首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is increasing evidence that intracellular reactive oxygen species (ROS) play a role in cell signaling and that the NADPH oxidase is a major source of ROS in endothelial cells. At low concentrations, agonist stimulation of membrane receptors generates intracellular ROS and repetitive oscillations of intracellular Ca(2+) concentration ([Ca(2+)](i)) in human endothelial cells. The present study was performed to examine whether ROS are important in the generation or maintenance of [Ca(2+)](i) oscillations in human aortic endothelial cells (HAEC) stimulated by histamine. Histamine (1 microm) increased the fluorescence of 2',7'-dihydrodichlorofluorescin diacetate in HAEC, an indicator of ROS production. This was partially inhibited by the NADPH oxidase inhibitor diphenyleneiodonium (DPI, 10 microm), by the farnesyltransferase inhibitor H-Ampamb-Phe-Met-OH (2 microm), and in HAEC transiently expressing Rac1(N17), a dominant negative allele of the protein Rac1, which is essential for NADPH oxidase activity. In indo 1-loaded HAEC, 1 microm histamine triggered [Ca(2+)](i) oscillations that were blocked by DPI or H-Ampamb-Phe-Met-OH. Histamine-stimulated [Ca(2+)](i) oscillations were not observed in HAEC lacking functional Rac1 protein but were observed when transfected cells were simultaneously exposed to a low concentration of hydrogen peroxide (10 microm), which by itself did not alter either [Ca(2+)](i) or levels of inositol 1,4,5-trisphosphate (Ins-1,4,5-P(3)). Thus, histamine generates ROS in HAEC at least partially via NADPH oxidase activation. NADPH oxidase-derived ROS are critical to the generation of [Ca(2+)](i) oscillations in HAEC during histamine stimulation, perhaps by increasing the sensitivity of the endoplasmic reticulum to Ins-1,4,5-P(3).  相似文献   

2.
Vascular NADPH oxidases have been shown to be a major source of reactive oxygen species (ROS). Recent studies have also implicated ROS in the proliferation of vascular smooth muscle cells. However, the components required for activation of the NADPH oxidase complex have not been clearly elucidated. Here we demonstrate that ROS generation in ovine pulmonary arterial smooth muscle cells (PASMCs) requires the activation of Rac1, implicating this protein as an important subunit of the NADPH oxidase complex. Our results, using a geranylgeranyl transferase inhibitor (GGTI-287), demonstrated a dose-dependent inhibition of Rac1 activity and ROS production. This was associated with an inhibition of PASMC proliferation with an arrest at G(2)/M. The inhibition of Rac1 by GGTI-287 led us to more specifically target Rac1 to investigate its role in the generation of ROS and cellular proliferation. To accomplish this, we utilized a dominant negative Rac1 (N17Rac1) and a constitutively active Rac1 (V12Rac1). These two forms of Rac1 were transiently expressed in PASMCs using adenovirus-mediated gene transfer. N17Rac1 expression resulted in decreased cellular Rac1 activity, whereas V12Rac1 infection showed increased activity. Compared with controls, the V12Rac1-expressing cells had higher levels of ROS production and increased proliferation, whereas the N17Rac1-expressing cells had decreased ROS generation and proliferation and cell cycle arrest at G(2)/M. However, the inhibition of cell growth produced by N17Rac1 overexpression could be overcome if cells were co-incubated with the Cu,Zn superoxide dismutase inhibitor DETC. These results indicate the importance of Rac1 in ROS generation and proliferation of vascular smooth muscle cells.  相似文献   

3.
Rac1 has been shown to activate a NADPH oxidase complex producing superoxide anions in a variety of mammalian cell types. We evaluated the impact of Rac1-induced reactive oxygen species production on the turnover of Rac1 itself in human aortic endothelial cells. The concentration of a constitutively active mutant of Rac1 (Rac1(V12)) was increased by treatment of the cells with diphenylene iodinium (DPI), an inhibitor of the NADPH oxidase. Such an effect was not observed for the dominant negative form of Rac1 (Rac1(N17)). We showed a decrease in proteolytic degradation of Rac1(V12) in the presence of DPI, and showed that short term treatment with H(2)O(2) reverses the effect of DPI. We found that proteasome inhibitors (lactacystin and MG132) increased Rac1(V12) protein level. In support of this finding, we have identified in the primary sequence of Rac1 a potential destruction box domain, which is known to be a signal for protein degradation mediated by the ubiquitin/proteasome system. We show that Rac1(V12) is ubiquitinated before degradation. By contrast Rac1(N17) induces an accumulation of the ubiquitinated form of Rac1. These results suggest that Rac1 activation of NADPH oxidase is necessary for the proteolytic degradation of Rac1 itself.  相似文献   

4.
We previously demonstrated that both Tiam1, an activator of Rac, and constitutively active V12Rac promote E-cadherin–mediated cell–cell adhesion in epithelial Madin Darby canine kidney (MDCK) cells. Moreover, Tiam1 and V12Rac inhibit invasion of Ras-transformed, fibroblastoid MDCK-f3 cells by restoring E-cadherin–mediated cell–cell adhesion. Here we show that the Tiam1/Rac-induced cellular response is dependent on the cell substrate. On fibronectin and laminin 1, Tiam1/Rac signaling inhibits migration of MDCK-f3 cells by restoring E-cadherin–mediated cell– cell adhesion. On different collagens, however, expression of Tiam1 and V12Rac promotes motile behavior, under conditions that prevent formation of E-cadherin adhesions. In nonmotile cells, Tiam1 is present in adherens junctions, whereas Tiam1 localizes to lamellae of migrating cells. The level of Rac activation by Tiam1, as determined by binding to a glutathione-S-transferase– PAK protein, is similar on fibronectin or collagen I, suggesting that rather the localization of the Tiam1/Rac signaling complex determines the substrate-dependent cellular responses. Rac activation by Tiam1 requires PI3-kinase activity. Moreover, Tiam1- but not V12Rac-induced migration as well as E-cadherin–mediated cell– cell adhesion are dependent on PI3-kinase, indicating that PI3-kinase acts upstream of Tiam1 and Rac.  相似文献   

5.
Previously we have shown that both Rac1 and c-Jun NH(2)-terminal kinase (JNK1/2) are key proapoptotic molecules in tumor necrosis factor (TNF)-alpha/cycloheximide (CHX)-induced apoptosis in intestinal epithelial cells, whereas the role of reactive oxygen species (ROS) in apoptosis is unclear. The present studies tested the hypothesis that Rac1-mediated ROS production is involved in TNF-alpha-induced apoptosis. In this study, we showed that TNF-alpha/CHX-induced ROS production and hydrogen peroxide (H(2)O(2))-induced oxidative stress increased apoptosis. Inhibition of Rac1 by a specific inhibitor NSC23766 prevented TNF-alpha-induced ROS production. The antioxidant, N-acetylcysteine (NAC), or rotenone (Rot), the mitochondrial electron transport chain inhibitor, attenuated mitochondrial ROS production and apoptosis. Rot also prevented JNK1/2 activation during apoptosis. Inhibition of Rac1 by expression of dominant negative Rac1 decreased TNF-alpha-induced mitochondrial ROS production. Moreover, TNF-alpha-induced cytosolic ROS production was inhibited by Rac1 inhibition, diphenyleneiodonium (DPI, an inhibitor of NADPH oxidase), and NAC. In addition, DPI inhibited TNF-alpha-induced apoptosis as judged by morphological changes, DNA fragmentation, and JNK1/2 activation. Mitochondrial membrane potential change is Rac1 or cytosolic ROS dependent. Lastly, all ROS inhibitors inhibited caspase-3 activity. Thus these results indicate that TNF-alpha-induced apoptosis requires Rac1-dependent ROS production in intestinal epithelial cells.  相似文献   

6.
Leukotriene B(4) is a potent chemoattractant known to be involved mainly in inflammation, immune responses, and host defense against infection, although the exact signaling mechanisms by which it exerts its effects are not well understood. Here we show that exogenous leukotriene B(4) induces reactive oxygen species (ROS) generation via a Rac-dependent pathway, and that stable expression of Rac(N17), a dominant negative Rac1 mutant, completely blocks leukotriene B(4)-induced ROS generation. In addition, leukotriene B(4)-induced ROS generation is selectively blocked by inhibition of ERK or cytosolic phospholipase A(2), but not p38 kinase, which is indicative of its dependence on ERK activation and synthesis of arachidonic acid. Consistent with those findings, leukotriene B(4) Rac-dependently stimulates ERK and cytosolic phospholipase A(2) activity, and transient transfection with plasmid expressing Rac(V12), a constitutively activated Rac1 mutant, also dose-dependently stimulates ERK activity. Our findings suggest that ERK and cytosolic phospholipase A(2) are situated downstream of Rac, and we conclude that Rac, ERK, and cytosolic phospholipase A(2) all play pivotal roles in mediating the ROS generation that appears to be a prerequisite for leukotriene B(4)-induced chemotaxis and cell proliferation.  相似文献   

7.
《Free radical research》2013,47(2):95-103
Abstract

Staurosporine, a non-specific protein kinase inhibitor, has been shown to induce neurite outgrowth in PC12 cells, but the mechanism by which staurosporine induces neurite outgrowth is still obscure. In the present study, we investigated whether the activation of Rac1 was responsible for the neurite outgrowth triggered by staurosporine. Staurosporine caused rapid neurite outgrowth independent of the ERK signaling pathways. In contrast, neurite outgrowth in response to staurosporine was accompanied by activation of Rac1, and the Rac1 inhibitor NSC23766 attenuated the staurosporine-induced neurite outgrowth in a concentration-dependent manner. In addition, suppression of Rac1 activity by expression of the dominant negative mutant Rac1N17 also blocked the staurosporine-induced morphological differentiation of PC12 cells. Staurosporine caused an activation of NADPH oxidase and increased the production of reactive oxygen species (ROS), which was prevented by NSC23766 and diphenyleneiodonium (DPI), an NADPH oxidase inhibitor. Staurosporine-induced neurite outgrowth was attenuated by pretreatment with DPI and exogenous addition of sublethal concentration of H2O2 accelerated neurite outgrowth triggered by staurosporine. These results indicate that activation of Rac1, which leads to ROS generation, is required for neurite outgrowth induced by staurosporine in PC12 cells.  相似文献   

8.
Han YL  Yu HB  Yan CH  Kang J  Meng ZM  Zhang XL  Li SH  Wang SW 《生理学报》2006,58(3):207-216
为阐明Rac1蛋白在人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVECs)衰老中的作用及分子机制,我们采用持续缺氧的方法诱导内皮细胞衰老,检测缺氧前后内皮细胞衰老标志基因SA-β-Gal和PAI-1的表达、细胞周期分布和细胞增殖情况,同时分析缺氧前后细胞内Rac1蛋白的表达.结果显示,持续缺氧96 h后,HUVECs体积变大,细胞浆内颗粒和空泡增多,SA-β-Gal活性明显增加,PAI-1基因表达升高,细胞发生G1期阻滞,细胞增殖受抑,活化型Rac1蛋白表达上调,提示持续缺氧诱导的内皮细胞衰老可能与Rac1蛋白的活化有关.为进一步明确内皮细胞衰老与Rac1蛋白的关系,应用逆转录病毒将持续活化型Rac1(V12Rac1)和主导抑制型Rac1(N17Rac1)基因分别瞬时感染HUVECs,比较三种HUVECs(HUVECs,V12Rac1-HUVECs,N17Rac1-HUVECs)缺氧后的衰老变化,并分析其下游调控分子--血清反应因子(serum response factor,SRF)的表达和定位变化.研究发现,缺氧培养V12Rac1-HUVECs 48 h即可引起细胞衰老,表现为SA-β-Gal活性明显增加,PAI-1基因表达升高,细胞出现明显的G1期阻滞并且细胞增殖受抑,其改变与缺氧96 h的HUVECs相似;而N17Rac1明显抑制缺氧引起的内皮细胞衰老发生.上述结果说明,Rac1蛋白活化可以加速缺氧诱导的内皮细胞衰老,而抑制Rac1蛋白的活性则可抑制缺氧诱导的内皮细胞衰老.为进一步研究Rac1蛋白引起内皮细胞衰老的机制,通过免疫荧光染色及Western blot分析检测三种细胞缺氧处理后SRF的表达,发现:与HUVECs细胞比较,V12Rac1引起缺氧48 h HUVECs核蛋白中SRF的表达明显下降,SRF入核转位受到明显抑制;而N17Rac1感染后,缺氧HUVECs细胞核蛋白中SRF表达明显增多.上述结果提示:缺氧状态下Rac1蛋白活化能够明显加速HUVECs衰老,而抑制Rac1蛋白活性则明显抑制缺氧诱导的HUVECs衰老,SRF蛋白的核转位活化参与了Rac1蛋白调控HUVECs衰老的发生.  相似文献   

9.
The anti-inflammatory peptide annexin-1 binds to formyl peptide receptors (FPR) but little is known about its mechanism of action in the vasculature. Here we investigate the effect of annexin peptide Ac2-26 on NADPH oxidase activity induced by tumour necrosis factor alpha (TNFα) in human endothelial cells. Superoxide release and intracellular reactive oxygen species (ROS) production from NADPH oxidase was measured with lucigenin-enhanced chemiluminescence and 2′,7′-dichlorodihydrofluorescein diacetate, respectively. Expression of NADPH oxidase subunits and intracellular cell adhesion molecule (ICAM-1) and vascular cell adhesion molecule (VCAM-1) were determined by real-time PCR and Western blot analysis. Promoter activity of nuclear factor kappa B (NFκB) was measured by luciferase activity assay. TNFα stimulated NADPH-dependent superoxide release, total ROS formation and expression of ICAM-1and VCAM-1. Pre-treatment with N-terminal peptide of annexin-1 (Ac2-26, 0.5–1.5 µM) reduced all these effects, and the inhibition was blocked by the FPRL-1 antagonist WRW4. Furthermore, TNFα-induced NFκB promoter activity was attenuated by both Ac2-26 and NADPH oxidase inhibitor diphenyliodonium (DPI). Surprisingly, Nox4 gene expression was reduced by TNFα whilst expression of Nox2, p22phox and p67phox remained unchanged. Inhibition of NADPH oxidase activity by either dominant negative Rac1 (N17Rac1) or DPI significantly attenuated TNFα-induced ICAM-1and VCAM-1 expression. Ac2-26 failed to suppress further TNFα-induced expression of ICAM-1 and VCAM-1 in N17Rac1-transfected cells. Thus, Ac2-26 peptide inhibits TNFα-activated, Rac1-dependent NADPH oxidase derived ROS formation, attenuates NFκB pathways and ICAM-1 and VCAM-1 expression in endothelial cells. This suggests that Ac2-26 peptide blocks NADPH oxidase activity and has anti-inflammatory properties in the vasculature which contributes to modulate in reperfusion injury inflammation and vascular disease.  相似文献   

10.
Kim WH  Goo SY  Shin MH  Chun SJ  Lee H  Lee KH  Park SJ 《Cellular immunology》2008,253(1-2):81-91
Vibrio vulnificus, a pathogenic bacterium causing primary septicemia, exhibited cytotoxicity towards Jurkat cells of T-lymphocytes through intracellular reactive oxygen species (ROS) production. Pretreatment of Jurkat T-cells with diphenyleneiodonium chloride (DPI) abolished V. vulnificus-induced ROS generation and bacterial ability to cause cell death. Jurkat T-cells expressing dominant-negative protein of Rac subunit of NADPH oxidase (NOX) did not show increased ROS production and cell death by V. vulnificus. Vibrio vulnificus also triggered phosphorylation of mitogen-activated protein kinases (MAPKs) including p38 and ERK1/2 in Jurkat T-cells. Experiments using inhibitors or small interfering RNAs for each MAPK showed that both MAPKs are involved in V. vulnificus-induced cell death. DPI only blocked the phosphorylation of p38 MAPK in Jurkat T-cells exposed by V. vulnificus. This study demonstrates that V. vulnificus induces death of Jurkat T-cells via ROS-dependent activation of p38 MAPK, and that NOX plays a major role in ROS generation in V. vulnificus-exposed cells.  相似文献   

11.
The phenotype of endothelial cells (ECs) is specific to the vascular bed from which they originate. To examine how mechanical forces alter the phenotype of different ECs, we compared the effects of cyclic strain and motion control on reactive oxygen species (ROS) production and metabolism and cell adhesion molecule expression in human umbilical vein endothelial cells (HUVEC) vs. human aortic endothelial cells (HAEC). HUVEC and HAEC were subjected to cyclic strain (10% or 20%, 1 Hz), to a motion control that simulated fluid agitation over the cells without strain, or to static conditions for 24 h. We measured H2O2 production with dichlorodihydrofluorescein acetate and superoxide with dihydroethidium fluorescence changes; superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) activities spectrophotometrically; and vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 protein expression with Western blot analyses. HUVEC under cyclic strain showed 1) higher intracellular H2O2 levels, 2) increased SOD, catalase, and GPx activities, and 3) greater VCAM-1 and ICAM-1 protein expression, compared with motion control or static conditions. However, in HAEC, motion control induced higher levels of ROS, enzyme activities associated with ROS defense, and VCAM-1 and ICAM-1 expression than cyclic strain. The opposite responses obtained with these two human EC types may reflect their vessels of origin, in that HAEC are subjected to higher cyclic strain deformations in vivo than HUVEC. phenotype; reactive oxygen species; inflammation; shear stress  相似文献   

12.
Vascular complications, a major cause of morbidity and mortality in diabetic patients, are related to hyperglycemia-induced oxidative stress. Previously, we reported that rosiglitazone (RSG) attenuated vascular expression and activity of NADPH oxidases in diabetic mice. The mechanisms underlying these effects remain to be elucidated. We hypothesized that RSG acts directly on endothelial cells to modulate vascular responses in diabetes. To test this hypothesis, human aortic endothelial cells (HAECs) were exposed to normal glucose (NG; 5.6 mmol/l) or high glucose (HG; 30 mmol/l) concentrations. Select HAEC monolayers were treated with RSG, caffeic acid phenethyl ester (CAPE), diphenyleneiodonium (DPI), small interfering (si)RNA (to NF-κB/p65 or Nox4), or Tempol. HG increased the expression and activity of the NADPH oxidase catalytic subunit Nox4 but not Nox1 or Nox2. RSG attenuated HG-induced NF-κB/p65 phosphorylation, nuclear translocation, and binding to the Nox4 promoter. Inhibiting NF-κB with CAPE or siNF-κB/p65 also reduced HG-induced Nox4 expression and activity. HG-induced H(2)O(2) production was attenuated by siRNA-mediated knockdown of Nox4, and HG-induced HAEC monocyte adhesion was attenuated by treatment with RSG, DPI, CAPE, or Tempol. These results indicate that HG exposure stimulates HAEC NF-κB activation, Nox4 expression, and H(2)O(2) production and that RSG attenuates HG-induced oxidative stress and subsequent monocyte-endothelial interactions by attenuating NF-κB/p65 activation and Nox4 expression. This study provides novel insights into mechanisms by which the thiazolidinedione peroxisome proliferator-activated receptor-γ ligand RSG favorably modulates endothelial responses in the diabetic vasculature.  相似文献   

13.
This study investigated the role of oncogenic H-Ras in DNA repair capacity in NIH3T3 cells. Expression of dominant-positive H-Ras (V12-H-Ras) enhanced the host cell reactivation of luciferase activity from UV-irradiated and cisplatin-treated plasmids and also increased the unscheduled DNA synthesis following cisplatin or UV treatment of cells. This observed enhancement of DNA repair capacity was inhibited by transient transfection with dominant-negative H-Ras (N17-H-Ras) or Rac1 (N17-Rac1) plasmids. Moreover, stable transfection of dominant-positive Rac1 (V12-Rac1) further enhanced DNA repair capacity. Because reactive oxygen species (ROS) are known to be a downstream effector of oncogenic Ras, we examined the role of ROS in DNA repair capacity. We found that ROS production by V12-H-Ras expression was mediated by the Ras/phosphatidylinositol 3-kinase (PI3K)/Rac1/NADPH oxidase-dependent pathway and that pretreatment of V12-H-Ras-transformed cells with an antioxidant (N-acetylcysteine) and an NADPH oxidase inhibitor (diphenyleneiodonium) decreased DNA repair capacity. Similarly, treatment with PI3K inhibitors (wortmannin and LY294002) inhibited the ability of oncogenic H-Ras to enhance DNA repair capacity. Furthermore, inhibition of the Ras/PI3K/Rac1/NADPH oxidase pathway resulted in increased sensitivity to cisplatin and UV in V12-H-Ras-expressing NIH3T3 cells. Taken together, these results provide evidence that oncogenic H-Ras activates DNA repair capacity through the Ras/PI3K/Rac1/NADPH oxidase-dependent pathway and that increased ROS production via this signaling pathway is required for enhancement of the DNA repair capacity induced by oncogenic H-Ras.  相似文献   

14.
Rac1 has been implicated in the generation of reactive oxygen species (ROS) in several cell types, but the enzymatic origin of the ROS has not been proven. The present studies demonstrate that Nox1, a homolog of the phagocyte NADPH-oxidase component gp91(phox), is activated by Rac1. When Nox1 is co-expressed along with its regulatory subunits NOXO1 and NOXA1, significant ROS generation is seen. Herein, co-expression of constitutively active Rac1(G12V), but not wild-type Rac1, resulted in marked further stimulation of activity. Decreased Rac1 expression using small interfering RNA reduced Nox1-dependent ROS. CDC42(G12V) failed to increase activity, and small interfering RNA directed against CDC42 failed to decrease activity, pointing to specificity for Rac. TPR domain mutants of NOXA1 that interfere with Rac1 binding were ineffective in supporting Nox1-dependent ROS generation. Immunoprecipitation experiments demonstrated a complex containing Rac1(G12V), NOXO1, NOXA1, and Nox1. CDC42(G12V) could not substitute for Rac1(G12V) in such a complex. Nox1 formed a complex with Rac1(G12V) that was independent of NOXA1 and NOXO1, consistent with direct binding of Rac1(G12V) to Nox1. Rac1(G12V) interaction with NOXA1 was enhanced by Nox1 and NOXO1, suggesting cooperative binding. A model is presented comparing activation by regulatory subunits of Nox1 versus gp91(phox) (Nox2) in which Rac1 activation provides a major trigger that acutely activates Nox1-dependent ROS generation.  相似文献   

15.
Vitamin D metabolites and its less-calcemic analogs (vitamin D compounds) are beneficial for bone and modulate cell growth and energy metabolism. We now analyze whether 25(OH)D(3) (25D), 1,25(OH)(2)D(3) (1,25D), 24,25(OH)(2)D(3) (24,25D), JKF1624F(2)-2 (JKF) or QW1624F(2)-2 (QW) regulate lipooxygenase (LO) mRNA expression and its products; hydroxyl-eicosatetraenoic acid (12 and 15HETE) formation, as well as reactive oxygen species (ROS) production in human bone cell line (SaOS2) and their interplay with modulation of cell proliferation and energy metabolism. All compounds except 25D increased 12LO mRNA expression and modulated 12 and 15HETE production whereas ROS production was increased by all compounds, and inhibited by NADPH oxidase inhibitors diphenyleneiodonium (DPI) and N-acetylcysteine (NAc). Baicaleine (baic) the inhibitor of 12 and 15LO activity blocked only slightly the stimulation of DNA synthesis by all compounds, whereas DPI inhibited almost completely the stimulation of DNA and CK by all compounds. Treatments of cells with 12 or 15HETE increased DNA synthesis and CK that were only slightly inhibited by DPI. These results indicate that vitamin D compounds increased oxidative stress in osteoblasts in part via induction of LO expression and activity. The increased ROS production mediates partially elevated cell proliferation and energy metabolism, whereas the LO mediation is not essential. This new feature of vitamin D compounds is mediated by intracellular and/or membranal binding sites and its potential hazard could lead to damage due to increased lipid oxidation, although the transient mediation of ROS in cell proliferation is beneficial to bone growth in a yet unknown mechanism.  相似文献   

16.
Park SE  Song JD  Kim KM  Park YM  Kim ND  Yoo YH  Park YC 《FEBS letters》2007,581(2):180-186
The diphenyleneiodonium (DPI) is widely used as an inhibitor of flavoenzymes, particularly NADPH oxidase. In this study, we investigated the effect of DPI on the apoptosis of human RPE cells. DPI treatment in ARPE-19 cells evoked a dose- and time-dependent growth inhibition, and also induced DNA fragmentation and protein content of the proapoptotic factor Bax. In addition, DPI significantly induced the expression and phosphorylation of p53, which induces proapoptotic genes in response to DNA damage or irreparable cell cycle arrest. ROS have been implicated as a key factor in the activation of p53 by many chemotherapeutic drugs. Recent data on the regulation of intracellular ROS by DPI are controversial. Therefore, we analyzed whether DPI could contribute to the generation of intracellular ROS. Although there was increase in ROS level from cells treated for 24h with DPI, it was not detectable at early time points, required to induce p53 expression. And DPI-induced p53 expression was not affected by the ROS scavenger NAC. We conclude that DPI induces the expression of p53 by ROS-independent mechanism in ARPE-19 cells, and renders cells sensitive to drug-induced apoptosis by induction of p53 expression.  相似文献   

17.
18.
Increased endothelial ICAM-1 expression is found in normal aging and in atherosclerosis and is related to the chronic effects of oxidative stress. We examined the Ca(2+)-dependence of ICAM-1 mRNA expression in human aortic endothelial cells (HAEC) exposed to hypoxia/reoxygenation (H/R) as a model of oxidative stress. HAEC were exposed to glucose-free hypoxia (95% N(2)/5% CO(2)) for 60 min and were then reoxygenated (21% O(2)/5% CO(2)) and observed for up to 6h. Reactive oxygen species (ROS) generation was measured by dichlorofluorescein fluorescence and ICAM-1 mRNA was assessed by Northern blot. Upon reoxygenation after hypoxia, ROS production occurred in HAEC and was inhibited by diphenyleneiodonium and by polyethylene glycol-catalase, suggesting the involvement of NADPH oxidase-derived hydrogen peroxide. Hypoxia alone did not increase either ROS production or ICAM-1 mRNA levels, but a 2.5-fold increase in ICAM-1 mRNA was noted by 30 min of reoxygenation. This was not observed in Ca(2+)-free buffer or in cells treated with diphenyleneiodonium. Thus, H/R upregulates ICAM-1 mRNA in HAEC by a Ca(2+)- and ROS-dependent mechanism. Characterizing the signaling pathways involved in H/R-induced adhesion molecule expression may result in a better understanding of the vascular biology of normal aging and the pathobiology of atherosclerosis.  相似文献   

19.
Activation of Ras signaling by growth factors has been associated with gene regulation and cell proliferation. Here we characterize the contributory role of cytosolic phospholipase A(2) in the oncogenic Ha-Ras(V12) signaling pathway leading to activation of c-fos serum response element (SRE) and transformation in Rat-2 fibroblasts. Using a c-fos SRE-luciferase reporter gene, we showed that the transactivation of SRE by Ha-Ras(V12) is mainly via a Rac-linked cascade, although the Raf-mitogen-activated protein kinase cascade is required for full activation. In addition, Ha-Ras(V12)-induced DNA synthesis was significantly attenuated by microinjection of recombinant Rac(N17), a dominant negative mutant of Rac1. To identify the mediators downstream of Rac in the Ha-Ras(V12) signaling, we investigated the involvement of cytosolic phospholipase A(2). Oncogenic Ha-Ras(V12)-induced SRE activation was significantly inhibited by either pretreatment with mepacrine, a phospholipase A(2) inhibitor, or cotransfection with the antisense oligonucleotide of cytosolic phospholipase A(2). We also found cytosolic phospholipase A(2) to be situated downstream of Ha-Ras(V12) in a signal pathway leading to transformation. Together, these results are indicative of mediatory roles of Rac and cytosolic phospholipase A(2) in the signaling pathway by which Ha-Ras(V12) transactivates c-fos SRE and transformation. Our findings point to cytosolic phospholipase A(2) as a novel potential target for suppressing oncogenic Ha-Ras(V12) signaling in the cell.  相似文献   

20.
Serotonin (5-HT) stimulates superoxide release, phosphorylation, of p42/p44 mitogen-activated protein kinase (MAPK), and DNA synthesis in bovine pulmonary artery smooth muscle cells. Both p42/p44 MAPK and reactive oxygen species (ROS) generation are required for 5-HT-induced growth in SMC. Agents that block the production of ROS, or ROS scavengers, block MAPK activation by 5-HT. However, specific signal transduction by 5-HT leading to proteins that control entrance into the cell cycle are not well defined in smooth muscle cells. Here, we show by Western blot that 5-HT upregulates c-Fos, an immediate early gene product known to regulate the entrance of quiescent cells into the cell cycle. Northern blots showed that c-fos mRNA is induced by 5-HT in 30 min. This induction is blocked by PD98059, indicating that activation of MAPK is required. 5-HT-induced expression of a 350 bp c-fos promoter in a luciferase reporter is blocked by PD98059 and diphenyliodonium (DPI). The GTPases Rac1 and Ras have been implicated in growth factor-induced generation of ROS. Overexpression of either dominant negative (DN) Rac1 or DN Ras inhibited 5-HT-mediated c-fos promoter activation. 5-HT also induced expression from a truncated c-fos promoter containing an isolated serum response element. This activation was blocked by DPI and PD98059. Overexpression of activated Ras and Rac1 were additive for activation of the serum response element promoter. Regulation of cyclin D1, a protein shown to be regulated by c-fos and required for entry into the cell cycle, is upregulated by 5-HT and is blocked by DPI and PD98059. Nuclear factor-κB, which can also regulate cyclin D1, was not activated. We conclude that 5-HT stimulates c-fos and cyclin D1 expression through a ROS-dependent mechanism that requires Ras, Rac1, and MAPK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号