首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human basophils secrete histamine and leukotriene C4 (LTC4) in response to various stimuli, such as Ag and the bacterial product, FMLP. IgE-mediated stimulation also results in IL-4 secretion. However, the mechanisms of these three classes of secretion are unknown in human basophils. The activation of extracellular signal-regulated kinases (ERKs; ERK-1 and ERK-2) during IgE- and FMLP-mediated stimulation of human basophils was examined. Following FMLP stimulation, histamine release preceded phosphorylation of ERKs, whereas phosphorylation of cytosolic phospholipase A2 (cPLA2), and arachidonic acid (AA) and LTC4 release followed phosphorylation of ERKs. The phosphorylation of ERKs was transient, decreasing to baseline levels after 15 min. PD98059 (MEK inhibitor) inhibited the phosphorylation of ERKs and cPLA2 without inhibition of several other tyrosine phosphorylation events, including phosphorylation of p38 MAPK. PD98059 also inhibited LTC4 generation (IC50 = approximately 2 microM), but not histamine release. Stimulation with anti-IgE Ab resulted in the phosphorylation of ERKs, which was kinetically similar to both histamine and LTC4 release and decreased toward resting levels by 30 min. Similar to FMLP, PD98059 inhibited anti-IgE-mediated LTC4 release (IC50, approximately 2 microM), with only a modest effect on histamine release and IL-4 production at higher concentrations. Taken together, these results suggest that ERKs might selectively regulate the pathway leading to LTC4 generation by phosphorylating cPLA2, but not histamine release or IL-4 production, in human basophils.  相似文献   

2.
Mast cells and basophils involved in allergic responses do not have clonotypic Ag receptors. However, they can acquire Ag specificity through binding of Ag-specific IgE to FcepsilonRI expressed on their surface. Previous studies demonstrated that IgE binding induced the stabilization and accumulation of FcepsilonRI on the cell surface and resulted in up-regulation of FcepsilonRI. In this study we have further analyzed the maintenance of IgE-mediated memory in mast cells and basophils in vivo by comparing kinetics of serum IgE levels, FcepsilonRI expression, and ability to induce systemic anaphylaxis. A single i.v. injection of trinitrophenyl-specific IgE induced 8-fold up-regulation of FcepsilonRI expression on peritoneal mast cells in B cell-deficient (micro m(-/-)) mice. Serum IgE levels became undetectable by day 6, but the treatment of mice with anti-IgE mAb induced a significant drop in body temperature on days 14, 28, and 42. The administration of trinitrophenyl -BSA, but not BSA, in place of anti-IgE mAb gave similar results, indicating the Ag specificity of the allergic response. This long term maintenance of Ag-specific reactivity in the allergic response was also observed in normal mice passively sensitized with IgE even though the duration was shorter than that in B cell-deficient mice. The appearance of IgE with a different specificity did not interfere with the maintenance of IgE-mediated memory of mast cells and basophils. These results suggest that IgE-mediated stabilization and up-regulation of FcepsilonRI enables mast cells and basophils not only to acquire Ag specificity, but also to maintain memory in vivo for lengthy periods of time.  相似文献   

3.
Previous studies demonstrated that after stimulation of human basophils with a polyclonal anti-IgE Ab, early signaling elements showed sustained phosphorylation, whereas later elements were transient, suggesting that a region of down-regulation involved inhibition of phosphatidylinositol (PI) 3 kinase or its products. However, the current studies show that under some conditions, syk phosphorylation is transient. Generally, stimulation with a variety of Ags makes this early form of down-regulation more apparent. An exploration of the conditions needed to induce early down-regulation indicates that both the nature of aggregation and the cell surface density of IgE play roles. It was also found that the previously described late form of down-regulation (PI3 kinase product transience) can occur in cells displaying early down-regulation (transient syk phosphorylation), but this phenomenon is revealed by testing for subsequent down-regulation of the response to non-cross-reacting stimuli, altering their ability to induce phosphorylation of Akt or extracellular signal-regulated kinase. In contrast, phosphorylation of syk kinase, in response to a non-cross-reacting stimulus, was relatively unaffected by prior stimulation. The magnitude of cross-desensitization of the Akt or extracellular signal-regulated kinase response was a function of the strength of the first stimulus. Mediator release showed a similar cross-desensitization effect. Therefore, stimulation induces two forms of down-regulation, one operating before or at the level of syk phosphorylation, possibly characterizing the process formerly known as specific desensitization, and one that operates in the region of PI3 kinase, accounting for the process formerly known as nonspecific desensitization, which is dependent on the strength of stimulus.  相似文献   

4.
Engagement of the high affinity receptor for IgE (FcepsilonRI) on mast cells and basophils results in FcepsilonRI beta and gamma subunits ubiquitination by an as yet undefined mechanism. Here we show that, upon FcepsilonRI engagement on RBL-2H3 cells Syk undergoes ubiquitination and Syk kinase activity is required for its own ubiquitination and that of FcepsilonRI beta and gamma chains. This requirement was demonstrated by overexpression of Syk wild-type or its kinase-dead mutant in RBL cells or using an Syk-deficient RBL-derived cell line transfected with wild-type or a kinase inactive form of Syk. We also identify c-Cbl as the E3 ligase responsible for both Syk and receptor ubiquitination. Furthermore, we demonstrate that Syk controls tyrosine phosphorylation of Syk-associated Cbl induced after receptor engagement. These data suggest a mutual regulation between Syk and Cbl activities. Finally, we show that a selective inhibitor of proteasome degradation induces persistence of tyrosine-phosphorylated receptor complexes, of activated Syk, and of FcepsilonRI-triggered degranulation. Our results provide a molecular mechanism for down-regulation of engaged receptor complexes by targeting ubiquitinated FcepsilonRI and activated Syk to the proteasome for degradation.  相似文献   

5.
The release of histamine and other inflammatory mediators from human basophils is triggered by numerous stimuli, including chemical, physical and receptor-mediated activators. Several mechanisms of cell activation including protein kinase C activation have been proposed to operate in these cells. We used phorbol ester and DiC8 to induce histamine release from human basophils and the protein kinase C inhibitors H-7 and H-9 to inhibit this release. Both DiC8 and TPA induced histamine release were inhibited by H-7 (ID 50 = 37 mcM) and H-9 (IC 50 = 20 mcM). However, anti-IgE, fmlp and A23187-induced histamine release were unaffected. In contrast, the calmodulin antagonists W-7 and perphenazine effectively inhibited histamine release by all five stimuli. Therefore, different biochemical pathways appear to be critical for basophil activation depending on the nature of the stimulus used.  相似文献   

6.
7.
The class Ia phosphoinositide (PI) 3-kinase consisting of p110 catalytic and p85 regulatory subunits is activated by Tyr kinase-linked membrane receptors such as FcgammaRII through the association of p85 with the phosphorylated receptors or adaptors. The heterodimeric PI 3-kinase is also activated by G protein-coupled chemotactic fMLP receptors, and activation of the lipid kinase plays an important role in various immune responses, including superoxide formation in neutrophils. Although fMLP-induced superoxide formation is markedly enhanced in FcgammaRII-primed neutrophils, the molecular mechanisms remain poorly characterized. In this study, we identified two Tyr-phosphorylated proteins, c-Cbl (Casitas B-lineage lymphoma) and Grb2-associated binder 2 (Gab2), as PI 3-kinase adaptors that are Tyr phosphorylated upon the stimulation of FcgammaRII in differentiated neutrophil-like THP-1 cells. Interestingly, Gab2 was, but c-Cbl was not, further Ser/Thr phosphorylated by fMLP. Thus, the adaptor Gab2 appeared to be dually phosphorylated at the Ser/Thr and Tyr residues through the two different types of membrane receptors. The Ser/Thr phosphorylation of Gab2 required the activation of extracellular signal-regulated kinase, and fMLP receptor stimulation indeed activated extracellular signal-regulated kinase in the cells. Enhanced superoxide formation in response to Fcgamma and fMLP was markedly attenuated when the Gab2 Ser/Thr phosphorylation was inhibited. These results show the importance of the dual phosphorylation of PI 3-kinase adaptor Gab2 for the enhanced superoxide formation in neutrophil-type cells.  相似文献   

8.
9.

Background

Flavonoids, a large group of polyphenolic metabolites derived from plants have received a great deal of attention over the last several decades for their properties in inflammation and allergy. Quercetin, the most abundant of plant flavonoids, exerts a modulatory action at nanomolar concentrations on human basophils. As this mechanism needs to be elucidated, in this study we focused the possible signal transduction pathways which may be affected by this compound. Methods: K2-EDTA derived leukocyte buffy coats enriched in basophil granulocytes were treated with different concentrations of quercetin and triggered with anti-IgE, fMLP, the calcium ionophore A23187 and the phorbol ester PMA in different experimental conditions. Basophils were captured in a flow cytometry analysis as CD123bright/HLADRnon expressing cells and fluorescence values of the activation markers CD63-FITC or CD203c-PE were used to produce dose response curves. The same population was assayed for histamine release.

Results

Quercetin inhibited the expression of CD63 and CD203c and the histamine release in basophils activated with anti-IgE or with the ionophore: the IC50 in the anti-IgE model was higher than in the ionophore model and the effects were more pronounced for CD63 than for CD203c. Nanomolar concentrations of quercetin were able to prime both markers expression and histamine release in the fMLP activation model while no effect of quercetin was observed when basophils were activated with PMA. The specific phosphoinositide-3 kinase (PI3K) inhibitor wortmannin exhibited the same behavior of quercetin in anti-IgE and fMLP activation, thus suggesting a role for PI3K involvement in the priming mechanism.

Conclusions

These results rule out a possible role of protein kinase C in the complex response of basophil to quercetin, while indirectly suggest PI3K as the major intracellular target of this compound also in human basophils.  相似文献   

10.
FK-506, a macrolide that binds with high affinity to a specific binding protein, and the structurally related macrolide rapamycin (RAP) were compared to cyclosporin A (CsA) for their effects on the release of preformed (histamine) and de novo synthesized (peptide leukotriene C4) inflammatory mediators from human basophils. FK-506 (1 to 300 nM) concentration dependently inhibited histamine release from basophils activated by Der p I Ag, anti-IgE, or compound A23187. FK-506 was more potent than CsA when basophils were challenged with Ag (IC50 = 25.5 +/- 9.5 vs 834.3 +/- 79.8 nM; p less than 0.001), anti-IgE (IC50 = 9.4 +/- 1.7 vs 441.3 +/- 106.7 nM; p less than 0.001), and A23187 (IC50 = 4.1 +/- 0.9 vs 36.7 +/- 3.8 nM; p less than 0.001). The maximal inhibitory effect of FK-506 was higher than that caused by CsA when basophils were activated by Der p I (80.0 +/- 3.6 vs 49.5 +/- 4.7%; p less than 0.001) and anti-IgE (90.4 +/- 1.8 vs 62.3 +/- 2.9%; p less than 0.001). FK-506 had little or no effect on the release of histamine caused by f-met peptide, phorbol myristate (12-tetradecanoyloxy-13-acetoxy-phorbol), and bryostatin 1. RAP (30 to 1000 nM) selectively inhibited only IgE-mediated histamine release from basophils, although it had no effect on mediator release caused by f-met peptide, A23187, 12-tetradecanoyloxy-13-acetoxy-phorbol, and bryostatin 1. FK-506 also inhibited the de novo synthesis of sulfidopeptide leukotriene C4 from basophils challenged with anti-IgE. Low concentrations of FK-506 and CsA synergistically inhibited the release of mediators from basophils induced by anti-IgE or compound A23187. IL-3 (3 and 10 ng/ml), but not IL-1 beta (10 and 100 ng/ml), reversed the inhibitory effect of both FK-506 and CsA on basophils challenged with anti-IgE or A23187. RAP was a competitive antagonist of the inhibitory effect of FK-506 on A23187-induced histamine release from basophils with a dissociation constant of about 30 nM. In contrast, RAP did not modify the inhibitory effect of CsA on A23187-induced histamine release. These data indicate that FK-506 is a potent antiinflammatory agent that acts on human basophils presumably by binding to a receptor site (i.e., FK-506 binding protein).  相似文献   

11.
S R Yan  M J Novak 《FEBS letters》1999,451(1):33-38
Tumor necrosis factor alpha and fMLP can activate a broad range of cellular functions in neutrophils adherent to biological surfaces. These functions are mediated by integrins and involve the activation of tyrosine kinases. Here, we report that Pyk2, a member of the focal adhesion kinase family, was present in human neutrophils and was rapidly phosphorylated and activated following tumor necrosis factor alpha and fMLP stimulation in an adhesion-dependent manner. Tyrosine phosphorylation of Pyk2 was attenuated by beta2 integrin blocking with specific antibodies. The tyrosine phosphorylation of Pyk2 was downstream of protein kinases Lyn, Syk and protein kinase C and cytoskeletal organization. The activation of Pyk2 may play a role in adhesion/cytoskeleton-associated neutrophils function.  相似文献   

12.
The B lymphotrophic γ-herpesvirus EBV is associated with a variety of lymphoid- and epithelial-derived malignancies, including B cell lymphomas in immunocompromised and immunosuppressed individuals. The primary oncogene of EBV, latent membrane protein 1 (LMP1), activates the PI3K/Akt pathway to induce the autocrine growth factor, IL-10, in EBV-infected B cells, but the mechanisms underlying PI3K activation remain incompletely understood. Using small molecule inhibition and siRNA strategies in human B cell lines expressing a chimeric, signaling-inducible LMP1 protein, nerve growth factor receptor (NGFR)-LMP1, we show that NGFR-LMP1 utilizes Syk to activate PI3K/Akt signaling and induce IL-10 production. NGFR-LMP1 signaling induces phosphorylation of BLNK, a marker of Syk activation. Whereas Src kinases are often required for Syk activation, we show here that PI3K/Akt activation and autocrine IL-10 production by NGFR-LMP1 involves the Src family kinase Fyn. Finally, we demonstrate that NGFR-LMP1 induces phosphorylation of c-Cbl in a Syk- and Fyn-dependent fashion. Our results indicate that the EBV protein LMP1, which lacks the canonical ITAM required for Syk activation, can nevertheless activate Syk, and the Src kinase Fyn, resulting in downstream c-Cbl and PI3K/Akt activation. Fyn, Syk, and PI3K/Akt antagonists thus may present potential new therapeutic strategies that target the oncogene LMP1 for treatment of EBV+ B cell lymphomas.  相似文献   

13.
The Cbl family of proteins negatively regulate signaling from tyrosine kinase-coupled receptors. Among the three members of this family, only c-Cbl and Cbl-b are expressed in hemopoietic cells. To examine the role of c-Cbl and Cbl-b in Fc epsilon RI signaling, mast cell cultures from wild-type, c-Cbl(-/-), and Cbl-b(-/-) mice were generated. Cell growth rates and cell surface expression of Fc epsilon RI were similar in the different cell populations. Compared with control cells, Cbl-b inactivation resulted in increases in Fc epsilon RI-induced Ca(2+) response and histamine release. Fc epsilon RI-induced tyrosine phosphorylation of total cellular proteins, Syk, and phospholipase C-gamma was also enhanced by Cbl-b deficiency, whereas receptor-initiated phosphorylation of Vav, JNK, and p38 kinases was not changed in these cells. In contrast to Cbl-b, c-Cbl deficiency had no detectable effect on Fc epsilon RI-induced histamine release or on the phosphorylation of total cellular proteins or Syk. The absence of c-Cbl increased the phosphorylation of ERK after receptor stimulation, but resulted in slightly reduced p38 phosphorylation and Ca(2+) response. These results suggest that Cbl-b and c-Cbl have divergent effects on Fc epsilon RI signal transduction and that Cbl-b, but not c-Cbl, functions as a negative regulator of Fc epsilon RI-induced degranulation.  相似文献   

14.
c-Cbl and Cbl-b E3 ubiquitin ligases are abundantly expressed in hemopoietic cells where they negatively regulate the activity and levels of many cell surface receptors and associated signaling molecules. By comparing bone marrow-derived mast cells from c-Cbl and Cbl-b-deficient mice it has recently been shown that Cbl-b is the dominant family member for negatively regulating signaling responses from high-affinity IgE receptors. In this study, we suggest that a possible reason for the greater enhancement of IgE receptor signaling in Cbl-b-deficient mice is the relatively higher levels of Cbl-b protein over c-Cbl in mast cells compared with other hemopoietic cells. We also directly compare mast cells from c-Cbl and Cbl-b-deficient mice and find that loss of Cbl-b, but not c-Cbl, increases cell growth, retards receptor internalization, and causes the sustained tyrosine phosphorylation of Syk and its substrates. However, loss of Cbl-b does not enhance the activation of ERK or Akt, nor does it promote a greater calcium response. Furthermore, loss of Cbl-b or c-Cbl does not increase levels of the Syk or Lyn protein tyrosine kinases. Most notable, however, is the extremely large increase in the production of proinflammatory cytokines TNF-alpha, IL-6, and MCP-1 by Cbl-b(-/-) mast cells compared with levels produced by c-Cbl(-/-) or wild-type cells. This marked induction, which appears to be restricted to these three cytokines, is dependent on IgE receptor activation and correlates with enhanced IkappaB kinase phosphorylation. Thus, Cbl-b functions as a potent negative regulator of cytokines that promote allergic and inflammatory reactions.  相似文献   

15.
Accumulating data indicate that the 'linker' region of Syk, which lies between its tandem Src homology 2 (SH2) domains and kinase region, provides a critical function for the biological activity of Syk. This importance has been ascribed to the presence of tyrosine phosphorylation sites capable of mediating the recruitment of cellular effectors. We and others previously identified an alternatively spliced variant of Syk, termed SykB, which lacks a 23 amino acid sequence in the linker domain. As this 'linker insert' is also not present in the closely related enzyme Zap-70, it seems plausible that Syk possesses this unique sequence for functional reasons. To understand its role better, we have compared the abilities of Syk and SykB to participate in immunoreceptor-triggered signal transduction. The results of our experiments revealed that, unlike Syk, SykB was inefficient at coupling stimulation of FcepsilonRI on basophils or the antigen receptor on T cells to the early and late events of cellular activation. Further studies showed that the functional defect in SykB was not caused by the absence of crucial tyrosine phosphorylation sites, or by a reduced intrinsic kinase activity. Rather, it correlated with the reduced ability of SykB to bind phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs) in vitro and in vivo. In combination, these results demonstrated that the unique insert in the linker domain of Syk is crucial for its capacity to participate in immunoreceptor signalling. Furthermore, they provided evidence that the linker region can regulate the ability of Syk to bind ITAMs, thus identifying a novel function for this domain.  相似文献   

16.
The tyrosine kinase Syk is associated with CD18, the beta-subunit of the leukocyte adhesion molecules of the beta(2) integrin family (CD11/CD18), and becomes activated upon beta(2) integrin-mediated adhesion. In this study, we elucidated the role of Syk in polarization and site-directed migration of neutrophil-like differentiated HL-60 cells and monocytic THP-1 cells. By means of confocal microscopy, we detected a homogenous distribution of Syk in unstimulated cells in suspension. The stimulation of HL-60 cells by formyl-methionyl-leucyl-phenylalanine (fMLP, 100 nM) or the activation of THP-1 cells by monocyte chemoattractant protein-1 (10 ng/ml) induced beta(2) integrin-mediated cell adhesion and polarization on immobilized fibrinogen which was associated with an enrichment of Syk at the lamellipodium forming site. This effect was abolished by function blocking anti-CD18 antibody or by treatment of the cells with the Syk inhibitor piceatannol (30 microM) suggesting that the redistribution of Syk required both, beta(2) integrin-mediated adhesion and Syk activation. Moreover, the inhibition of Syk by piceatannol or the downregulation of Syk by antisense technique resulted in an excessive formation of lamellipodia indicating that Syk may act as a negative regulator that limits lamellipodium formation. The analysis of chemotaxis revealed that the inhibition of Syk impaired the ability of the cells to follow a chemotactic gradient whereas random migration was intact. Taken together, our data suggest a novel role for Syk in the maintenance of a bipolar phenotype by regulating lamellipodium formation, which is a critical prerequisite for site-directed migration of leukocytes.  相似文献   

17.
After engagement of the B cell receptor for antigen, the Syk protein-tyrosine kinase becomes phosphorylated on multiple tyrosines, some of which serve as docking sites for downstream effectors with SH2 or other phosphotyrosine binding domains. The most frequently identified binding partner for catalytically active Syk identified in a yeast two-hybrid screen was the p85 regulatory subunit of phosphoinositide 3-kinase. The C-terminal SH2 domain of p85 was sufficient for mediating an interaction with tyrosine-phosphorylated Syk. Interestingly, this domain interacted with Syk at phosphotyrosine 317, a site phosphorylated in trans by the Src family kinase, Lyn, and identified previously as a binding site for c-Cbl. This site interacted preferentially with the p85 C-terminal SH2 domain compared with the c-Cbl tyrosine kinase binding domain. Molecular modeling studies showed a good fit between the p85 SH2 domain and a peptide containing phosphotyrosine 317. Tyr-317 was found to be essential for Syk to support phagocytosis mediated by FcgammaRIIA receptors expressed in a heterologous system. These studies establish a new type of p85 binding site that can exist on proteins that serve as substrates for Src family kinases and provide a molecular explanation for observations on direct interactions between Syk and phosphoinositide 3-kinase.  相似文献   

18.
Previous studies of secretion from basophils have demonstrated the phenomenon called nonspecific desensitization, the ability of one IgE-mediated stimulus to alter the cell's response to other non-cross-reacting IgE-mediated stimuli, and a process that would modify phosphatidylinositol 3,4,5-phosphate levels was speculated to be responsible for nonspecific desensitization. The current studies examined the changes and characteristics of SHIP1 phosphorylation as a measure of SHIP1 participation in the reaction. Based on the earlier studies, two predictions were made that were not observed. First, the kinetics of SHIP1 phosphorylation were similar to reaction kinetics of other early signals and returned to resting levels while nonspecific desensitization remained. Second, in contrast to an expected exaggerated SHIP phosphorylation, cells in a state of nonspecific desensitization showed reduced SHIP phosphorylation (compared with cells not previously exposed to a non-cross-reacting Ag). Discordant with expectations concerning partial recovery from nonspecific desensitization, treatment of cells with DNP-lysine to dissociate bound DNP-HSA, either enhanced or had no effect on SHIP phosphorylation following a second Ag. These experiments also showed a form of desensitization that persisted despite dissociation of the desensitizing Ag. Recent studies and the results of these studies suggest that loss of early signaling components like syk kinase may account for some of the effects of nonspecific desensitization and result in a form of immunological memory of prior stimulation. Taken together, the various characteristics of SHIP phosphorylation were not consistent with expectations for a signaling element involved in nonspecific desensitization, but instead one which itself undergoes nonspecific desensitization.  相似文献   

19.
Although indolone-N-oxide (INODs) genereting long-lived radicals possess antiplasmodial activity in the low-nanomolar range, little is known about their mechanism of action. To explore the molecular basis of INOD activity, we screened for changes in INOD-treated malaria-infected erythrocytes (Pf-RBCs) using a proteomics approach. At early parasite maturation stages, treatment with INODs at their IC(50) concentrations induced a marked tyrosine phosphorylation of the erythrocyte membrane protein band 3, whereas no effect was observed in control RBCs. After INOD treatment of Pf-RBCs we also observed: (i) accelerated formation of membrane aggregates containing hyperphosphorylated band 3, Syk kinase, and denatured hemoglobin; (ii) dose-dependent release of microvesicles containing the membrane aggregates; (iii) reduction in band 3 phosphorylation, Pf-RBC vesiculation, and antimalarial effect of INODs upon addition of Syk kinase inhibitors; and (iv) correlation between the IC(50) and the INOD concentrations required to induce band 3 phosphorylation and vesiculation. Together with previous data demonstrating that tyrosine phosphorylation of oxidized band 3 promotes its dissociation from the cytoskeleton, these results suggest that INODs cause a profound destabilization of the Pf-RBC membrane through a mechanism apparently triggered by the activation of a redox signaling pathway rather than direct oxidative damage.  相似文献   

20.
Catalytic (SH1) domains of protein tyrosine kinases (PTKs) demonstrate specificity for peptide substrates. Whether SH1 domains differentiate between tyrosines in a physiological substrate has not been confirmed. Using purified proteins, we studied the ability of Syk, Fyn, and Abl to differentiate between tyrosines in a common PTK substrate, c-Cbl. We found that each kinase produced a distinct pattern of c-Cbl phosphorylation, which altered the phosphotyrosine-dependent interactions between c-Cbl and CrkL or phosphatidylinositol 3'-kinase (PI3-K). Our data support the concept that SH1 domains determine the final sites of phosphorylation once PTKs reach their target proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号