首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The long-awaited European Research Council (ERC), which receives money from the research budget of the European Union and will finance fundamental science for Europe's scientists, has finally been established. With a focus on excellence, calls for both young and experienced scientists and an average budget of \[euro]1 billion per year, the ERC will have the opportunity to give basic research in Europe a significant boost.  相似文献   

2.
Simons K  Featherstone C 《Cell》2005,123(5):747-750
Basic research in Europe is about to receive a shot in the arm with the creation of a European Research Council (ERC). This new agency will sustain fundamental investigation into all aspects of scientific knowledge and should drive up standards of scientific research across the continent.  相似文献   

3.
Despite the scientific community''s overwhelming support for the European Research Council, many grant recipients are irked about red tapeThere is one thing that most European researchers agree on: B stands for Brussels and bureaucracy. Research funding from the European Commission (EC), which distributes EU money, is accompanied by strict accountability and auditing rules in order to ensure that European taxpayers'' money is not wasted. All disbursements are treated the same, whether subsidies to farmers or grants to university researchers. However, the creation of the European Research Council (ERC) in 2007 as a new EU funding agency for basic research created high hopes among scientists for a reduced bureaucratic burden.… many researchers who have received ERC funding have been angered with accounting rules inherited from the EC''s Framework Programmes…ERC has, indeed, been a breath of fresh air to European-level research funding as it distributes substantial grants based only on the excellence of the proposal and has been overwhelmingly supported by the scientific community. Nevertheless, many researchers who have received ERC funding have been angered with accounting rules inherited from the EC''s Framework Programmes, and which seem impossible to change. In particular, a requirement to fill out time sheets to demonstrate that scientists spend an appropriate amount of time working on the project for which they received their ERC grant has triggered protests over the paperwork (Jacobs, 2009).Luis Serrano, Coordinator of the Systems Biology Programme at the Centre for Genomic Regulation in Barcelona, Spain, and recipient of a €2 million ERC Advanced Investigator Grant for five years, said the requirement of keeping time sheets is at best a waste of time and worst an insult to the high-level researchers. “Time sheets do not make much sense, to be honest. If you want to cheat, you can always cheat,” he said. He said other grants he receives from the Spanish government and the Human Frontier Science Programme do not require time sheets.Complaints by academic researchers about the creeping bureaucratization of research are not confined to the old continent (see Opinion by Paul van Helden, page 648). As most research, as well as universities and research institutes, is now funded by public agencies using taxpayers'' money, governments and regulators feel to be under pressure to make sure that the funds are not wasted or misappropriated. Yet, the USA and the EU have taken different approaches to making sure that scientists use public money correctly. In the USA, misappropriation of public money is considered a criminal offence that can be penalized by a ban on receiving public funds, fines and even jail time; in fact, a few scientists in the USA have gone to prison.By contrast, the EU puts the onus on controlling how public money is spent upfront. Research funding under the EU''s Framework Programmes requires clearly spelt out deliverables and milestones, and requires researchers to adhere to strict accountability and auditing rules. Not surprisingly, this comes with an administrative burden that has raised the ire of many scientists who feel that their time is better spent doing research. Serrano said in a major research centre such as the CRG, the administration could minimize the paper burden. “My administration prepares them for me and I go one, two, three, four, five and I do all of them. You can even have a machine sign for you,” he commented. “But I can imagine researchers who don''t have the administrative help, this can take up a significant amount of time.” For ERC grants, which by definition are for ‘blue-skies'' research and thus do not have milestones or deliverables, such paperwork is clearly not needed.Complaints by academic researchers about the creeping bureaucratization of research are not confined to the old continentNot everyone is as critical as Serrano though. Vincent Savolainen at the Division of Biology at Imperial College London, UK, and recipient of a €2.5 million, five-year ERC Advanced Investigator Grant, said, “Everything from the European Commission always comes with time sheets, and ERC is part of the European Commission.” Still, he felt it was very confusing to track time spent on individual grants for Principal Investigators such as him. “It is a little bit ridiculous but I guess there are places where people may abuse the system. So I can also see the side of the European Commission,” he said. “It''s not too bad. I can live with doing time sheets every month,” he added. “Still, it would be better if they got rid of it.”Juleen Zierath, an integrative physiologist in the Department of Molecular Medicine at Karolinska Institutet (Stockholm, Sweden), who received a €2.5 million, five-year ERC grant, takes the time sheets in her stride. “If I worked in a company, I would have to fill out a time sheet,” she said. “I''m delighted to have the funding. It''s a real merit. It''s a real honour. It really helps my work. If I have to fill out a time sheet for the privilege of having that amount of funding for five years, it''s not a big issue.”Zierath, a native of Milwaukee (WI, USA) who came to Karolinska for graduate work in 1989, said the ERC''s requirements are certainly “bureaucracy light” compared with the accounting and reporting requirements for more traditional EU funding instruments, such as the ‘Integrated Projects''. “ERC allows you to focus more on the science,” she said. “I don''t take time sheets as a signal that the European Union doesn''t count on us to be doing our work on the project. They have to be able to account for where they''re spending the money somehow and I think it''s okay. I can understand where some people would be really upset about that.”…governments and regulators feel to be under pressure to make sure that the funds are not wasted or misappropriated…The complaints about time sheets and other bureaucratic red tape have caught the attention of high-level scientists and research managers throughout Europe. In March 2009, the EC appointed an outside panel, headed by Vaira Vike-Freiberga, former President of Latvia, to review the ERC''s structures and mechanisms. The panel reported in July last year that the objective of building a world-class institution is not properly served by “undue cumbersome regulations, checks and controls.” Although fraud and mismanagement should be prevented, excessively bureaucratic procedures detract from the mission, and might be counter-productive.Helga Nowotny, President of the ERC, said the agency has to operate within the rules of the EC''s Framework Programme 7, which includes the ERC. She explained that if researchers hold several grants, the EC wants recipients to account for their time. “The Commission and the Rules of Participation of course argue that many of these researchers have more than one grant or they may have other contracts. In order to be accountable, the researchers must tell us how much time they spend on the project. But instead of simply asking if they spent a percentage of time on it, the Commission auditors insist on time sheets. I realize that filling them out has a high symbolic value for a researcher. So, why not leave it to the administration of the host institution?”Particle physicist Ian Halliday, President of the European Science Foundation and a major supporter of the ERC, said that financial irregularities that affected the EU over many years prompted the Commission to tighten its monitoring of cash outlays. “There have been endless scandals over the agricultural subsidies. Wine leaks. Nonexistent olive trees. You name it,” he said. “The Commission''s financial system is designed to cope with that kind of pressure as opposed to trusting the University of Cambridge, for example, which has been there for 800 years or so and has a well-earned reputation by now. That kind of system is applied in every corner of the European Commission. And that is basically what is causing the trouble. But these rules are not appropriate for research.”…financial irregularities that affected the EU over many years prompted the Commission to tighten its monitoring of cash outlaysNowotny is sympathetic and sensitive to the researchers'' complaints, saying that requiring time sheets for researchers sends a message of distrust. “It feels like you''re not trusted. It has this sort of pedantic touch to it,” she said. “If you''ve been recognized for doing this kind of top research, researchers feel, ‘Why bother [with time sheets]?''” But the bureaucratic alternative would not work for the ERC either. This would mean spelling out ‘deliverables'' in advance, which is clearly not possible with frontier research.Moreover, as Halliday pointed out, there is inevitably an element of fiction with time sheets in a research environment. In his area of research, for example, he considers it reasonable to track the hours of a technician fabricating parts of a telescope. But he noted that there is a different dynamic for researchers: “Scientists end up doing their science sitting in their bath at midnight. And you mull over problems and so forth. How do you put that on a time sheet?” Halliday added that one of the original arguments in establishing the ERC was to put it at an arm''s length from the Commission and in particular from financial regulations. But to require scientists to specify what proportion of their neurons are dedicated to a particular project at any hour of the day or night is nonsensical. Nowotny agreed. “The time sheet says I''ve been working on this from 11 in the morning until 6 in the evening or until midnight or whatever. This is not the way frontier research works,” she said.Halliday, who served for seven years as chief executive of the Particle Physics and Astronomy Research Council (Swindon, UK), commented that all governments require accountability. In Great Britain, for instance, much more general accountability rules are applied to grantees, thereby offering a measure of trust. “We were given a lot of latitude. Don''t get me wrong that we allowed fraud, but the system was fit for the purpose of science. If a professor says he''s spending half his time on a certain bit of medical research, let''s say, the government will expect half his salary to show up in the grants he gets from the funding agencies. We believe that if the University of Cambridge says that this guy is spending half his time on this research, then that''s probably right and nobody would get excited if it was 55% or 45%. People would get excited if it was 5%. There are checks and balances at that kind of level, but it''s not at a level of time sheets. It will be checked whether the project has done roughly what it said.”Other funding agencies also take a less bureaucratic approach. Candace Hassall, head of Basic Careers at the Wellcome Trust (London, UK), which funds research to improve human and animal health, said Wellcome''s translation awards have milestones that researchers are expected to meet. But “time sheets are something that the Wellcome Trust hasn''t considered at all. I would be astonished if we would ever consider them. We like to work closely with our researchers, but we don''t require that level of reporting detail,” she said. “We think that such detailed, day-by-day monitoring is actually potentially counterproductive overall. It drives people to be afraid to take risks when risks should be taken.”…to require scientists to specify what proportion of their neurons are dedicated to a particular project at any hour of the day or night is nonsensicalOn the other side of the Atlantic, Jack Dixon, vice president and chief scientific officer at the Howard Hughes Medical Institution (Chevy Chase, MD, USA), who directs Hughes'' investigator programme, said he''d never heard of researchers being asked to keep time sheets: “Researchers filling out time sheets is just something that''s never crossed our minds at the Hughes. I find it sort of goofy if you want to know the truth.”In fact, a system based on trust still works better in the academic worldInstead, Hughes trusts researchers to spend the money according to their needs. “We trust them,” Dixon said. “What we ask each of our scientists to do is devote 75% of their time to research and then we give them 25% of their time which they can use to teach, serve on committees. They can do consulting. They can do a variety of things. Researchers are free to explore.”There is already growing support for eliminating the time sheets and other bureaucratic requirements that come with an ERC grant, and which are obviously just a hangover from the old system. Indeed, there have been complaints, such as reviewers of grant applications having to fax in copies of their passports or identity cards, before being allowed sight of the proposals, said Nowotny. The review panel called on the EC to adapt its rules “based on trust and not suspicion and mistrust” so that the ERC can attain the “full realization of the dream shared by so many Europeans in the academic and policy world as well as in political milieus.”In fact, a system based on trust still works better in the academic world. Hassall commented that lump-sum payments encourage the necessary trust and give researchers a sense of freedom, which is already the principle behind ERC funding. “We think that you have to trust the researcher. Their careers are on the line,” she said. Nowotny hopes ERC will be allowed to take a similar approach to that of the Wellcome Trust, with its grants treated more like “a kind of prize money” than as a contract for services.She sees an opportunity to relax the bureaucratic burden with a scheduled revision of the Rules of Participation but issues a word of caution given that, when it comes to EU money, other players are involved. “We don''t know whether we will succeed in this because it''s up to the finance ministers, not even the research ministers,” she explained. “It''s the finance ministers who decide the rules of participation. If finance ministers agree then the time sheets would be gone.”  相似文献   

4.
5.
The French Ion Channel society has existed since 1989 and its main goal is to annually organize a scientific meeting. This meeting, which gathers young and senior French scientists, provides a great opportunity for the exchange and interaction among the ion channel research community. Additionally, for many years, the French ion channel meeting has attracted a significant number of scientists from different European countries, elevating the discussion of new insights and advances, as well as aiding in the establishment of collaborations. In this report, we summarize the five symposia selected for their novelty and importance in human channelopathies, neuroplasticity, ion channel regulations, intracellular ion channels and plant physiology.  相似文献   

6.
1970年代初期,中国科学工作者测定了亚洲地区第一个蛋白质晶体结构——猪胰岛素三方二锌晶体结构,成为中国结构生物学历史发展的起点.进入新世纪,该学科领域已进入国际前沿,展现出快速发展态势,正在迎来发展新时期.本篇评述包含"历史发展","现代化实验设施建设"和"深入生命世界,走进国际前沿——近年代表性研究成果集萃"三个主题节段,以较全视野反映结构生物学研究在中国的发展历程.  相似文献   

7.
A COST Action is a consortium of -mainly- European scientists (but open to international cooperation) working on a common research area, with the same subject; COST provides funding to the Actions for networking and dissemination activities, thus the participating scientists must have secured research funding from other national or European sources. COST funding is in the scale of approximately 100 kEuros per year and in this vein, it is often criticized both in that it does not fund research and the core science and in that its funding is ‘limited’. However, COST with its instruments is an integral pillar of the European Research Area, and it is through its mission that a variety of aspects of the research environment, fundamental to the success of the research, are catered for; these include scientific networking, collaboration/exchange/training and dissemination activities. Through fast procedures, proposals are evaluated and approved for funding in less than one year from submission date and Actions become operational immediately, managed on flexible management. In this way, COST contributes to reducing the fragmentation in European research investments, while opening the European Research Area to cooperation worldwide. COST Actions have an excellent record of building the critical mass for follow up activities in the EU FP or other similarly competitive programmes.  相似文献   

8.
Two phases have been distinguished classically in the history of Latin American phycological research: the explorer phase characterized by the taxonomic work of mainly European and North American scientists, and the diversification phase marked by the establishment of resident scientists in the area and the training of a new generation of phycologists in subjects other than taxonomy. Over the last 15 years, Chile has entered a third phase, characterized by a significant increase in scientific and economic activity centered around seaweeds. Seaweed cultivation has been commercialized; raw materials are now locally processed and economic returns have more than tripled. In addition, some groups of opportunistic seaweed gatherers have become farmers. Loosely correlated with the above developments has been a significant increase in the number of scientific and technological studies related to seaweeds, in the number of professional phycologists and in the specialization of the various groups. This study first describes these new developments and the conceptual advances achieved in farming and resource management. It also emphasizes some socio-economic differences with seaweed farming in other countries and explores the level of interaction between the local scientific and productive sectors in view of future developments.  相似文献   

9.
Philip Hunter 《EMBO reports》2013,14(12):1047-1049
EU-LIFE, which represents 10 European life science research institutes, has reopened the debate about how to fund research at the European level by calling for the budget of the European Research Council to be drastically increased.For more than a decade, European scientists have lobbied policy makers in Brussels to increase European Union (EU) funding for research and to spend the money they do provide more efficiently. This debate eventually led to the establishment of the European Research Council (ERC) in 2007, which provides significant grants and does so on the sole criterion of scientific excellence—something for which the scientific community pushed. As such, there seemed to be consensus about how to judge and fund science at the European level, including in the debate about the EU''s Horizon 2020 funding scheme—the EU''s framework for research and innovation—which will spend €80 billion over the next seven years (2014–2020). The conclusion seemed to be that the ERC should continue to support basic research on the basis of excellence, whereas other parts of the programme would focus on large cooperative projects, improving the competitiveness of Europe and meeting societal challenges such as climate change and public health.But a new body called EU-LIFE—set up in May 2013—has reopened the debate about how to fund science and is campaigning for a greater focus on rewarding excellence, even at the expense of funding projects on the grounds of fairness or to correct imbalances between EU member states. EU-LIFE was founded by 10 institutions including the Centre for Genomic Regulation (CRG; Barcelona, Spain), the Institut Curie (Paris, France) and the Max Delbrück Centre (Berlin, Germany), partly to provide a collective voice for mid-sized research institutes in the life sciences that might lack influence on their own (
InstituteAdvanced grantStarting grantProof-of-concept grantTotal ERC grantsTotal ERC funding (million €)
Centre for Genomic Regulation (Spain)3911319.0
Free University of Brussels (VIB; Belgium)51412033.3
Institut Curie (France)7111834.5
Max Delbrück Centre for Molecular Medicine (Germany)44815
Instituto Gulbenkian de Ciência (Portugal)1457.8
Research Centre for Molecular Medicine of the Austrian Academy of Sciences (Austria)12145.1
European Institute of Oncology (Italy)31158.7
Central European Institute of Technology (Czech Republic)
The Netherlands Cancer Institute (Netherlands)641019.5
Institute for Molecular Medicine Finland (Finland)
Open in a separate windowERC, European Research Council.But while claiming to speak for the cause of European research as a whole, EU-LIFE also has a specific remit to speak up for its own members, mostly mid-sized institutions that consider themselves poorly represented in the corridors of EU decision-making. “There are several reasons why we decided to start this initiative,” said Luis Serrano, Director of the Centre for Genomic Biology in Barcelona, Spain, one of the EU-LIFE founders. “First we see that institutes of research do not have a voice in Brussels as a group, unlike universities or international organizations like EMBL. While in many cases our goals will be similar, this is not always the case. Second, we think that there are excellent research institutes in Europe, at the same level as many top places in the USA, that do not have enough visibility due to their size. By coming together and offering similar standards of quality, we want to achieve critical mass and become attractive to PhD and post-doctoral fellows from all over the world who currently mainly go to the USA. Third we think that all EU-LIFE members have specific strengths and know-how on different aspects of the life sciences. By sharing our experiences we think we could improve the quality and competitiveness of all of us.”While few scientists or policy makers would argue with EU-LIFE''s aim to stimulate international collaboration and attract the best young researchers to Europe, not everyone agrees with the organization''s call to do so by distributing more funds via the ERC. Although the ERC is widely regarded as successful in encouraging excellence and ‘curiosity-driven'' research—as opposed to distributing funds purely equitably between member countries—Mark Palmer, director of international strategy at the UK Medical Research Council (MRC), which spent £759.4 million (about €900 million) on research in the financial year 2011/2012, questions whether the ERC should receive even more funding than it does at present: “We support excellence, but if you put all the resources into one sort of mechanism, you lack the visibility for reaching across countries to join together to do research,” he said. “So there is an advantage in having a mixed pot of funding. If you put too much money in the ERC it becomes so distorted that you haven''t got European added value. You might as well have left the money back home and done it through the normal mechanisms.”“If you put too much money in the ERC it becomes so distorted that you haven''t got European added value”The ERC itself felt it was inappropriate to comment on its own budget, but Ernst-Ludwig Winnacker, who served as its secretary general from 2007 to 2009, pointed out that while he agrees in principle with the Commission''s proposal to double the ERC''s budget under Horizon 2020, this will not guarantee that the number of suitable high-quality applicants for funding would double as well. “Let us not forget that we are talking about scientific excellence only,” Winnacker, now General Secretary of the Human Frontier Science Program, said. “I have often asked myself how much excellence of the level expected to get supported by the ERC do we have in Europe. Would we really be able to spend twice the amount of money at the same quality level as now? I doubt it.”Winnacker indicated therefore that the ERC budget should increase at a sustainable level that ensures that the quality of projects funded is maintained. He also highlighted another risk in focusing a growing proportion of funds through the ERC, which is that it might make other agencies envious.“I have often asked myself how much excellence of the level expected to get supported by the ERC do we have in Europe”Palmer, for the MRC, said that he agrees with the current level of proposed funding increase for the ERC, but argued that it is important to preserve other sources of funding that support large-scale programmes involving multiple institutions, especially in the life sciences. In particular, major clinical screening programmes call for huge samples of patients, in some cases from diverse populations, which requires international collaboration, irrespective of the individual excellence of the departments involved. “For example the EPIC [European Prospective Investigation into Cancer and Nutrition] cohort has been going 20 years with over 500,000 people across 10 different countries,” Palmer said. “That diversity is something that you have to do at the European level.” EPIC is the world''s largest study on the relationship between diet and lifestyle factors and chronic diseases: A total of 521,457 healthy adults, mostly aged 35–70, were enrolled in 23 centres in 10 countries between 1993 and 1999, and the study showed with high statistical confidence that a modest change in lifestyle can yield a massive gain in life expectancy [1].There may be broad agreement that large projects in biomedical research require a European-wide approach. The argument, though, boils down to whether or not funds designated for research should be used as a way of building infrastructure or collaborative frameworks alongside excellence, rather than being subordinated to it. This is the belief—and to some extent the remit—of the European Science Foundation (ESF; Strasbourg, France), which has promoted networking and the dissemination of information among research teams whose work is already being funded by other agencies. Now this role has been passed to Science Europe, headquartered in Brussels, while the ESF is focusing on its public communication activities.EU-LIFE will seek to collaborate with both the ESF and Science Europe, according to Michela Bertero, Head of International and Scientific Affairs at CRG. “We are in contact with both initiatives. They operate at a higher science policy level and on a larger scale, and we want to engage with them as research stakeholders,” Bertero said.Yet while the organization agrees with the ESF that science should tackle societal challenges, EU-LIFE disputes that this is best done by grants awarded solely on the basis of large collaborative projects. “Excellence should always be at the forefront for awarding grants,” explained Serrano. “This does not mean that societal and industrial challenges should not be tackled. But if there is no expertise in an area, then instead of funding groups which are not competitive, money should be used to train and hire the right personnel.”By challenging Horizon 2020 to distribute more money on the basis of excellence rather than goals, EU-LIFE seems to have reopened the debate on how research funds should be spent and to what purpose. Others, however, are calling for some research money to be put towards infrastructure in regions with the potential for high-quality science, but which lack resources and laboratories. This has actually been acknowledged and catered for in Horizon 2020, according to Joanna Newman, Director of the UK Higher Education International Unit, a registered charity funded by various public bodies, which coordinates engagement between UK universities and international partners. “Excellence should be the main criterion for awarding research funding,” Newman said. “As this is public money, it would be unfair to the public to fund less excellent projects. However, there is also a responsibility to help other Member States to build research capacity. Horizon 2020 will include a cross-cutting ‘Spreading Excellence and Widening Participation'' programme line to address this, by funding the partnering of institutions and/or researchers with different grades of current research capacity.”One European player even argues that the EU should extend this policy to assist building infrastructure in developing countries. “Developed countries have a responsibility in helping capacity building in the field of research,” said Antoine Grassin, Directeur Général of Campus France, the country''s agency for promoting higher education and international mobility. “From that point of view, it may be very helpful for researchers from developing countries to be able to join the international scientific community, which may require financial help, such as grants.”“…if there is no expertise in an area, then instead of funding groups which are not competitive, money should be used to train and hire the right personnel”In the case of Europe, Newman pointed out that links between the Horizon Framework programme and the Structural Funds to improve infrastructure and research capabilities within regions will be stronger under the 2020 regime from 2014 to 2020 compared with the current Framework Programme 7. But this alignment between the allocation of funds designated for structural purposes and those granted for research purposes is precisely one of EU-LIFE''s main complaints about the Horizon 2020 programme—the resulting allocations are not always based on excellence.Furthermore, Winnacker argued that excellence does not mix well with other societal factors within a single programme, never mind an individual project. “If other parameters are included, politics would immediately interfere,” he said. “The ERC only survives because it has impeccable scientific standards, which politicians do not dare to touch without being ridiculed. There are enough programs in Horizon 2020, and elsewhere, like the structural funds, which can take care of regional and societal issues. These are of course important, but let''s face it, the real ‘disruptive'' innovations which create jobs only come from fundamental research.”According to Lieve Ongena, Science Policy Manager at the Free University of Brussels (VUB; Belgium), one of the EU-LIFE founding members, it is for these sorts of reasons that EU-LIFE wants to divert more funds to the ERC. “It''s clear that the ERC is an absolutely necessary funding source,” she said. “The scientists can bring their own ‘pet'' project without addressing any top down action lines agreed upon by the member states. In addition, the money provides sufficient critical mass for a sufficiently long time line: five years. Above all, the evaluation excellence is the ‘sole'' selection criterion, and thus by definition grantees will help to increase Europe''s competitiveness.” Ongena emphasized that EU-LIFE would draw the attention of decision-makers to the ERC whenever possible. “Ultimately, they hope to convince ERC President Helga Nowotny to increase the budget, which is today only 17% of the speculated Horizon 2020 budget.”… there is a broad consensus that research priorities have changed and that Horizon 2020 necessarily includes a greater societal dimensionThe view that the ERC should become Europe''s dominant funding agency is still open to debate, however, even among institutions committed both to excellence and to supporting research at a European level. The European Molecular Biology Laboratory (EMBL) in Heidelberg obtains funding from 20 member states and its Director General Iain Mattaj argues for the continued existence of multiple funding sources. “While recognizing the very important role of the ERC in European research funding, I find it essential that research continues to be supported by a diversity of mechanisms, both national and European,” he said. “In the case of Horizon 2020, these include funding for Research Infrastructures, Marie Sklodowska Curie (MSC) Actions that fund the training of young research fellows and research in the area of Health. In particular, EMBL has advocated increased funding not only for the ERC but also for MSC Actions and for Research Infrastructures.” However, within these programmes, Mattaj emphasized that excellence should also be the main criterion for awarding grants in every case.Meanwhile EU-LIFE also has a grander vision beyond funding to make Europe more competitive and attractive for research, according to Geert Van Minnebruggen, Integration Manager at VUB. “To keep Europe a competitive and attractive place for top scientists, we should be prepared to offer them similar budget categories as the US and China,” Van Minnebruggen said. “EU-LIFE sees it as one of its major tasks, through dialogue with policy makers, to create awareness of this necessity.”Palmer points out that attracting scientists from outside the EU is not just about money, but also about culture. “With a lab, the culture is pretty well English language now, people publish in English and apply for grants in English. That can be an inhibitor, both for scientists and their partners, in the case of countries where English isn''t the first language,” he said. This issue has been taken on board by EU-LIFE, according to Serrano: “All EU institutes should try to become more international, use English as the main speaking language, ensure competitiveness and external evaluations, recognize merit and support it, favour mobility, and be open to new ideas and initiatives.”Despite disagreements over funding mechanisms and targets, there is a broad consensus that research priorities have changed and that Horizon 2020 necessarily includes a greater societal dimension. “We''re interested now in health and demographic changes and wellbeing challenges, which is very different from how they were funding science under previous frameworks,” Palmer said. “It is very much driven by the economic situation, about citizens as patients, health delivery and how to be sure patients get access to treatment.”Ongena has similar views: “As responsible life scientists, EU-LIFE community members should do everything possible to drive basic and translational research forward and to translate findings into benefits for society,” she said. But she reiterated EU-LIFE''s position that all this should be done on the criterion of excellence only. It seems that the debates from the past decade about how to properly support research are not yet over.  相似文献   

10.
Research scientists surveyed on ethical issues in genetic medicine: a comparison of attitudes of US and European researchers     
Isaac Rabino 《New genetics and society》2013,32(3):325-342
Abstract

This paper compares the attitudes of European and US scientists engaged in human genetics research about some of the ethical issues raised by recent advances in genetic testing, by the increasing likelihood of subsequent genetic therapies, and by hovering threats to the privacy of those tested in the face of concerns raised by individual and institutional third parties. Surveys of both groups indicate strong and fairly uniform support for attempts to discern and cure serious diseases or disorders and decisions to terminate pregnancies in which fetuses have serious genetic defects. But the data also indicate a number of issues where European and US respondents disagree and where that disagreement is characterised by a more cautious approach on the part of the European scientists. These data should provide a foundation for subsequent reflection and discussion within the scientific communities as well as within the society at large.  相似文献   

11.
The winemaker's bug: From ancient wisdom to opening new vistas with frontier yeast science     
Pretorius IS  Curtin CD  Chambers PJ 《Bioengineered bugs》2012,3(3):147-156
The past three decades have seen a global wine glut. So far, well-intended but wasteful and expensive market-intervention has failed to drag the wine industry out of a chronic annual oversupply of roughly 15%. Can yeast research succeed where these approaches have failed by providing a means of improving wine quality, thereby making wine more appealing to consumers? To molecular biologists Saccharomyces cerevisiae is as intriguing as it is tractable. A simple unicellular eukaryote, it is an ideal model organism, enabling scientists to shed new light on some of the biggest scientific challenges such as the biology of cancer and aging. It is amenable to almost any modification that modern biology can throw at a cell, making it an ideal host for genetic manipulation, whether by the application of traditional or modern genetic techniques. To the winemaker, this yeast is integral to crafting wonderful, complex wines from simple, sugar-rich grape juice. Thus any improvements that we can make to wine, yeast fermentation performance or the sensory properties it imparts to wine will benefit winemakers and consumers. With this in mind, the application of frontier technologies, particularly the burgeoning fields of systems and synthetic biology, have much to offer in their pursuit of "novel" yeast strains to produce high quality wine. This paper discusses the nexus between yeast research and winemaking. It also addresses how winemakers and scientists face up to the challenges of consumer perceptions and opinions regarding the intervention of science and technology; the greater this intervention, the stronger the criticism that wine is no longer "natural." How can wine researchers respond to the growing number of wine commentators and consumers who feel that scientific endeavors favor wine quantity over quality and "technical sophistication, fermentation reliability and product consistency" over "artisanal variation"? This paper seeks to present yeast research in a new light and a new context, and it raises important questions about the direction of yeast research, its contribution to science and the future of winemaking.  相似文献   

12.
The breakthrough paradox: How focusing on one form of innovation jeopardizes the advancement of science     
Ruth Falkenberg  Maximilian Fochler  Lisa Sigl  Hermann Bürstmayr  Stephanie Eichorst  Sebastian Michel  Eva Oburger  Christiana Staudinger  Barbara Steiner  Dagmar Woebken 《EMBO reports》2022,23(7)
Research needs a balance of risk‐taking in “breakthrough projects” and gradual progress. For building a sustainable knowledge base, it is indispensable to provide support for both. Subject Categories: Careers, Economics, Law & Politics, Science Policy & Publishing

Science is about venturing into the unknown to find unexpected insights and establish new knowledge. Increasingly, academic institutions and funding agencies such as the European Research Council (ERC) explicitly encourage and support scientists to foster risky and hopefully ground‐breaking research. Such incentives are important and have been greatly appreciated by the scientific community. However, the success of the ERC has had its downsides, as other actors in the funding ecosystem have adopted the ERC’s focus on “breakthrough science” and respective notions of scientific excellence. We argue that these tendencies are concerning since disruptive breakthrough innovation is not the only form of innovation in research. While continuous, gradual innovation is often taken for granted, it could become endangered in a research and funding ecosystem that places ever higher value on breakthrough science. This is problematic since, paradoxically, breakthrough potential in science builds on gradual innovation. If the value of gradual innovation is not better recognized, the potential for breakthrough innovation may well be stifled.
While continuous, gradual innovation is often taken for granted, it could become endangered in a research and funding ecosystem that places ever higher value on breakthrough science.
Concerns that the hypercompetitive dynamics of the current scientific system may impede rather than spur innovative research have been voiced for many years (Alberts et al, 2014). As performance indicators continue to play a central role for promotions and grants, researchers are under pressure to publish extensively, quickly, and preferably in high‐ranking journals (Burrows, 2012). These dynamics increase the risk of mental health issues among scientists (Jaremka et al, 2020), dis‐incentivise relevant and important work (Benedictus et al, 2016), decrease the quality of scientific papers (Sarewitz, 2016) and induce conservative and short‐term thinking rather than risk‐taking and original thinking required for scientific innovation (Alberts et al, 2014; Fochler et al, 2016). Against this background, strong incentives for fostering innovative and daring research are indispensable.  相似文献   

13.
SFMN GeoSearch: An interactive approach to the visualization and exchange of point-based ecological data     
Rodolphe Gonzales  Jeffrey A. Cardille  Lael Parrott  Caroline Gaudreau  Gaël Deest 《Ecological Informatics》2009,4(4):196-205
Recent advances in computer networks and information technologies have created exciting new possibilities for sharing and analyzing scientific research data. Although individual datasets can be studied efficiently, many scientists are still largely limited to considering data collected by themselves, their students, or closely affiliated research groups. Increasingly widespread high-speed network connections and the existence of large, coordinated research programs suggest the potential for scientists to access and learn from data from outside their immediate research circle. We are developing a web-based application that facilitates the sharing of scientific data within a research network using the now-common “virtual globe” in combination with advanced visualization methods designed for geographically distributed scientific data. Two major components of the system enable the rapid assessment of geographically distributed scientific data: a database built from information submitted by network members, and a module featuring novel and sophisticated geographic data visualization techniques. By enabling scientists to share results with each other and view their shared data through a common virtual-globe interface, the system provides a new platform for important meta-analyses and the analysis of broad-scale patterns. Here we present the design and capabilities of the SFMN GeoSearch platform for the Sustainable Forest Management Network, a pan-Canadian network of forest researchers who have accumulated data for more than a decade. Through the development and dissemination of this new tool, we hope to help scientists, students, and the general public to understand the depth and breadth of scientific data across potentially large areas.  相似文献   

14.
PROPHET, a national computing resource for life science research.          下载免费PDF全文
《Nucleic acids research》1986,14(1):21-24
PROPHET is a national computing resource tailored to meet the data management and analysis needs of life scientists working in a wide variety of disciplines, ranging from pharmacology to molecular biology. The PROPHET system offers a fully integrated graphics-oriented environment designed to aid research scientists in the manipulation and analysis of scientific spreadsheets of data, graphs, molecular structures, biological simulation models, and protein and nucleic acid sequences, and it includes access to a range of molecular structure and sequence databases. This paper briefly describes the PROPHET system, some of its current capabilities, and plans for a new fully distributed version of the system now under development.  相似文献   

15.
Exo/Astrobiology in Europe     
Brack  André  Horneck  Gerda  Wynn-Williams  David 《Origins of life and evolution of the biosphere》2001,31(4-5):459-480
The question of the chemical origins of life is engraved in the European scientific patrimony as it can be traced back to the pioneer ideas of Charles Darwin, Louis Pasteur, and more recently to Alexander Oparin. During the last decades, the European community of origin of life scientists has organized seven out of the twelve International Conferences on the Origins of Life held since 1957. This community contributed also to enlarge the field of research to the study of life in extreme environments and to the search for extraterrestrial life, i.e. exobiology in its classical definition or astrobiology if one uses a more NASA-inspired terminology. The present paper aims to describe the European science background in exo/astrobiology as well as the project of a European Network of Exo/Astrobiology.  相似文献   

16.
A history of the Federation of European Societies of Plant Physiology FESPP since its foundation in 1978--including notes on events preceding the foundation and following re-naming as the Federation of European Societies of Plant Biology (FESPB) in 2002     
Lichtenthaler H 《Journal of plant physiology》2004,161(6):635-639
After several years of close contacts and extensive discussion between various plant physiologists of different European countries, the Federation of European Societies of Plant Physiology (FESPP) was established in 1978 in Edinburgh. The aim of the FESPP was and remains to promote up-to-date plant physiology research in all European countries and to stimulate scientific cooperation and the exchange of scientists between the different member societies by organizing congresses and workshops as well as editing four (recently five) Federation-affiliated journals. The short History of FESPP presented here covers the preparatory years of the 1970s that led to its actual foundation in 1978, and then its further development up to and following the Federation's reconstitution in 2002 as the Federation of European Societies of Plant Biology (FESPB).  相似文献   

17.
On the gap between science and conservation implementation—A national park perspective     
《Basic and Applied Ecology》2014,15(5):373-378
In the conservation of forests and protected areas, a gap lies between scientific knowledge and the management decisions made. From our perspective as scientists studying a national park, who deal daily with both research and administration, we discuss the general reasons for this gap. We provide examples (saproxylic beetles and Norway spruce genetics) to demonstrate the dilemma of practitioners who aim at basing their decisions on evidence. From our experience, the approach of problem solving is crucial, yet in many cases, the bidirectional bridge between science and application is poorly established. We specifically urge governments to organize nation-wide species distribution data; scientists to support the conservation community with new functional approaches, also in combination with Red Lists to identify diversity hotspots and major threats; stakeholders to identify land-use alternatives for scientists to study; state research institutes to increase the proportion of scientists; scientists and governmental authorities to regularly summarize scientific results and conclusions for practitioners; and agencies should foster incentives for scientists to deal with conservation efforts.  相似文献   

18.
The morality of problem selection in proteomics     
Liska AJ 《Proteomics》2004,4(7):1929-1931
The emerging power of new technologies in proteomics and the biological sciences to alter the human condition demands that scientists hold a new perspective on the social responsibilities of their research. Ethical theory can help scientists recognize not only those research projects that are harmful, but also those research paths that can create the greatest improvements in human health on a global scale. Whereas individual choices are important for the direction of scientific research, these choices may have limited social effects if they are not coordinated with larger institutional and inter-institutional structures. The perspective presented here calls for the Human Proteome Organization to recognize the ten most ethically significant proteomes to be characterized, with the hopes of rallying support and directing the research efforts of scientists in the proteomics community toward these goals.  相似文献   

19.
Animals in research: a stony road     
Marta Paterlini 《EMBO reports》2013,14(11):955-958
  相似文献   

20.
The International Proteomics Tutorial Programme (IPTP): a teaching tool box for the proteomics community     
James P 《Proteomics》2011,11(18):3596-3597
The most critical functions of the various proteomics organisations are the training of young scientists and the dissemination of information to the general scientific community. The education committees of the Human Proteome Organisation (HUPO) and the European Proteomics Association (EuPA) together with their national counterparts are therefore launching the International Proteomics Tutorial Programme to meet these needs. The programme is being led by Peter James (Sweden), Thierry Rabilloud (France) and Kazuyuki Nakamura (Japan). It involves collaboration between the leading proteomics journals: Journal of Proteome Research, Journal of Proteomics, Molecular and Cellular Proteomics, and Proteomics. The overall level is aimed at Masters/PhD level students who are starting out their research and who would benefit from a solid grounding in the techniques used in modern protein-based research. The tutorial program will cover core techniques and basics as an introduction to scientists new to the field. At a later stage the programme may be expanded with a series of more advanced topics focussing on the application of proteomics techniques to biological problem solving. The entire series of articles and slides will be made freely available for teaching use at the Journals and Organisations homepages and at a special website, www.proteomicstutorials.org.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号