首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cell hybridization technique was used for the production of 12 monoclonal antibodies against H-2Kk, H-2Db, I-Ak and I-Ek antigens. The strain distribution pattern indicated that three antibodies reacted with new H-2 and Ia determinants, respectively, while the majority of determinants defined by the monoclonal antibodies showed good correlation with H-2 and Ia determinants described by conventional alloantisera.Monoclonal Ia antibodies showed strong reactivity with about 90% of surface IgM positive B cells, but not with T cells. In double fluorescence studies, both I-A and I-E determinants were always found to be coexpressed on the same B cells. When the high sensitivity of the fluorescence activated cell sorter was utilized, about 30 to 40% of purified lymph node T cells were found to carry both I-A and I-E antigens, although in a much lower density than B cells. In conclusion, monoclonal Ia antibodies appear to display the same serological and cellular reactivity pattern as do conventional antisera.  相似文献   

2.
Thirty-five Iak-specific monoclonal alloantibodies, derived from hybridomas constructed by fusion between mouse myeloma and spleen cells from A.TH alloimmune mice (I S anti-I k ), have been used to estimate the allotypic polyporphism of the Ik-gene products. Cross-blocking studies using 17 mAb specific for the I-A molecule indicated that six determinants, which were associated with the conventional specificities Ia.2 and Ia.19, were organized in at least three distinct polymorphic areas of the I-Ak molecules. Similarly, another group of six determinants, which did not correspond to previously described conventional Ia specificities, were found to be topologically heterogeneous. By contrast, the five epitopes associated with the Ia. 1 specificity were clustered into a single region of this molecule. In addition the potentiation of binding observed between mAb specific for topologically distinct epitope regions of the I-Ak molecule, suggested that the latter may undergo conformational changes after binding of a given mAb. A similar analysis of 17 mAb specific for the I-Ek molecule indicated that specificity Ia. 7 of the E chain (as defined in this series by eight mAb) was composed of three topologically distinct polymorphic areas, one of which is also spatially related to a complex cluster of eight new determinants of the I-Ek molecule. Finally, one mAb identified a so far undescribed shared determinant of the I-Ak and I-Ek molecules. The present results, which provide a new estimate of the allotypic polymorphism of the Iak antigens, are discussed with regard to their functional, biochemical, and evolutionary implications.Abbreviations used in this paper mAb monoclonal antibodies - FCS Fetal calf serum - Con A concanavalin A - H-2 mouse major histocompatibility complex - NMS normal mouse serum - SaCI Staphylococcus aureus Cowan I strain - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

3.
A B10.S(7R) anti-B10.S(9R) serum (anti-IJE k C d ) contained, as expected, antibodies specific for the I-E-subregion-encoded determinant Ia.7. However, tests on recombinant haplotypes demonstrated a series of unexpected weak extrareactions which could be interpreted to be directed against antigenic determinants encoded in the I-A subregion of the H-2 complex. The same type of extrareaction was observed in eluates from I-A s , I-E k cells coated with A.TH anti-A.TL (I-A s , I-E s anti-I-A k , I-E k ) serum. This reactivity in serum and eluates could be interpreted as cross-reactivity between products of the I-E and I-A subregions.  相似文献   

4.
Evidence is presented which indicates that neuraminidase (NA) treatment of spleen cells both destroys old Ia antigens and reveals new Ia specificities which are not normally expressed by splenocytes. It was found that NA treatment unmasked alien I-Ak-like specificities on A.TH (I s ) spleen cells, and Is-like antigens on A.TL (I k ) spleen cells. These conclusions were based on direct testing of NA-treated targets with a range of alloantisera and on cell-absorption experiments. Furthermore, the cellular distribution of NA-exposed antigens resembled that of convential Ia antigens, the new antigens being expressed on more than 90 percent of splenic B cells and a subpopulation of splenic T cells. However, although some of the antigens exposed by NA on A.TH cells appeared to resemble the Ia. 3 and 15 specificities, additional antigens were involved which did not correlate with any previously described Ia antigens.Sugar inhibition experiments demonstrated the NA-exposed antigens to be carbohydrate in nature, D-galactose being an effective inhibitor in these studies. The proportion of- and-linked D-galactose residues associated with the new antigens depended upon the target cell used and the anti-Ia serum tested. Furthermore, glycolipid extracts from lymphoid cells were shown to contain the NA-exposed antigens.Collectively, these results support the existence of carbohydrate-defined Ia antigens. The simplest interpretation of the findings is that NA clips off terminal sialic acid residues from carbohydrate-defined Ia antigens on the cell surface and exposes subterminal sugars which resemble antigens expressed by otherI-region haplotypes.  相似文献   

5.
AKR leukemia cell lines differing in the amount of H-2K and H-2D antigens expressed on the cell surface were used to assess cell-mediated immune responses in syngeneic mice against Gross/AKR murine leukemia virus (MuLV)-induced tumors. Leukemic cells with reduced expression of H-2Kk antigens were inactive as inducers of Gross-MuLV/H-2k-specific cytotoxic T lymphocytes (CTL) and resistant to lysis by CTL raised against H-2Kk positive AKR leukemia cells. H-2Kk positive leukemias induced cytotoxic effectors, which upon restimulation in vitro, lysed the stimulating and other H-2Kk positive leukemia cells. In antibody inhibition experiments, T-cell-mediated cytotoxicity to these leukemias could only be inhibited by antisera and monoclonal antibodies specific for the H-2Kk antigens. Due to this specific role of H-2Kk antigens in T-cell cytotoxicity to Gross/AKR MuLV-induced tumors, reduced expression of H-2Kk antigens on spontaneous AKR leukemic cells could have important implications for surveillance of these neoplastic cells.Abbreviations used in this paper CTL cytotoxic T lymphocytes - MuLV murine leukemia virus  相似文献   

6.
A highly selected alloreactive T-cell line was developed by repeated restimulation of B10.D2/n lymph-node cells with irradiated C57BL/10Sn (BIO) spleen cells in long-term MLC for up to 2 1/2 years. Continuous growth of the line requires restimulation every 2 to 4 weeks with fresh H-2b stimulator cells. The line proliferates strongly against H-2b but not againstH-2 d ,H-2 f ,H-2 q ,H-2 r , orH-2 s stimulators. Analysis of recombinant mouse strains showed that the proliferative response is directed against I-Ab but not Kb or Db determinants. During the growth period of the line, strong cross-reactivity with H-2p (B10.P) and weak cross-reactivity with H-2k strains (e.g., CBA/J and B10.BR) was observed. A clone with exquisite specificity for I-Ab, but with no cross-reactivity with H-2p or H-2k was isolated from the line; thus clonal heterogeneity of the line still exists despite the highly selective growth conditions. — The majority of T cells from the line or clone were shown to bind I-Ab but not Kb or Db determinants either spontaneously during restimulation with fresh B10 stimulator cells or via membrane vesicles expressing I-Ab determinants. No killing activity by the line in either specific or nonspecific cytolytic T-cell assays was observed nor was the T 145 glycoprotein, characteristic of killer T cells, detected.Abbreviations used in this paper B6 C57BL/6J - B10 C57BL/10Sn - Con A Concanavalin A - CTL cytotoxic T lymphocyte - FCS fetal calf serum - FDA fluorescein diacetate - FITC fluorescein isothiocyanate - Ia I-region-associated antigens - LPS lipopolysaccharide fromE. coli - Lyt T-lymphocyte-defined antigen - MLC mixed leukocyte culture - NP-40 nonidet P-40 - PAGE pofyacrylamide gel electrophoresis - PHA phytohemagglutinin fromPhaseolus vulgaris - PM plasma membrane - SDS sodium dodecyl sulfate - TCGF T-cell growth factor(s) - TdR thymidine  相似文献   

7.
The invention of peptide-MHC-tetramer technology to label antigen-specific T cells has led to an enhanced understanding of T lymphocyte biology. Here we describe the development of an in situ pMHC-II tetramer staining method to visualize antigen-specific CD4+ T cells in tissues. This method complements other methods developed that similarly use MHC class II reagents to stain antigen-specific CD4+ T cells in situ. In this study, we used group A streptococcus (GAS) expressing a surrogate peptide (2W) to inoculate C57BL/6 mice, and used fresh nasal-associated lymphoid tissues (NALT) in optimizing the in situ staining of 2W:I-Ab specific CD4+ T cells. The results showed 2W:I-Ab tetramer-binding CD4+ T cells in GAS-2W but not GAS infected mice. This method holds promise to be broadly applicable to study the localization, abundance, and phenotype of antigen-specific CD4+ T cells in undisrupted tissues.  相似文献   

8.
Murine anti-human class II antibodies were shown to cross-react with polymorphic determinants of murine class II antigens. The cross-reacting antibodies were raised in B10.S(9R) mice by immunizing with human nylon wool adherent cells (Ad cells) from peripheral blood leukocytes. The B10.S(9R) anti-human Ad cell antiserum bound to the molecules consisting of two chains with molecular weights of 35K and 28K dimers which were purified with a lentil-lectin column. The B10.S (9R) anti-human class II antiserum was also revealed to contain two distinct cross-reacting antibodies with polymorphic determinants of murine class II antigens coded for by the I-A subregion of the H-2. One is specific for a determinant of class II molecules coded for by I-Ab,d,q, and the other seems to be specific for class II molecules coded for by I-Aa,k,r.  相似文献   

9.
The effects of a monoclonal antibody directed against immune response gene products on mouse NK activity were examined. In vivo administration of an anti-I-Ak antibody to C3H/He (H-2k) mice modulated their peritoneal cell (PC) and spleen cell (SC) natural killer (NK) activity against YAC-1 lymphoma target cells in vitro. No such effect was observed when BALB/c (H-2d) mice were treated with this antibody. Administration of anti-I-Ak antibody to mice before and after infection with Toxoplasma or treatment with poly(I:C) leads to suppression of NK activity in comparison to NK activity of mice infected with Toxoplasma or injected with poly(I:C) alone. A similar treatment regimen with M5/114 antibody which reacts with I-Ab, I-Ad, I-Ed, and I-Ek molecules resulted in decreased NK activity in B10.D2 (H-2d) but not in B10.BR (H-2k) mice. Serum and cell culture supernatant interferon (IFN) concentrations were not altered as a result of anti-I-Ak treatment. Removal of adherent cells did not restore NK activity of anti-I-Ak-treated Toxoplasma-infected mice to levels obtained with mice infected with Toxoplasma. In contrast, depletion of Ly 2.1+ cells from nylon-wool nonadherent SC of mice treated with anti-I-Ak antibody, before and after infection with Toxoplasma, resulted in restoration of NK activity to the same level as that observed in Toxoptasma-infected mice.  相似文献   

10.
Recent studies have shown that the H-2K and H-2D transplantation antigens are expressed differentially in different tissues of mouse. Our previous investigations also established that in thioglycolate-stimulated peritoneal macrophages the H-2Dk antigen exists in distinct cell surface and intracellular forms. These two forms are glycosylated differently. In this report, we have found that (1) H-2Dk antigen is phosphorylated whereas H-2Kk antigen is not, and (2) only the cell surface form of H-2Dk antigen is phosphorylated in thioglycolate-stimulated macrophages derived from C3H/Heha mice. This differential phosphorylation of H-2 antigens will provide a model system for further studies on the molecular mechanism and function of phosphrrylation of H-2 antigens.  相似文献   

11.
We are developing vaccines that activate tumor-specific CD4+ T cells. The cell-based vaccines consist of MHC class I+ tumor cells that are genetically modified to express syngeneic MHC class II and costimulatory molecules. Previous studies demonstrated that treatment of mice with established tumors with these vaccines resulted in regression of solid tumors, reduction of metastatic disease, and increased survival time. Optimal vaccines will prime naïve T cells and activate T cells to tumor peptides derived from diverse subcellular compartments, since potential tumor antigens may reside in unique cellular locales. To determine if the MHC class II / costimulatory molecule vaccines fulfill these conditions, the vaccines have been tested for their ability to activate antigen-specific, naïve, transgenic CD4+ T lymphocytes. MHC class II+CD80+ vaccine cells were transfected with hen eggwhite lysozyme targeted to the cytosol, nuclei, mitochondria, or endoplasmic reticulum, and used as antigen-presenting cells to activate I-Ak–restricted, lysozyme-specific CD4+ 3A9 transgenic T cells. Regardless of the cellular location of lysozyme, the vaccines stimulated release of high levels of IFN- and IL-2. If the vaccines coexpressed the MHC class II accessory molecule invariant chain, then IFN- and IL-2 release was significantly reduced. These studies demonstrate that in the absence of invariant chain the MHC class II and CD80 tumor cell vaccines (1) function as antigen-presenting cells to activate naïve, tumor-specific CD4+ cells to endogenously synthesized tumor antigens; (2) polarize the activated CD4+ T cells toward a type 1 response; and (3) present epitopes derived from varied subcellular locales.Abbreviations APC antigen-presenting cells - CIITA MHC class II transactivator - CytoHEL HEL targeted to cytoplasm - ER endoplasmic reticulum - ErHEL HEL targeted to ER - HEL hen eggwhite lysozyme - 3A9 HEL46–61–specific, I-Ak–restricted TCR - Hph hygromycin - Ii invariant chain - MAb monoclonal antibody - MitoHEL HEL targeted to mitochondria - NucHEL HEL targeted to nucleus - Puro puromycin - TG transgenic - Zeo Zeocin  相似文献   

12.
We have examined the fine specificity of a stable Thy-1.2+, Lyt-1.2+, Lyt-2, and I-As– anti-I-Ek proliferating T-cell clone isolated from an A.TH anti-A.TL secondary mixed lymphocyte culture. Spleen cells from various I-Ak, Ek strains induced either a strong (A.TL, OH, and CBA) or a weak (AKR and B10.BR) proliferative response, although such cells expressed at their surface similar amounts of I-Ek antigens. Analysis of H-2 recombinant strains indicated that this clone recognized a conformational determinant carried by the E k E k dimer, but not on the Ea chain per se. Among the Fl hybrid strains in which the combinatorial E k E k product was detected by cellular binding with monoclonal E k -specific antibodies (mAb), some [(BIO.S(8R) × BlO.HTT) but not others (for example, B10.A(4R) × B10.A(5R)] were stimulatory. Seventeen anti-Ek mAb, regardless of the three spatially separated domains that they defined by antibody binding competition, completely inhibited the restimulation of this clone, whereas 15 other anti-Ak mAb failed to do so. This clone was not reactivated by stimulating cells from strains with the H-2 haplotypes p, j, v, b, r, and s but it proliferated strongly against cells from several H-2 d or H-2 q strains. Genetic evidence or blocking studies with selected mAb assigned these cross-reactive mixed lymphocyte reaction determinants to the Ad or Aq molecules, respectively. The data support the conclusion that alloreactive T cells may define a polymorphism of I-region coded products not detected by serological analyses and extend at the T-cell level the observations of serological cross-reactions between A and E molecules.  相似文献   

13.
The study of T cell responses and their consequences during allo-antigen recognition requires a model that enables one to distinguish between donor and host T cells, to easily monitor the graft, and to adapt the system in order to answer different immunological questions. Medawar and colleagues established allogeneic tail-skin transplantation in mice in 1955. Since then, the skin transplantation model has been continuously modified and adapted to answer specific questions. The use of tail-skin renders this model easy to score for graft rejection, requires neither extensive preparation nor deep anesthesia, is applicable to animals of all genetic background, discourages ischemic necrosis, and permits chemical and biological intervention. In general, both CD4+ and CD8+ allogeneic T cells are responsible for the rejection of allografts since they recognize mismatched major histocompatibility antigens from different mouse strains. Several models have been described for activating allogeneic T cells in skin-transplanted mice. The identification of major histocompatibility complex (MHC) class I and II molecules in different mouse strains including C57BL/6 mice was an important step toward understanding and studying T cell-mediated alloresponses. In the tail-skin transplantation model described here, a three-point mutation (I-Abm12) in the antigen-presenting groove of the MHC-class II (I-Ab) molecule is sufficient to induce strong allogeneic CD4+ T cell activation in C57BL/6 mice. Skin grafts from I-Abm12 mice on C57BL/6 mice are rejected within 12-15 days, while syngeneic grafts are accepted for up to 100 days. The absence of T cells (CD3-/- and Rag2-/- mice) allows skin graft acceptance up to 100 days, which can be overcome by transferring 2 x 104 wild type or transgenic T cells. Adoptively transferred T cells proliferate and produce IFN-γ in I-Abm12-transplanted Rag2-/- mice.  相似文献   

14.
Summary T cell-mediated proliferative and cytotoxic responses occur in vitro to syngeneic tumor cells antigenically altered by mutagen treatment. One such xenogenized variant of the murine L5178Y lymphoma elicits IgG antibodies reactive with determinants on variant cells that are not expressed at detectable levels on parental or normal cells of the same H-2d haplotype and are also unrelated to public specificites of H-2b or H-2k histocompatibility antigens. In the present study we investigated the effect of those antibodies on development of cell-mediated responses in vitro to the xenogenized cells used for induction of the humoral response. The proliferative reaction, generation of cytolytic activity and target cell lysis were all inhibited by the anti-xenogenized tumor immune serum, whereas the corresponding reactions to the parental cells by syngeneic or allogeneic effector lymphocytes were not. In order to investigate the possible H-2 association of T cell-mediated responses to xenogenized cells, we also examined the effect on those reactions of antibodies specific for Class I or Class II products of the H-2d complex. The results obtained suggested a role for I-Ad molecules in the T cell proliferative response to the xenogenized cells, and also indicated a preferential association of the cytotoxic response with H-2Kd determinants.  相似文献   

15.
Soluble antigen-antibody complexes composed of 3 M KCl-extracted L1210 antigens and alloantibody to L1210 given to C3H mice caused immunosuppression in the mice. This was reflected in part by the inhibition of cytophilic antibody receptors on macrophages which could be used as a measure of the suppression. Thymocytes or splenic T cells from mice treated with immune complexes could adoptively transfer the suppression to normal syngeneic mice. These cells, which we have termed suppressor inducers, were found to be Ia positive: specifically, I-A+, I-J?. Thus, treatment of the inducers with anti-la or anti-I-A antibodies and complement in vitro abrogated their ability to transfer the suppression to normal mice. In contrast treatment with anti-I-J serum and complement had no effect. Through a similar approach, the cooperating (acceptor) T cells were found to be I-A+, I-J?. Pretreatment of mice with anti-Ia or anti-I-A serum before the administration of antigen-antibody complexes prevented the inhibition of macrophages. This was due at least in part to steric hindrance of adjacent Fc receptors on the FcR+ T cells with which the complexes interacted. Early interaction of immune complexes with FcR+ T cells was in fact demonstrated directly by the inability of the complexes to induce suppression when FcR+ T cells were depleted. The thymocytes or splenic T cells from anti-Ia-pretreated mice failed to transfer the suppression to recipient mice. In contrast, treatment with either anti-Ia or anti-I-A after the immune complexes did not abrogate the generation of suppressor inducers. Treatment of normal recipient mice with anti-Ia serum in vivo before they received the suppressor inducer cells did not prevent cooperation between the two types of cells. By the same token, blocking of Ia antigens of the inducers in vitro with anti-Ia serum (without complement) also did not impair the cooperative interaction. These results indicate that antigen-antibody complexes generate I-A-positive, I-J-negative T-suppressor inducer cells from FcR+ naive T cells. These in turn interact with Ia-positive (I-A+ and I-J?) normal thymocytes or spleen T cells. This interaction most likely generates the ultimate suppressor T cells that suppress cytophilic antibody receptors on macrophages in vivo. However, the I-region determined antigens did not appear to be directly involved in the T-T interaction of suppressor inducer and acceptor cells.  相似文献   

16.
Major histocompatibility complex (MHC) class II molecules exhibit conformational heterogeneity, which influences their ability to stimulate CD4 T cells and drive immune responses. Previous studies suggest a role for the transmembrane domain of the class II αβ heterodimer in determining molecular structure and function. Our previous studies identified an MHC class II conformer that is marked by the Ia.2 epitope. These Ia.2+ class II conformers are lipid raft-associated and able to drive both tyrosine kinase signaling and efficient antigen presentation to CD4 T cells. Here, we establish that the Ia.2+ I-Ak conformer is formed early in the class II biosynthetic pathway and that differential pairing of highly conserved transmembrane domain GXXXG dimerization motifs is responsible for formation of Ia.2+ versus Ia.2 I-Ak class II conformers and controlling lipid raft partitioning. These findings provide a molecular explanation for the formation of two distinct MHC class II conformers that differ in their inherent ability to signal and drive robust T cell activation, providing new insight into the role of MHC class II in regulating antigen-presenting cell-T cell interactions critical to the initiation and control of multiple aspects of the immune response.  相似文献   

17.
Ia restriction specificity involved in T cell proliferative responses to keyhole limpet hemocyanin (KLH) has been analyzed using a variety of allogeneic bone marrow chimeras. The chimeric mice were prepared by reconstituting irradiated AKR, SJL, B10.BR and B10.A(4R) mice with bone marrow cells from B10 mice. When such chimeric mice had first been primed with KLH in complete Freund's adjuvant (CFA), T cells from H-2 incompatible fully allogeneic chimeras showed significantly higher responses to KLH in the presence of antigen-presenting cells (APC) of donor strain (B10) than APC of recipient strain. However, in H-2 subregion compatible chimeras, [B10→B10.A(4R)], which were matched at the H-2D locus and at minor histocompatible loci, the T cells could mount vigorous responses to KLH with antigen-presenting cells (APC) of either donor or recipient type. The same results were obtained as well with chimeras that had been thymectomized after full reconstitution of lymphoid tissues by donor-derived cells. A considerable proportion of KLH-specific T cell hybridomas established from [B10→B10.A(4R)] chimeras exhibited both I-Ab and I-Ak restriction specificities. The present findings indicate that the bias to donor Ia type of antigen specific T cells is determined by donor-derived APC present in the extrathymic environment but that cross-reactivity to the recipient Ia is influenced to some degree by histocompatibility between donor and recipient mice, even though the histocompatible H-2D locus and minor histocompatibility loci seem not to be directly involved in the I-A restricted responses studied herein.  相似文献   

18.
The inhibitory capacity of 17 monoclonal antibodies (m.Ab.) specific for the products of the I-A k subregion was evaluated in proliferative responses of B10.BR T-lymphocytes to GAT, Keyhole limpet hemocyanin, and ovalbumin. Considered in isolation, each m.Ab. mediated inhibitory effects of comparable magnitude on these three different proliferative responses. On the other hand, clear differences were observed when the magnitude of the inhibitory effects was compared from one m.Ab. to another. The m.Ab. were consequently classified as strong or moderate-to-weak inhibitors of T-cell proliferative responses. Evidence was simultaneously gained indicating the following: (a) the determinants recognized by different m.Ab. were expressed on the same molecules; (b) the differences in affinity of the m.Ab. for I-Ak positive cells did not explain their differences in inhibitory capacities; (c) conversely, the inhibitory capacity of each m.Ab. followed its ability to inhibit the cell surface fixation of Ia.17-specific 10-2.16 m.Ab.; (d) the strong inhibitory capacity of some m.Ab. was not related to a special ability to modulate cell surface Ia molecules. These results suggest that antigen recognition by T lymphocytes is preferentially restricted by a functional site of the I-Ak molecules related to the Ia.17 and Ia.1 specificities.Abbreviations EDTA Ethylenediamine-tetraacetic acid disodium salt - EHAA Eagle's Hanks' amino acids medium - FCS fetal calf serum - in polypeptide G is glutamate, A, alanine, T, tyrosine - HEPES N-2-hydroxy-piperazine-N-2-ethane sulfonic acid - kd dissociation rate constant - KLH Keyhole limpet hemocyanin - LPS lipopolysaccharide - m.Ab. monoclonal antibodies - NP-40 nonidet P-40 - PBS phosphate buffered saline - PBS-BSA PBS supplemented with 1% bovine serum albumin - PBS-BSA-NP-40 PBS-BSA supplemented with 0.5% NP-40 - RT room temperature - SEM standard error of the mean - s.c. spleen cells  相似文献   

19.
The serological cross-reactivity and the structural homology of murine and human Ia alloantigens were analyzed. Both normal human peripheral blood B lymphocytes and chronic lymphocytic leukemia (CLL) cells were shown to be lysed in the presence of complement by both murine anti-Ia and human anti-HLA-DR alloantisera. A mouse A.TH anti-A.TL (anti-I k ) alloantiserum reacted with determinants expressed on all of the 20 normal human B cell populations tested. Only 3 of these 20 B cell populations were lysed with an A.TL anti-A.TH anti-I s alloantiserum. The frequency of cytotoxic cross-reactivity concordant with anti-I k appears to be greater for anti-I-EC k than for anti-I-A k alloreactivity. An immunochemical analysis demonstrated that Iaα-chain andβ-chain polypeptides may be immunoprecipitated from CLL cell lysates by either a mouse anti-I k alloantiserum or various human anti-HLA-DR alloantisera. The Ia molecules detected with the mouse and human antisera are coprecipitable as revealed by one-dimensional gel electrophoresis. Two-dimensional gel electrophoresis studies indicated that the human CLL cell Ia antigens analyzed possess considerable molecular heterogeneity. They are structurally more similar, with respect to molecular size and charge, to mouse Ia antigens determined by the murineH-2-linkedI-EC subregion rather than theI-A subregion. The structural, genetic and functional implications of these findings are discussed.  相似文献   

20.
The expression of H-2Kk antigens in a (C3H × DBA/2)F1 lymphoma cell line growing in vitro was investigated with monoclonal antibodies specific for a public antigen of theH-2K k region (H-2.m3) in fluorescence analysis and microcytotoxicity assays and in cell-mediated cytotoxicity with allogeneically stimulated effector cells. Estimates of relative levels of H-2Kk-antigen expression obtained by the different methods were highly correlated. The uncloned, unselected population gradually lost H-2Kk surface antigen expression under culture conditions. This was due to the appearance of H-2Kk negative variants. Fifteen cloned sublines of a population enriched for cells expressing antigen H-2.m3 in the fluorescence activated cell sorter contained either two distinct populations, one consisting of H-2.m3 negative and one of H-2.m3 positive cells, or consisted of H-2.m3 negative cells only. The expression of the H-2.m3 determinant of H-2Kk paralleled that of other serological H-2Kk determinants and of H-2Kk target determinants for cell-mediated cytotoxicity. In nearly all clones where two populations could be detected, the proportion of H-2.m3 negative cells increased with time in culture. The amounts of H-2Kk antigen expressed by the clones appeared not to be correlated to the amounts of H-2Dk antigens on the cell surface as judged by cell-mediated cytotoxicity.In at least one clone and in the uncloned population, H-2Kk-antigen expression detectable by fluorescence analysis could be stimulated by growing the cells in the peritoneal cavities of (C3H × DBA/2)F1 mice or by adding mouse interferon preparations to the cell cultures. The increase in susceptibility to cell-mediated lympholysis of cells grown in vivo paralleled the increase inH-2 expression detected by fluorescence. In contrast, cells growing in the presence of interferon in vitro showed reduced sensitivity to lysis by alloreactive lymphocytes, although H-2 antigens were strongly expressed as measured by fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号