首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
Lu S  Sun YH  Shi R  Clark C  Li L  Chiang VL 《The Plant cell》2005,17(8):2186-2203
MicroRNAs (miRNAs) are small, noncoding RNAs that can play crucial regulatory roles in eukaryotes by targeting mRNAs for silencing. To test whether miRNAs play roles in the regulation of wood development in tree species, we isolated small RNAs from the developing xylem of Populus trichocarpa stems and cloned 22 miRNAs. They are the founding members of 21 miRNA gene families for 48 miRNA sequences, represented by 98 loci in the Populus genome. A majority of these miRNAs were predicted to target developmental- and stress/defense-related genes and possible functions associated with the biosynthesis of cell wall metabolites. Of the 21 P. trichocarpa miRNA families, 11 have sequence conservation in Arabidopsis thaliana but exhibited species-specific developmental expression patterns, suggesting that even conserved miRNAs may have different regulatory roles in different species. Most unexpectedly, the remaining 10 miRNAs, for which 17 predicted targets were experimentally validated in vivo, are absent from the Arabidopsis genome, suggesting possible roles in tree-specific processes. In fact, the expression of a majority of the cloned miRNAs was upregulated or downregulated in woody stems in a manner consistent with tree-specific corrective growth against tension and compression stresses, two constant mechanical loads in trees. Our results show that plant miRNAs can be induced by mechanical stress and may function in one of the most critical defense systems for structural and mechanical fitness.  相似文献   

3.
4.
5.
6.
7.
miRNAs are a class of non-coding endogenous small RNAs. They play vital roles in plant growth, development, and response to biotic and abiotic stress by negatively regulating genes. Mulberry trees are economically important species with multiple uses. However, to date, little is known about mulberry miRNAs and their target genes. In the present study, three small mulberry RNA libraries were constructed and sequenced using high-throughput sequencing technology. Results showed 85 conserved miRNAs belonging to 31 miRNA families and 262 novel miRNAs at 371 loci. Quantitative real-time PCR (qRT-PCR) analysis confirmed the expression pattern of 9 conserved and 5 novel miRNAs in leaves, bark, and male flowers. A total of 332 potential target genes were predicted to be associated with these 113 novel miRNAs. These results provide a basis for further understanding of mulberry miRNAs and the biological processes in which they are involved.  相似文献   

8.
Sunkar R  Zhu JK 《The Plant cell》2004,16(8):2001-2019
MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are small noncoding RNAs that have recently emerged as important regulators of mRNA degradation, translational repression, and chromatin modification. In Arabidopsis thaliana, 43 miRNAs comprising 15 families have been reported thus far. In an attempt to identify novel and abiotic stress regulated miRNAs and siRNAs, we constructed a library of small RNAs from Arabidopsis seedlings exposed to dehydration, salinity, or cold stress or to the plant stress hormone abscisic acid. Sequencing of the library and subsequent analysis revealed 26 new miRNAs from 34 loci, forming 15 new families. Two of the new miRNAs from three loci are members of previously reported miR171 and miR319 families. Some of the miRNAs are preferentially expressed in specific tissues, and several are either upregulated or downregulated by abiotic stresses. Ten of the miRNAs are highly conserved in other plant species. Fifty-one potential targets with diverse function were predicted for the newly identified miRNAs based on sequence complementarity. In addition to miRNAs, we identified 102 other novel endogenous small RNAs in Arabidopsis. These findings suggest that a large number of miRNAs and other small regulatory RNAs are encoded by the Arabidopsis genome and that some of them may play important roles in plant responses to environmental stresses as well as in development and genome maintenance.  相似文献   

9.
Genome organization and characteristics of soybean microRNAs   总被引:3,自引:0,他引:3  
  相似文献   

10.
Chen L  Ren Y  Zhang Y  Xu J  Zhang Z  Wang Y 《Planta》2012,235(5):873-883
MicroRNAs (miRNAs) are small RNAs, generally of 20–23 nt, that down-regulate target gene expression during development, differentiation, growth, and metabolism. In Populus, extensive studies of miRNAs involved in cold, heat, dehydration, salinity, and mechanical stresses have been performed; however, there are few reports profiling the miRNA expression patterns during pathogen stress. We obtained almost 38 million raw reads through Solexa sequencing of two libraries from Populus inoculated and uninoculated with canker disease pathogen. Sequence analyses identified 74 conserved miRNA sequences belonging to 37 miRNA families from 154 loci in the Populus genome and 27 novel miRNA sequences from 35 loci, including their complementary miRNA* strands. Intriguingly, the miRNA* of three conserved miRNAs were more abundant than their corresponding miRNAs. The overall expression levels of conserved miRNAs increased when subjected to pathogen stress, and expression levels of 33 miRNA sequences markedly changed. The expression trends determined by sequencing and by qRT-PCR were similar. Finally, nine target genes for three conserved miRNAs and 63 target genes for novel miRNAs were predicted using computational analysis, and their functions were annotated. Deep sequencing provides an opportunity to identify pathogen-regulated miRNAs in trees, which will help in understanding the regulatory mechanisms of plant defense responses during pathogen infection.  相似文献   

11.
12.

Background

A long juvenile period between germination and flowering is a common characteristic among fruit trees, including Malus hupehensis (Pamp.) Rehd., which is an apple rootstock widely used in China. microRNAs (miRNAs) play an important role in the regulation of phase transition and reproductive growth processes.

Results

M. hupehensis RNA libraries, one adult and one juvenile phase, were constructed using tree leaves and underwent high-throughput sequencing. We identified 42 known miRNA families and 172 novel miRNAs. We also identified 127 targets for 25 known miRNA families and 168 targets for 35 unique novel miRNAs using degradome sequencing. The identified miRNA targets were categorized into 58 biological processes, and the 123 targets of known miRNAs were associated with phase transition processes. The KEGG analysis revealed that these targets were involved in starch and sucrose metabolism, and plant hormone signal transduction. Expression profiling of miRNAs and their targets indicated multiple regulatory functions in the phase transition. The higher expression level of mdm-miR156 and lower expression level of mdm-miR172 in the juvenile phase leaves implied that these two small miRNAs regulated the phase transition. mdm-miR160 and miRNA393, which regulate genes involved in auxin signal transduction, could also be involved in controlling this process. The identification of known and novel miRNAs and their targets provides new information on this regulatory process in M. hupehensis, which will contribute to the understanding of miRNA functions during growth, phase transition and reproduction in woody fruit trees.

Conclusions

The combination of sRNA and degradome sequencing can be used to better illustrate the profiling of hormone-regulated miRNAs and miRNA targets involving complex regulatory networks, which will contribute to the understanding of miRNA functions during growth, phase transition and reproductive growth in perennial woody fruit trees.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1125) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.
In plants, non-coding small RNAs play a vital role in plant development and stress responses. To explore the possible role of non-coding small RNAs in the regulation of the jasmonate (JA) pathway, we compared the non-coding small RNAs between the JA-deficient aos mutant and the JA-treated wild type Arabidopsis via high-throughput sequencing. Thirty new miRNAs and 27 new miRNA candidates were identified through bioinformatics approach. Forty-nine known miRNAs (belonging to 24 families), 15 new miRNAs and new miRNA candidates (belonging to 11 families) and 3 tasiRNA families were induced by JA, whereas 1 new miRNA, 1 tasiRNA family and 22 known miRNAs (belonging to 9 families) were repressed by JA.  相似文献   

15.
16.
17.
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the expression of target mRNAs in plant growth, development, abiotic stress responses, and pathogen responses. Cold stress is one of the most common abiotic factors affecting plants, and it adversely affects plant growth, development, and spatial distribution. To understand the roles of miRNAs under cold stress in Populus tomentosa, we constructed two small RNA libraries from plantlets treated or not with cold conditions (4 °C for 8 h). High-throughput sequencing of the two libraries identified 144 conserved miRNAs belonging to 33 miRNA families and 29 new miRNAs (as well as their corresponding miRNA1s) belonging to 23 miRNA families. Differential expression analysis showed that 21 miRNAs were down-regulated and nine miRNAs were up-regulated in response to cold stress. Among them, 19 cold-responsive miRNAs, two new miRNAs and their corresponding miRNA1s were validated by qRT-PCR. A total of 101 target genes of the new miRNAs were predicted using a bioinformatics approach. These target genes are involved in growth and resistance to various stresses. The results demonstrated that Populus miRNAs play critical roles in the cold stress response.  相似文献   

18.
MicroRNAs (miRNA) are a class of non-coding RNAs that have important gene regulatory roles in various organisms. However, the miRNAs involved in soybean’s response to soybean mosaic virus (SMV) are unknown. To identify novel miRNAs and biotic-stress regulated small RNAs that are involved in soybean’s response to SMV, two small RNA libraries were constructed from mock-inoculated and SMV-infected soybean leaves and sequenced. This led to the discovery of 179 miRNAs, representing 52 families, among which five miRNAs belonging to three families were novel miRNAs in soybean. A large proportion (71.5 %) of miRNAs arose from segmental duplication, similar to the process that drives the evolution of protein-coding genes. In addition, we predicted 346 potential targets of these identified miRNAs, and verified 12 targets by modified 5′-RACE analysis. Finally, three miRNAs (miR160, miR393 and miR1510) that are involved in plant resistance were observed to respond to SMV infection. The interaction between miRNAs and resistance-related genes provides a novel mechanism for pathogens to evade host recognition.  相似文献   

19.
20.
Chen L  Ren Y  Zhang Y  Xu J  Sun F  Zhang Z  Wang Y 《Gene》2012,504(2):160-165
Plant microRNAs have a vital role in various abiotic stress responses by regulating gene expression. Heat stress is one of the most severe abiotic stresses, and affects plant growth and development, even leading to death. To identify heat-responsive miRNAs at the genome-wide level in Populus, Solexa sequencing was employed to sequence two libraries from Populus tomentosa, treated and untreated by heat stress. Sequence analysis identified 134 conserved miRNAs belonging to 30 miRNA families, and 16 novel miRNAs belonging to 14 families. Among these miRNAs, 52 miRNAs from 15 families were responsive to heat stress and most of them were down-regulated. qRT-PCR analysis confirmed that the conserved and novel miRNAs were expressed in P. tomentosa, and revealed similar expression trends to the Solexa sequencing results obtained under heat stress. One hundred and nine targets of the novel miRNAs were predicted. This study opens up a new avenue for understanding the regulatory mechanisms of miRNAs involvement in the heat stress response of trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号