首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: Snell dwarf mice (dw) showed a lower CNPase activity (59% of the normal controls) only in the cerebrum among different parts of the CNS, and a strikingly reduced level of spontaneous locomotion activity with an indistinct diurnal periodicity in a 24-h record at 40 days of age. Daily administration of bGH and T4 to the dwarfs during the first 40 days of postnatal life restored CNPase activity to the level of the normal controls, and was accompanied by normalization of the pattern of spontaneous locomotion activity. Daily administration of bGH alone also restored CNPase activity and spontaneous locomotion, but to a lesser extent. The daily administration of thyroid stimulating hormone (TSH) alone, however, failed to restore CNPase activity, in spite of the fact that the thyroid glands of the TSH-treated dwarfs were indistinguishable from the normal controls in organization and appearance. These results indicate that the restoration of both the retarded myelinogenesis and abnormal behavior of the Snell dwarf mice might essentially depend upon GH levels and the synergistic effects of T4.  相似文献   

2.
Hypomyelination in the Cerebrum of the Congenitally Hypothyroid Mouse (hyt)   总被引:2,自引:2,他引:2  
2',3'-Cyclic nucleotide 3'-phosphohydrolase activity in the cerebrum of the inherited primary hypothyroid mouse (hyt/hyt) is reduced in comparison with the normal heterozygate (hyt/+). No differences were observed with regard to DNA and RNA content and the RNA/DNA ratio. The results of this study indicate that hypomyelination in the hypothyroid mouse is restricted to the cerebrum, and is not related to arrested glial proliferation.  相似文献   

3.
Snell dwarf mice (dw/dw) and normal mice (+/?) were injected with thyroxine (T4) (1 μg/animal, four injections) and growth hormone (GH) (20 μg/animal, four injections) from the 5th to the 15th day of life. In the untreated dw/dw mouse brain, the specific activities of UDP-galactose:ceramide galactosyltransferase (CGalT), PAPS:cerebroside sulfotransferase (CST), and 2′,3′-cyclic nucleotide 3′-phosphohydrolase (CNP) were decreased by 28, 25, and 37%, respectively, compared with the control untreated +/? mice. The major effect of T4 was an increase of the brain CNP in the +/? mice (+40%) and dw/dw mice (+111%). The treatment with T4 also brought to normal the level of CGalT in dw/dw brain; a somewhat less marked effect on CST was observed. The treatment with GH had a great stimulatory effect on CNP: the specific activity of this enzyme increased by 40 and 69% in +/? and dw/dw mouse brain, respectively. On the contrary, no effect of GH on the CGalT activity was observe in this study. Our results suggest that T4 and GH may have both independent and complementary actions on the myelin-associated enzymes during the early postnatal period of brain development.  相似文献   

4.
Effect of Triethyl Tin on Myelination in the Developing Rat   总被引:3,自引:2,他引:1  
Myelinogenesis in developing rats was studied following chronic dosing with triethyl tin (TET), at a level of 1.0 mg TET/kg body wt/day. Experiments included starved controls with body weights depressed by 17 to 40% to equal those of the TET-treated groups. Rats at ages of 16, 21, and 30 days showed decreases relative to well-nourished controls in body weight, forebrain weight, myelin yield, cerebroside level, and specific activity of brain 2',3'-cyclic nucleotide-3'-phosphohydrolase when dosed with TET. At 30 days, myelin and cerebroside yields were reduced by approximately 55%, while CNP activity was reduced by less than 20%. No differences in the forebrain myelin protein composition between control, starved, and TET animals were noted. The rate of myelin protein synthesis relative to brain total protein (assayed by incorporation of intracranially injected [3H]glycine into brain homogenate and myelin proteins) was decreased in the TET rats in proportion to the decreased yield of myelin, but no particular myelin protein was preferentially affected. Matching starved controls exhibited similar body weight decreases, less pronounced forebrain weight decreases, and little or no decrease in myelin concentration. There was a relative increase in the myelin protein synthesis rate in the starved rats, indicating preferential utilization of limited protein precursors for myelin protein synthesis. Spinal cord myelin was also decreased in the TET rats, but less severely than in the forebrain. At all ages optic, but not sciatic, nerves showed decreases in myelin concentration with TET treatment. We conclude that TET inhibits forebrain growth and CNS myelination more severely than can be accounted for by a general metabolic insult.  相似文献   

5.
Abstract: Schwann cell cultures were established from adult human sural nerve biopsies. 2'3'-Cyclic nucleotide 3'-phosphohydrolase (CNPase) activity was estimated in the homogenates of those cells by a sensitive isotope assay using [3H]2',3'-cyclic AMP as substrate. A high level of CNPase activity was observed in cultured Schwann cells, whereas cultured human muscle and skin fibroblasts contained negligible levels of CNPase activity. CNPase of human Schwann cells followed typical enzyme-substrate kinetics, with an apparent K m of 1.6 m M for 2',3'-cyclic AMP, and the enzyme was stimulated by detergents such as Triton X-100 and deoxycholate. It was inhibited by p -chloromercuricbenzoate and 2'-AMP. These properties are typical of CNPase isolated from adult brain and spinal cord. CNPase can serve as a new biochemical marker of normal cultured human Schwann cells and can be useful in analyzing the properties of cultured Schwann cells from patients with dysschwannian neuropathies.  相似文献   

6.
Abstract: Cultured murine oligodendrocytes elaborate extensive membrane sheets that, unlike multilamellar myelin in vivo, allow the study of interactions between myelin proteins and cytoskeletal elements. This article describes the events that occur due to the interaction of specific antibodies with their respective antigens, myelin/oligodendrocyte-specific protein (MOSP) and myelin/oligodendrocyte glycoprotein (MOG), which are expressed uniquely by oligodendrocytes. After antibody binding, surface anti-MOSP:MOSP complexes redistribute over those cytoplasmic microtubular veins that have 2',3'-cyclic nucleotide 3'-phosphohydrolase colocalized along them. In contrast, surface anti-MOG-MOG complexes redistribute over internal myelin basic protein domains. Long-term anti-MOSP IgM exposure results in an apparent increase in number as well as thickness of microtubular structures in oligodendrocyte membrane sheets, whereas long-term anti-MOG exposure causes depolymerization of microtubular veins in membrane sheets. These data suggest that antibody binding to these two surface proteins elicits signals that have opposite effects on the cytoskeleton in oligodendroglial membrane sheets. Thus, it is possible that signals transduced via antibody binding may contribute to the pathogenesis of diseases affecting CNS myelin.  相似文献   

7.
Monoclonal antibody against 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) was generated by fusing mouse myeloma cells with spleen cells from BALB/c mice immunized with delipidated white matter from rat corpus callosum. The antibody was characterized by solid-phase radioimmunoassay, immunoblot of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), immunoprecipitation from C6 glioma cells, and indirect immunofluorescence staining of monolayer cultures containing oligodendrocytes. The monoclonal antibody bound specifically to an intracellular antigen of oligodendrocytes, but not to Schwann cells, astrocytes, neurons, or fibroblast cytoplasm. The immunoblot of SDS-PAGE of CNS myelin showed that the antibody identified two protein bands at 48,000 and 50,000 molecular weight. These proteins were not identified in peripheral nervous system myelin. The monoclonal antibody immunoprecipitated CNP enzyme activity from extracts of C6 glioma cells. This monoclonal antibody should prove useful in further study of this myelin-specific enzyme in CNS myelin and in cells responsible for myelin production.  相似文献   

8.
The effect of adrenalectomy on CNS myelin accumulation was investigated to determine whether glucocorticoids play a role in regulating myelination. When 14-day-old rats were adrenalectomized and sacrificed 7-8 days later, the amount of bulk-isolated myelin in whole brain, as expressed per gram wet weight of brain or per milligram DNA-phosphate, was reduced to about 75% that of sham-operated controls. Both brain weight and DNA content were unchanged by adrenalectomy. Examination of individual brain regions also revealed decreased amounts of myelin in adrenalectomized animals. Brain glycerol 3-phosphate dehydrogenase specific activity was reduced in adrenalectomized animals to 40-60% that of controls, and serum corticosterone levels were less than 0.6% of control levels. The amount of cerebral myelin in animals adrenalectomized on day 21 and sacrificed 9 days later was not significantly reduced. This suggests a possible role of glucocorticoids during the early period of rapid myelination.  相似文献   

9.
Several biochemical parameters were analyzed in cultured embryonic mouse spinal cord during various stages of normal myelinogenesis or demyelination. In cultures demyelinated by exposure to anti-whole CNS tissue serum plus complement, the activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase (EC 3.1.4.37) was decreased 70%, whereas in cultures that did not show morphological changes with complement-inactivated anti-CNS serum or anti-myelin basic protein serum, the activity was 30% lower than in control cultures. The lipid composition of these cultures was quantitated by means of high-performance thin-layer chromatography densitometry technique. Cultures with normal nutrient medium alone or with the addition of 5% normal rabbit serum plus 10% guinea pig serum had 30% of the total lipid content of that present in newborn mouse spinal cord of the corresponding age. There were, however, relatively more lysophospholipids, cholesterol esters, triglycerides, and free fatty acids and less phosphatidylethanolamine and galactolipids in cultures as compared with normal spinal cord. Explants demyelinated by exposure to anti-CNS serum plus complement demonstrated principally a 70% decrease in the content of galactolipids with respect to normal cultures. When complement was inactivated, total lipids increased 42% (with increases of 40-70% in individual lipids). Inclusion of anti-myelin basic protein serum plus complement in the medium produced no significant changes in the lipid composition of the cultures.  相似文献   

10.
Cultures of myelinated SJL/J fetal mouse spinal cord were incubated with serum and lymphoid cells from syngeneic animals with experimental allergic encephalomyelitis (EAE) induced by syngeneic spinal cord homogenate (SSCH) in complete Freund's adjuvant or others injected with complete Freund's adjuvant alone. After 24 or 48 h of exposure, demyelination was determined by light microscopic examination and quantification of 2',3'-cyclic nucleotide 3'-phosphohydrolase activity. Cultures exposed to spleen or lymph node cells from SSCH-sensitized animals showed the greatest alterations in myelin and decreases in 2',3'-cyclic nucleotide 3'-phosphohydrolase activity whereas serum from these animals had less effect. Cells and serum from complete Freund's adjuvant-injected control animals also induced structural changes in myelin that were significantly less than changes induced by cells and serum from animals with EAE. These experiments show that lymphoid cells and serum obtained from SJL/J mice with acute EAE affected myelin biochemistry and morphology in syngeneic CNS cultures.  相似文献   

11.
Developmental changes in protein N-glycosylation activity have been studied using cultures of dissociated fetal rat brain cells as an in vitro model system. These cultures undergo an initial phase of neurite outgrowth and cell proliferation (4-6 days in culture), followed by a period of cellular differentiation. N-Glycosylation activity has been measured by assaying the incorporation of [2-3H]mannose into dolichol-linked oligosaccharides and glycoprotein over a period of 1-25 days in culture. This study revealed a marked induction of N-glycosylation activity beginning at approximately 1 week of culture. [2-3H]Mannose incorporation into the oligosaccharide-lipid intermediate fraction and glycoprotein reached maximal values between 12 and 16 days of culture and declined thereafter. The major dolichol-linked oligosaccharide labeled by the brain cell cultures was shown to be Glc3Man9GlcNAc2 by HPLC analysis. Parallel incorporation studies with [3H]leucine showed that the increase in protein N-glycosylation was relatively higher than a concurrent increase in cellular protein synthesis observed during the induction period. Maximal labeling of glycoprotein corresponded to the period of glial differentiation, as indicated by a sharp rise in the marker enzymes, 2',3'-cyclic nucleotide 3'-phosphohydrolase (an oligodendroglial marker) and glutamine synthetase (an astroglial marker). The results describe a developmental activation of the N-glycosylation pathway and suggest a possible relationship between N-linked glycoprotein assembly and the growth and differentiation of glial cells.  相似文献   

12.
13.
The glial cell contents of S100 protein, 2',3'-cyclic AMP, 3'-phosphohydrolase (CNP), isoenzyme II of carbonic anhydrase (CAII) and butyrylcholinesterase (BuChE) were biochemically determined in the cerebellum and cerebrum of the reeler mutant mouse. Astrocytes and oligodendrocytes, shown by this study, contain abnormal amounts of these components. The CAII concentration was significantly increased in the particulate fraction of the reeler cerebellum and cerebrum (by 50% and 89%, respectively). The BuChE specific activity was greatly increased in the reeler, by 120% for cerebellum and by 40% in cerebrum. In contrast, the S100 protein concentration was reduced in the reeler cerebellum by 40% and by 25% in cerebrum, while the CNP specific activity increased by 30% in the reeler cerebellum. In addition, the glial cell distribution was studied by immunohistological techniques with antibodies directed against S100 protein, glial fibrillary acidic protein (GFA) and CAII. Apparently the density of glial cells is not significantly affected. However, the Golgi epithelial cells were usually abnormally placed and their Bergmann fibres were less well developed.  相似文献   

14.
A new class of procedures, previously shown to permit the isolation of pure oligodendroglia from whole rat cerebrum, has been applied with equal or greater success for the bulk isolation of this cell type from bovine white matter. Thus, the generality of this approach has been demonstrated. The bovine preparations have a purity of greater than 90% intact, phase-bright oligodendroglia and are obtained in a yield of 8 x 10(6) cells per gram of white matter. Within 1 day it is possible to obtain a preparation containing 60 mg of protein from a single cell type. These cells show a higher degree of ultrastructural preservation of all cytoplasmic constituents than previously obtained. The values for protein (33 pg/cell), DNA (5.4 pg/cell), and lipid (5-6 pg/cell) are very similar to those obtained with an earlier procedure. The cell lipids are rich in galactolipid, which comprises 20% of the total. The activity of the "myelin-specific" enzyme, 2',3'-cyclic nucleotide 3'-phosphohydrolase (EC 3.1.4.37), is 4.7 mumol/min/mg protein, similar to that obtained previously for isolated oligodendroglia and about 25-40% of that found in myelin. The activity of 5'-nucleotidase (EC 3.1.3.5) in the cells is about 10% of that in myelin or white matter.  相似文献   

15.
Cyclic AMP (cAMP) is known to induce the activity of the myelin enzyme 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP; EC 3.1.4.37) in C6 rat glioma cells. This report shows that CNP is also inducible in oligodendrocytes explanted from 1-day-old rat cerebrum and grown in tissue culture. Induction was observed after a 1-day treatment with 1 mM N6, O2-dibutyryl cyclic AMP (dbcAMP) and was maximal after 5 days, reaching 200-240% of control. Induction was observed both in mixed cerebral cell cultures containing oligodendrocytes and astrocytes, and in purified cultures of oligodendrocytes prepared by a differential shakeoff procedure. Addition of dbcAMP to the cultures 3-9 days after the cells were explanted from rat brain induced CNP activity, but no induction was observed when dbcAMP treatment was begun 13 or more days after explanation. These results demonstrate that one component of myelin, CNP, is inducible in oligodendrocytes by a cAMP-mediated mechanism, and suggest a role for cAMP in the regulation of the myelin-associated functions of oligodendrocytes.  相似文献   

16.
A monoclonal antibody (8-18C5) directed against myelin/oligodendrocyte glycoprotein (MOG) induced demyelination in aggregating brain cell cultures. With increasing doses of anti-MOG antibody in the presence of complement, myelin basic protein (MBP) concentration decreased in a dose-related manner. A similar, albeit less pronounced, effect was observed on specific activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase. In the absence of complement, anti-MOG antibody did not induce detectable demyelination. In contrast to the effect of anti-MOG antibody and as expected, anti-MBP antibody did not demyelinate aggregating brain cell cultures in the presence of complement. These results provide additional support to the suggestion that MOG, a quantitatively minor myelin component located on the external side of the myelin membrane, is a good target antigen for antibody-induced demyelination. Indeed, they show that a purified anti-MOG antibody directed against a single epitope on the glycoprotein can produce demyelination, not only in vivo as previously shown, but also in cultures. Such an observation has not been made with polyclonal antisera raised against purified myelin proteins like MBP and proteolipid protein, the major protein components of the myelin membrane, or myelin-associated glycoprotein. These observations may have important implications regarding the possible role of anti-MOG antibodies in demyelinating diseases.  相似文献   

17.
Abstract: Separate analyses were made of gray matter and white matter from rat brain after neonatal undernutrition. Newborn rats were redistributed into control, large-litter, and protein-deficient groups. Large litters had 16 rather than 8 pups with a dam. Protein-deficient dams were fed a 4%, instead of a 24%, casein diet. For controls at 21 days of age, the 2',3'-cyclic nucleotide-3'-phosphohydrolase activity was more than fivefold greater in white matter than in gray matter. Severe undernutrition (protein-deficient) gave 2',3'-cyclic nucleotide-3'-phosphohydrolase activities that were 36% lower in gray matter and 56% lower in white matter. Lipid galactose concentrations were 17% less than control in both gray matter and white matter. In protein-deficient white matter, phospholipid concentrations were 15% lower than control. Ethanolamine plasmalogens and phosphatidyl serine were affected most. Moderate undernutrition (large litter) had no effect on 2',3'-cyclic nucleotide-3'-phosphohydrolase activity. A 14% deficit of galactolipids was the only difference from controls in large-litter white matter. In large-litter gray matter, phospholipid concentrations were 16% higher than controls. Nearly all glycerophos-pholipids, including plasmalogens, were affected. With the exception of the myelination markers, 2',3'-cyclic nucleotide-3'-phosphohydrolase and lipid galactose, the development of lipids in gray matter is almost completely spared from the effects of undernutrition. The primary effect of undernutrition is on myelination, especially in white matter.  相似文献   

18.
The relation of the polar head group composition of cellular phospholipids to a biochemical expression of oligodendroglial differentiation was studied in cultured C-6 glial cells. Induction of the oligodendroglial enzyme, 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP), was determined after alteration of the polar head group composition of phospholipids by exposure of the cells to choline analogues, especially N,N'-dimethylethanolamine. To accomplish the phospholipid alteration, cells were grown in the presence of the analogue in medium free of exogenous lipid, i.e., first for 24 h in 10% delipidated serum and then for 48 h in serum-free medium. The 48-h exposure to serum-free medium resulted in untreated C-6 cells in a several fold increase in CNP activity, but in cells treated with 2.5 mM N,N'-dimethylethanolamine, total inhibition of this induction was observed. A graded, concentration-dependent inhibitory effect of the analogue on the induction of CNP was defined. The effect of the analogue was relatively specific, e.g., the activity of another plasma membrane enzyme of C-6 cells, (Na+ + K+)-activated ATPase, was not affected. Morever, there was no evidence of a toxic effect of the analogue; thus, total protein synthesis and cell growth were not altered, and the induction of CNP in serum-free medium recurred after removal of the analogue. N,N'-Dimethylethanolamine was shown to be incorporated into cellular phospholipids, primarily at the expense of phosphatidylcholine. The data define an important role for the polar head group composition of membrane phospholipids in oligodendroglial differentiation in this model system.  相似文献   

19.
The concentration of gangliosides in the Snell dwarf mouse cerebrum was monitored from postnatal day 5 to day 40. In the dwarf cerebrum, the concentration of total gangliosides increased up to postnatal day 20 and then stopped, whereas in the control cerebrum, it continued to increase up to postnatal day 40. At postnatal day 40, the ganglioside level in the dwarf cerebrum was 70% of that in the control cerebrum. Among the ganglioside species, the concentrations of GM4, GM2, GM1, GD1a, GD3, GD1b, GT1b, and GQ1b were significantly lower in the dwarf cerebrum than in the controls at postnatal day 40. The reduced concentrations of ganglioside species GM2, GD1a, GD3, GD1b, and GQ1b were completely restored by administration of bovine growth hormone (GH) during the first 20 days of postnatal life. The reduced concentration of the GM1 and GM4 species were most efficiently restored by administration of bovine GH plus thyroxine (T4) during the second 20 days of postnatal life. These results indicate that the lower ganglioside concentrations in the dwarf cerebrum can be elevated by hormone therapy and that there exist distinct GH and T4 actions on the enzymes participating in ganglioside metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号