoming NQO toxicity. Dicoumarol and bovine albumin reversed NQO inhibition. While bovine albumin probably acted by the extra-cellular binding of NQO, dicoumarol inhibited the activity of DT-diaphorase, which reduces NQO to 4-hydroxyaminonitroquinoline 1-oxide (HAQO). The DT-diaphorase from C. fasciculata had the same characteristics as the enzyme from rat liver. The specific protection by dicoumarol against NQO inhibition suggests that HAQO is the active toxic substance for C. fasciculata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号