首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhu S  Wu Y  Yu Z  Zhang X  Li H  Gao M 《Bioresource technology》2006,97(15):1964-1968
A series of experiments involving microwave irradiation were carried out to evaluate the effect of microwave irradiation on enzymatic hydrolysis of rice straw. Compared with microwave irradiation free hydrolysis, rice straw pretreated by combining microwave irradiation with alkali could increase the initial hydrolysis rate but the hydrolysis yield remained unchanged. When the enzyme solution was treated by microwave irradiation, the initial hydrolysis rate increased slightly, but the yield was decreased remarkably. Its optimal hydrolysis conditions were temperature (45 degrees C), pH (4.8) and enzyme loading (20 mg g(-1) substrate), which was determined by an orthogonal experiment. When intermittent microwave irradiation was used, initial hydrolysis rate was greatly accelerated but the yield was decreased slightly. Its optimal hydrolysis conditions were temperature (50 degrees C), pH (4.8) and enzyme loading (20 mg g(-1) substrate), which was determined by another orthogonal experiment.  相似文献   

2.
为探明葫芦巴种子中药用活性成分薯蓣皂甙元提取的最佳方法,设置了不同的酸解液浓度及酸解时间以了解葫芦巴粉酸解的适宜条件;并在酸化工艺前将脱脂的葫芦巴粉进行自然发酵或接种曲霉发酵以提高薯蓣皂甙元的提取率。结果表明葫芦巴粉酸解液最佳浓度为15%的硫酸溶液,最适宜的酸解时间为6 h。在酸化工艺前增加发酵工艺,可以显著提高有效成份薯蓣皂甙元的提取率,接霉菌发酵比直接酸化提高62%,自然发酵比直接酸化提高48%。  相似文献   

3.
The effects of temperature on the hydrolysis of lactose by immobilized beta-galactosidase were studied in a continuous flow capillary bed reactor. Temperature affects the rates of enzymatic reactions in two ways. Higher temperatures increase the rate of the hydrolysis reaction, but also increase the rate of thermal deactivation of the enzyme. The effect of temperature on the kinetic parameters was studied by performing lactose hydrolysis experiments at 15, 20, 25, 30, and 40 degrees C. The kinetic parameters were observed to follow an Arrhenius-type temperature dependence. Galactose mutarotation has a significant impact on the overall rate of lactose hydrolysis. The temperature dependence of the mutarotation of galactose was effectively modelled by first-order reversible kinetics. The thermal deactivation characteristics of the immobilized enzyme reactor were investigated by performing lactose hydrolysis experiments at 52, 56, 60, and 64 degrees C. The thermal deactivation was modelled effectively as a first order decay process. Based on the estimated thermal deactivation rate constants, at an operating temperature of 40 degrees C, 10% of the enzyme activity would be lost in one year.  相似文献   

4.
The kinetics of enzymatic hydrolysis of pure insoluble cellulose by means of unpurified culture filtrate of Trichoderma reesei was studied, emphasizing the kinetic characteristics associated with the extended hydrolysis times. The changes in the hydrolysis rate and extent of soluble protein adsorption during the progress of reaction, either apparent or intrinsic, were investigated. The hydrolysis rate declined drastically during the initial hours of hydrolysis. The factors causing the reduction in the hydrolysis rate were examined; these include the transformation of cellulose into a less digestible form and product inhibition. The structural transformation can be partially explained by changes in the crystallinity index and surface area. The product inhibition was caused by the deactivation of the adsorbed soluble protein by the products, which essentially represents the so-called "un-competitive" inhibition. The kinetics of beta-glucosidase were also studied. The result has shown that the action of beta-glucosidase is competitively inhibited by glucose. It has been found that the integrated form of the initial rate expression cannot be used in predicting the progress of reaction because the digestibility of cellulose changes drastically as the hydrolysis proceeds, and that the rate expression for enzymatic hydrolysis of cellulose cannot be simplified or approximated by resorting to the pseudo-steady-state assumption. A mechanistic kinetic model of cellulose hydrolysis should include the following major influencing factors: (1)mode of action of enzyme, (2) structure of cellulose, and (3) mode of interaction between the enzyme and cellulose molecules.  相似文献   

5.
Three human isolates of Vibrio succinogenes produced asparaginase. Apparent Km's were 87,220, and 320 microM. The rate of glutamine hydrolysis was between 2.8 and 3.5% of the rate of asparagine hydrolysis. Asparaginase production was not induced by ammonium ions, and enzyme yields were lower than those obtained with the rumen strain.  相似文献   

6.
Pure cellulose (Avicel) was hydrolyzed batchwise at 50 degrees C and pH 4.8 by cellulase from Trichoderma viride (Meicelase CEP). Then the effects of the crystallinity of cellulose as well as the thermal deactivation and product (cellubiose and glucose) inhibition to cellulose on the hydrolysis rate were quantitatively investigated. While these factor had evidently retarded the enzymatic hydrolysis of cellulose to a significant extent, the hydrolysis rates observed could not be explained. For practical purposes, an empirical, simple rate expression was developed which included only one parameter: a overall rate retardation constant. This empirical rate expression held for the hydrolysis of at least two kind of cellulosic materials: Avicel and tissue paper.  相似文献   

7.
Enzymatic hydrolysis of e-ATP by F-actin with and without application of sonic vibration at various pHs was investigated and compared with that of ATP. These was no significant difference on enzymatic activity between F-actin-bound e-ADP and F-actin-bound ADP. The hydrolysis rate of e-ATP under sonic vibration decreases monotonically with decreasing pH, similar to that of ATP. The magnitude of e-ATP hydrolysis rate was, however, about one third of that of ATP hydrolysis rate in the pH range between 6.3 and 8.5. Enzymatic hydrolysis of e-ATP without sonic vibration at room or higher temperatures decreases monotonically with increasing pH and becomes almost negligible at pH 8.5. The pH profile and the magnitude of enzymatic hydrolysis without sonic vibration were similar with ATP. Since the fluorescence intensity of e-ATP at 410 nm is enhanced by the binding with G-actin, the exchange binding affinity of e-ATP to G-actin which can be measured fluorophotometrically was about one third of that of ATP.  相似文献   

8.
R Male  V M Fosse    K Kleppe 《Nucleic acids research》1982,10(20):6305-6318
The ability of different polyamines to catalyze hydrolysis of phosphodiester linkages in apurinic and apyrimidinic (AP) sites has been investigated in supercoiled, relaxed and denatured DNA, and also in core and chromatosome particles. The rate constants for the hydrolysis in the DNAs have been determined. In general the order of effectiveness of the polyamines were: spermine greater than spermidine greater than putrescine greater than cadaverine. A 9 fold difference in rate constants was found between spermine and cadaverine. No difference in the rate of hydrolysis was seen between AP-sites in supercoiled and relaxed DNAs, whereas the rate for the single-stranded DNA and DNA in core and chromatosome particles was only half of that in the double-stranded DNA. All AP-sites in both free DNA and DNA-histone particles were hydrolyzed in the presence of polyamines. For all polyamines, with the exception of spermine, increasing concentration of both Mg++ and salts such as KCl both led to a large decrease in the rate of polyamine-induced hydrolysis of AP-sites. The rate of hydrolysis increased markedly with increasing pH in the pH range pH 6 - pH 11.  相似文献   

9.
Lipase-catalyzed hydrolysis of 2-naphtyl esters in biphasic system   总被引:1,自引:0,他引:1  
The authors measured the rate of hydrolysis of the homologs of 2-naphtyl ester by using a Lewis cell with constant interfacial area to elucidate the kinetic mechanism of the lipase-catalyzed hydrolysis in biphasic system. On the basis of the two-film model, it was found from the analysis of experimental results that the hydrolysis of these substrates proceeds at the interface between the aqueous and organic phases. The interfacial reaction rate could be correlated by Michaelis-Menten mechanism. The values of the rate constant and the Michaelis constant were almost independent of the kinds of 2-naphtyl ester. The values of the interfacial kinetic parameters for 2-naphtyl ester were much greater than those for the hydrolysis in the aqueous phase.  相似文献   

10.
The rates of hydrolysis of acetyl phosphate in the presence of 0.1 M NaOH and of ATP in the presence of either 1 M HCl or 1 M NaOH were measured at different temperatures and in the presence of different concentrations of the organic solvents dimethyl sulfoxide or ethylene glycol. Under all conditions tested, there was a progressive increase in the rate constant of hydrolysis of both phosphate compounds as the water activity of the medium was decreased by the addition of organic solvents. At 25 degrees C, substitution of 70% of the water of the medium by dimethyl sulfoxide promoted an increase of two orders of magnitude in the rate constant of acetyl phosphate hydrolysis. In the presence of 80% and 90% dimethyl sulfoxide the rate of acetyl phosphate hydrolysis increased by more than two orders of magnitude and was so fast that it could not be measured with the method used. The effect of organic solvents on the rate of ATP hydrolysis was less pronounced than that observed for acetyl phosphate hydrolysis. At 30 degrees C, substitution of 90% of water by an organic solvent promoted a 4-6-fold increase of the rate of ATP hydrolysis. Acceleration of either acetyl phosphate or ATP hydrolysis rates was promoted by a decrease in both activation energies (Ea) and in entropies of activation delta S. The data obtained are discussed with reference to the mechanism of catalysis of enzymes involved in energy transduction such as the Ca2+-ATPase of sarcoplasmic reticulum and the F1-ATPase of mitochondria.  相似文献   

11.
summary The rate of enzymic hydrolysis of steam-exploded bagasse was found to decrease linearly with increasing concentration of glucose and ethanol, with complete cessation of reaction predicted in the presence effects of glucose and ethanol were found to be additive. The significantly greater tolerance of the enzyme to ethanol can be utilised in the simultaneous hydrolysis and fermentation of bagasse cellulose to improve hydrolysis rate.  相似文献   

12.
Structural features affecting biomass enzymatic digestibility   总被引:3,自引:0,他引:3  
The rate and extent of enzymatic hydrolysis of lignocellulosic biomass highly depend on enzyme loadings, hydrolysis periods, and structural features resulting from pretreatments. Furthermore, the influence of one structural feature on biomass digestibility varies with the changes in enzyme loading, hydrolysis period and other structural features as well. In this paper, the effects of lignin content, acetyl content, and biomass crystallinity on the 1-, 6-, and 72-h digestibilities with various enzyme loadings were investigated. To eliminate the cross effects among structural features, selective pretreatment techniques were employed to vary one particular structural feature during a pretreatment, while the other two structural features remained unchanged. The digestibility results showed that lignin content and biomass crystallinity dominated digestibility whereas acetyl content had a lesser effect. Lignin removal greatly enhanced the ultimate hydrolysis extent. Crystallinity reduction, however, tremendously increased the initial hydrolysis rate and reduced the hydrolysis time or the amount of enzyme required to attain high digestibility. To some extent, the effects of structural features on digestibility were interrelated. At short hydrolysis periods, lignin content was not important to digestibility when crystallinity was low. Similarly, at long hydrolysis periods, crystallinity was not important to digestibility when lignin content was low.  相似文献   

13.
Z J Huang 《Biochemistry》1991,30(35):8535-8540
Kinetic fluorescence measurements were employed to quantitative to stepwise hydrolysis of fluorescein di-beta-D-galactoside (FDG) by beta-galactosidase and the intermediate fluorescein mono-beta-D-galactoside (FMG) channeling. The kinetic parameters, Michaelis-Menten constant Km and enzymatic catalysis rate k2, for FDG hydrolysis to FMG by beta-galactosidase were obtained as 18.0 microM and 1.9 mumol.(min-mg)-1, respectively. The FMG intermediate is hydrolyzed via two modes: (1) FMG that is in free solution binding to the enzyme substrate binding site in competition with FDG and then being hydrolyzed (binding mode); (2) FMG being directly hydrolyzed into the final products of fluorescein and galactose before the FMG can diffuse away from the enzyme active site (channeling mode). The extent of the FMG channeling mode was found to depend on the FDG hydrolysis rate but to be independent of the free enzyme concentration. A channeling factor, defined as the ratio of the real FMG hydrolysis rate with both binding and channeling modes over that which would be observed with an exclusive binding mode, was used to quantitate the effect of the intermediate channeling. The FMG channeling factor was determined to be close to 1 at low FDG concentration (about 5.1 microM), where the slow FDG hydrolysis rate gives an ineffective channeling and where the FMG is then hydrolyzed mainly via the binding mode. However, the channeling factor dramatically increases at higher FDG concentrations (greater than Km), strongly indicating that the effective FMG channeling mode, resulting from the considerable FDG hydrolysis rate at high FDG concentrations, becomes a primary pathway to channel a steady system hydrolysis with a high rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
酶解鹿茸血ACE抑制活性及其与抗氧化活性关系的研究   总被引:2,自引:0,他引:2  
实验采用木瓜蛋白酶和Alcalase碱性蛋白酶水解鹿茸血,在不同的时间取样,分别测定血管紧张素转化酶(ACE)抑制率、二苯代苦味肼基自由基(DPPH.)清除率和羟自由基(.OH)清除率。结果表明Alcalase蛋白酶水解产物ACE抑制活性和DPPH.清除活性较强,其水解3h的产物ACE抑制率为90.63%,DPPH.清除率为14.40%;木瓜蛋白酶水解5h的产物.OH清除率最高,为96.7%。用SPSS10.0软件分析结果,发现ACE抑制率与DPPH.清除率具有显著相关性。  相似文献   

15.
The slow down in enzymatic hydrolysis of cellulose with conversion has often been attributed to declining reactivity of the substrate as the more easily reacted material is thought to be consumed preferentially. To better understand the cause of this phenomenon, the enzymatic reaction of the nearly pure cellulose in Avicel was interrupted over the course of nearly complete hydrolysis. Then, the solids were treated with proteinase to degrade the cellulase enzymes remaining on the solid surface, followed by proteinase inhibitors to inactive the proteinase and successive washing with water, 1.0 M NaCl solution, and water. Next, fresh cellulase and buffer were added to the solids to restart hydrolysis. The rate of cellulose hydrolysis, expressed as a percent of substrate remaining at that time, was approximately constant over a wide range of conversions for restart experiments but declined continually with conversion for uninterrupted hydrolysis. Furthermore, the cellulose hydrolysis rate per adsorbed enzyme was approximately constant for the restart procedure but declined with conversion when enzymes were left to react. Thus, the drop off in reaction rate for uninterrupted cellulose digestion by enzymes could not be attributed to changes in substrate reactivity, suggesting that other effects such as enzymes getting "stuck" or otherwise slowing down may be responsible.  相似文献   

16.
Three types of N-acetylated chitosans (NACs) with different degrees of acetylation (DA) were prepared and used as a substrate for enzymatic hydrolysis with a commercially available pectinase and a modified one. Pectinase modification was conducted using polyalkyleneoxide-maleic anhydride copolymer (PEO-MA copolymer). The effects of DA on enzymatic reaction with native and modified pectinases were investigated experimentally. Initial hydrolysis rate and Michaelis-Menten kinetic parameters were measured by analysis of reducing sugars. DA of NAC strongly affected the hydrolytic characteristics of native and modified pectinases. N-acetylation of chitosan increased the initial hydrolysis rate and the enzyme-substrate affinity with respect to both pectinases: NACs with DA over 0.3 showed high initial hydrolysis rate and strong affinity between enzyme and substrate. Especially, when NAC with DA over 0.3 was treated with modified pectinase, the affinity became much stronger than the native pectinase.  相似文献   

17.
Summary Olive oil was almost completely hydrolyzed by lipase in reverse micelles. R value and initial water content were found to be the most important factors that determine the hydrolyzing rate and degree of hydrolysis, respectively. The hydrolysis rate and the stability of the enzyme were affected by stirring and addition of histidine or glycerol.  相似文献   

18.
Selective white-rot fungi have shown potential for lignocellulose pretreatment. In the study, a new fungal isolate, Echinodontium taxodii 2538, was used in biological pretreatment to enhance the enzymatic hydrolysis of two native woods: Chinese willow (hardwood) and China-fir (softwood). E. taxodii preferentially degraded the lignin during the pretreatment, and the pretreated woods showed significant increases in enzymatic hydrolysis ratios (4.7-fold for hardwood and 6.3-fold for softwood). To better understand effects of biological pretreatment on enzymatic hydrolysis, enzyme–substrate interactions were investigated. It was observed that E. taxodii enhanced initial adsorption of cellulase but which did not always translate to high initial hydrolysis rate. However, the rate of change in hydrolysis rate declined dramatically with decreasing irreversible adsorption of cellulase. Thus, the enhancement of enzymatic hydrolysis was attributed to the decline of irreversible adsorption which may result from partial lignin degradation and alteration in lignin structure after biological pretreatment.  相似文献   

19.
Exposure and removal of aldehyde groups during Feulgen acid hydrolysis were studied at a wide range of temperature and acid concentrations. Temperatures between 9 and 75degreesC were found to influence only the rate of the hydrolysis reaction over the entire range from high (6 M) to low (0.05 M) HCl concentrations. The temperature dependence was high, and around +5degreesC was sufficient to double the reaction rate. The influence of acid concentrations between 0.02 and 6 M was studied, and the extraction rates that determine the peak values of the Feulgen hydrolysis curve were found to depend in the same way on the (H+) concentration. A diagram is given that makes it possible to determine the time to reach the point during hydrolysis where the maximum amount of aldehyde groups are developed for a wide range of temperatures and acid concentrations. Temperatures slightly above room temperature in combination with high acid concentration is recommended for Feulgen hydrolysis.  相似文献   

20.
The hydrolysis of amylopectin potato starch with Bacillus licheniformis alpha-amylase (Maxamyl) was studied under industrially relevant conditions (i.e. high dry-weight concentrations). The following ranges of process conditions were chosen and investigated by means of an experimental design: pH [5.6-7.6]; calcium addition [0-120 microg/g]; temperature [63-97 degrees C]; dry-weight concentration [3-37% [w/w]]; enzyme dosage [27.6-372.4 microL/kg] and stirring [0-200 rpm]. The rate of hydrolysis was followed as a function of the theoretical dextrose equivalent. The highest rate (at a dextrose equivalent of 10) was observed at high temperature (90 degrees C) and low pH (6). At a higher pH (7.2), the maximum temperature of hydrolysis shifted to a lower value. Also, high levels of calcium resulted in a decrease of the maximum temperature of hydrolysis. The pH, temperature, and the amount of enzyme added showed interactive effects on the observed rate of hydrolysis. No product or substrate inhibition was observed. Stirring did not effect the rate of hydrolysis. The oligosaccharide composition after hydrolysis (at a certain dextrose equivalent) did depend on the reaction temperature. The level of maltopentaose [15-24% [w/w]], a major product of starch hydrolysis by B. licheniformis alpha-amylase, was influenced mostly by temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号