首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An attempt has been made to discriminate additional types of synapses than have been previously described in the nucleus accumbens septi of the cat, which can, according to Brockhaus (1942), justifiably be termed the fundus striati due to the fact that it possesses all of the morphological and some of the neurochemical features of the striatum. This was undertaken in order to correlate at least one type of synapse with each different afferent pathway. Nine distinct types of synapses could be differentiated electron microscopically: Type I: axo-spinous synapses with sparse, small, round vesicles which seemed to be the nigro-striatal endings (35%). Type II: axo-somatic or axo-dendritic en passant synapses containing small, round vesicles (3%). Type III: axo-spinous synapses filled with densely-packed, small, round vesicles displaying strong postsynaptic thickenings which seem to be cortico-striatal (17%). Type IV: large axo-spinous synapses with densely-arranged, small, round vesicles contacting larger spines branching off a pedicle (9%). Type V: axo-somatic or axo-dendritic synapses containing large pleomorphic vesicles, probably axon collaterals (1%). Type VI: axo-somatic or axo-dendritic synapses with elongated small vesicles (20 X 45 nm) (3%). Type VII: large axo-somatic or axo-dendritic synapses filled by densely-packed, small, round vesicles (11%). Type VIII: large axo-somatic or axo-dendritic synapses containing loosely-arranged, small, round vesicles (8%). Type IX: axo-somatic or axo-dendritic synapses containing large, round vesicles in a translucent axoplasm (13%).  相似文献   

2.
The arcuate nucleus of normal cats and of cats treated with 5-hydroxydopamine (5-OHDA) was investigated by electron microscopy. The neurons of the arcuate nucleus were classified into three types, clear, intermediate and dark, according to their fine structure. The clear type contained numerous dense-cored vesicles and well developed cell organelles. All three types were frequently seen to be partially surrounded by glial processes. Many axo-somatic and axo-dendritic synapses mostly small in diameter were also observed around the neurons. Synaptic contacts were demonstrated between axon endings and axonal processes which contained elementary granules. After administration of 5-OHDA small and large dense-cored vesicles appeared in the nerve endings surrounding the neurons. The relationship between the dense-cored vesicles in the perikarya and dopamine was briefly discussed.  相似文献   

3.
Using light and electron microscopy the neurons, glial cells and capillaries in hypoglossal nucleus of the rats have been examined up to 20 days after birth. The neuronal nuclei are usually situated ecentrically. The mitochondria and extensively developed Golgi-zones occupy the perinuclear region. The microtubules and lysosomes become more numerous with aging. At the earliest periods rough endoplasmic reticulum (ER) occupies the neuronal periphery, whereas after 14th day it is extended to the perinuclear region also. The ER forms elongated and concentric lamellated bodies and subsurface cisternae. At this time nucleolus like bodies are also numerous in the cytoplasm. After 4th and 6th days the extensive growth of dendrites, containing many cell organelles, and axons rich in microtubules are observed. Only at the birthday do neurons contain glycogen deposit. After 1st day the glycogen leaves the pericaryon, but it persists a long time in the neuronal processes. The symmetrical and asymmetrical contacts are characteristic for the examined period. The axo-somatic and axo-dendritic synapses are more abundant, but "double synapses" are also established. More synaptic boutons possess besides synaptic vesicles dense-core vesicles at the earlier periods. The quantity of asymmetric synapses increases with differentiation. Extensive cell degeneration has been established between 8 and 18th days. At 4 and 6 days the glial cells penetrate from subependymal layer and they have satellite neuronal position. This is more pronounced between 14 and 18 days when the oligodendrocytes are more numerous and active. At the same time fibrous astrocyte like cells are appeared. Microglial cells were not observed. Capillary differentiation, expressed by changes of the endothelial cells, pericytes and connective tissue cells, continues after birth also.  相似文献   

4.
The neurotransmitter GABA regulates many aspects of inhibitory synapse development. We tested the hypothesis that GABAA receptors (GABAARs) work together with the synaptic adhesion molecule neuroligin 2 (NL2) to regulate synapse formation in different subcellular compartments. We investigated mice (“γ2 knockdown mice”) with an engineered allele of the GABAAR γ2 subunit gene which produced a mosaic expression of synaptic GABAARs in neighboring neurons, causing a strong imbalance in synaptic inhibition. Deletion of the γ2 subunit did not abolish synapse formation or the targeting of NL2 to distinct types of perisomatic and axo-dendritic contacts. Thus synaptic localization of NL2 does not require synaptic GABAARs. However, loss of the γ2 subunit caused a selective decrease in the number of axo-dendritic synapses on cerebellar Purkinje cells and cortical pyramidal neurons, whereas perisomatic synapses were not significantly affected. Notably, γ2-positive cells had increased axo-dendritic innervation compared with both γ2-negative and wild-type counterparts. Moreover heterologous synapses on spines, that are found after total deletion of GABAARs from all Purkinje cells, were rare in cerebella of γ2 knockdown mice. These findings reveal a selective role of γ2 subunit-containing GABAARs in regulating synapse development in distinct subcellular compartments, and support the hypothesis that the refinement of axo-dendritic synapses is regulated by activity-dependent competition between neighboring neurons.  相似文献   

5.
Electron Microscopic Observations on the Taste Buds of the Rabbit   总被引:4,自引:4,他引:0       下载免费PDF全文
An examination of the fine structure of the taste buds in the rabbit was undertaken. Gustatory epithelium was fixed in OsO4 or 1 per cent KMnO4 solution, containing polyvinylpyrrolidone (PVP). Thick sections were examined in the phase microscope and contiguous sections prepared for the electron microscope. The bud contains two types of cells, gustatory receptors and sustentacular cells. The receptors are characterized by a dark nucleus and densely granular cytoplasm. The apical processes bear numerous microvilli which extend into the taste pore. Imbedded between the microvilli there is a dense substance, which is also present in the apical cytoplasm of the receptors. The sustentacular cells contain a large pale nucleus and less dense cytoplasm. Their basal surfaces rest upon a basement membrane. The subepithelial nerve plexuses comprise the fibers which innervate the gustatory receptors. The nerve fibers vary in diameter from 500 A to 0.3 µ, and are ensheathed by Schwann cells. The intragemmal fibers enter the taste bud between adjacent cells, and are ensheathed by the plasma membranes of the supporting cell until they synapse upon the gustatory cell. The synaptic terminals contain synaptic vesicles, which at this junction reside in the postsynaptic element. This observation is discussed with reference to synapses described elsewhere in the nervous system.  相似文献   

6.
The cardiac ganglion in the lobster Homarus americanus was examined with a transmission electron microscope. Nerve terminals often existed in large aggregations surrounded by glial and connective tissue elements. Axo-axonic and axo-dendritic synapses were present. Six ultrastructurally different types of nerve terminal, each containing an abundance of vesicles, were distinguished: three formed discrete chemical synapses as indicated by typical release site morphology; three did not. The latter appear to be neurosecretory axon terminals of extrinsic neurons. More than one morphologically distinct type of synaptic vesicle occurred commonly in a given terminal, suggesting the presence of coexisting neurotransmitters and/or neuroregulatory factors. Symmetrical chemical synapses and electrotonic junctions between axons were present.  相似文献   

7.
E A Ling 《Tissue & cell》1974,6(2):371-381
The subependymal plate of the primate slow loris (Nycticebus coucang coucang) has been studied by electron microscopy. It is composed of a mixed population of several cell types in which the subependymal cells preponderate. Free subependymal cells are found in the ‘border area’ near the corpus callosum or the neuropile of the caudate nucleus. In common with the subependymal cells they show a scanty cytoplasm containing mostly free ribosomes. Typical neuroglial cells namely, microglia, astrocytes and oligodendrocytes are also identified in this region. Among the various cell types mentioned there are present also a few occasional cells which have features bearing a resemblance to the subependymal cell on the one hand and to the microglia on the other. The morphological evidence suggests that in parallel with the macroglia the microglia could be derived by stepwise transformation of the subependymal cells.  相似文献   

8.
本文用免疫电镜方法对脊髓胶状质内GABA能神经元的突触联系进行了超微结构研究。结果表明;脊髓胶状质内有许多GABA能神经元胞体和末梢分布;标记的GABA能神经末梢可作为突触前成分与未标记的GABA形成输一树突触。未标记的末梢可与标记的GABA末梢形成输一轴突触。此外,标记的GABA能神经末梢还可作为突触前成分与标记的GABA能轴突、树突或胞体形成输-轴、轴-树或轴-体突触,即自调节突触。上述结果揭示:GABA能末梢可对脊髓胶状质内其它神经元产生抑制或脱抑制作用。值得注意的是胶状质内含GAnA的神经结构可形成各种形式的自调节突触,并借此实现其对脊髓功能的复杂调节。  相似文献   

9.
Summary Nerve cells of the human striatum were investigated with the use of a newly developed technique that reveals the pattern of pigmentation of individual nerve cells by means of transparent Golgi impregnations of their cell bodies and processes. Five types of neurons are distinguished:Type I is a medium-sized spine-laden neuron with an axon giving off a great number of collateral branches. The vast majority of the cells in the striatum belong to this type. Numerous intensely stained lipofuscin granules are contained in one pole of the cell body and may also extend into adjacent portions of a dendrite.Type II is a medium-sized to large neuron with long intertwining dendrites decorated with spines of uncommon shape. A distinguishing feature of this cell type is the presence of somal spines. This cell type is devoid of pigment or contains only a few tiny lipofuscin granules.Type III is a large multipolar neuron. The cell body generates a few rather extended dendrites that are very sparsely spined. The finely granulated pigment is evenly dispersed within a large portion of the cytoplasm.Type IV is a large aspiny neuron with rounded cell body and richly branching tortuous dendrites. The axon branches frequently in the vicinity of the parent soma. Large pigment granules are concentrated within a circumscribed part of the cell body close to the cell membrane.Type V is a small to medium-sized aspiny neuron. The dendrites break up into a swirling mass of thin branches. More than one axon may be given off from the soma. The axons branch close to the soma into terminal twigs. Cells of this type contain numerous large and well-stained lipofuscin granules.Each of the cell types has a characteristic pattern of pigmentation. The different varieties of nerve cells in the striatum can therefore be distinguished not only in Golgi impregnations but also in pigment-Nissl preparations.  相似文献   

10.
The limiting membrane, participating in formation of the liquor- and hematoencephalic barrier on the brain surface, and specialized intercellular contacts are considered as factors regulating entrance of substances from liquor and blood into the intercellular medium. Heteromorphism of the cingulate cortex first layer takes place: in the 1-b sublayer a large amount of myelinated fibres is revealed, in the 1-c sublayer numerous longitudinal sections of dendrites are seen, they arrange perpendicularly or tangentially to the brain surface. In the 1-a sublayer, more often than in others, multifocal axodendritic synapses are observed they are of convergent or divergent types, several synapses occur. In the first layer of the cingulate cortex, axonal profiles are revealed, they resemble axons of the neurosecretory cells described in the literature. This cannot exclude any hormonal mechanisms affecting the neurons of the cingulate cortex. Numerous synaptic contacts, formed by afferent fibers that come from different brain structures, with processes of the first layer cells and ascending dendrites of deeper layers are considered as a morphological substrate of integrative and modulating activity of the first layer.  相似文献   

11.
Morphological relationships between neuropeptide Y- (NPY) like and ghrelin-like immunoreactive neurons in the arcuate nucleus (ARC) were examined using light and electron microscopy techniques. At the light microscope level, both neuron types were found distributed in the ARC and could be observed making contact with each other. Using a preembedding double immunostaining technique, some NPY-immunoreactive axon terminals were observed at the electron microscope level to make synapses on ghrelin-immunoreactive cell bodies and dendrites. While the axo-somatic synapses were mostly symmetric in nature, the axo-dendritic synapses were both symmetric and asymmetric. In contrast, ghrelin-like immunoreactive (ghrelin-LI) axon terminals were found to make synapses on NPY-like immunoreactive (NPY-LI) dendrites although no NPY-like immunoreactive perikarya were identified receiving synapses from ghrelin-LI axon terminals. NPY-like axon terminals were also found making synapses on NPY-like neurons. Axo-axonic synapses were also identified between NPY- and ghrelin-like axon terminals. The present study shows that NPY- and ghrelin-LI neurons could influence each other by synaptic transmission through axo-somatic, axo-dendritic and even axo-axonic synapses, and suggests that they participate in a common effort to regulate the food-intake behavior through complex synaptic relationships.  相似文献   

12.
E A Ling  M M Ahmed 《Tissue & cell》1974,6(2):361-370
The corpus callosum of adult slow loris consists of a mixed population of several cell types, i.e. free subependymal cells, oligodendrocytes, astrocytes and microglia. The free subependymal cell is rather small and slender with a somewhat patchy nucleus. It shows scanty cytoplasm with free ribosomes. Oligodendrocytes vary both in nuclear and cytoplasmic densities and can be divided into three classes: light, medium dense and dark types. Their cytoplasm contains microtubules, rough endoplasmic reticulum and Golgi saccules. Astrocytes are pale cells with large amount of filaments in their cytoplasm. Microglia are small cells with granulated nuclei. The cells often show large cytoplasmic protrusions containing the usual cell organelles and lipofuscin bodies in their cytoplasm. Lastly, cells with typical features of neurons are occasionally encountered among the white matter.  相似文献   

13.
The brain of Strongylostoma simplex shows the organization typical of the most evolutionary groups of free-living plathelminths. Three types of neurons, two types of neurosecretory cells, and a certain number of glia-like cells are present. Somato-axonic synapses and axo-dendritic contacts with a “spine apparatus”, like those described in vertebrates, have been identified. These two types of synapses have never been reported in other plathelminth brains. Local thickenings and dense bars attached to the presynaptic membrane are also observed, together with the paramembranous density common in many flatworm synapses.  相似文献   

14.
A quantitative electron-microscopic investigation of synaptic endings in large sections showed that about 50% of all axo-axonal synapses are located in the outer zone of the neuropil (layer 9) of the tectum opticum ofRana temporaria L. These synapses are more numerous in the rostral part of the tectum than the caudal. Hardly any axo-axonal synapses lie deeper than 50–60 µ Most axo-axonal synapses are located on axon endings of retinal ganglionic cells, for after degeneration of the optic nerve the number of these synapses is reduced by two-thirds. During ontogenetic differentiation and regeneration of the optic nerve axo-axonal synapses develop before axo-dendritic and their presynaptic processes have the normal structure and differ sharply from the bulbs of growth of the optic fibers. On this basis the central origin of most presynaptic processes forming these synapses is postulated. The results point to the possibility of presynaptic control over the effectiveness of action of the efferent axons, primarily optic, terminating in the outer zone of the frog tectum opticum.  相似文献   

15.
Electron microscopic study and quantitative analysis of the visual cortex synapses in 14, 30 and 60-day-old rats were performed after bilateral enucleation of newly-forn rats. A great amount of synapses of other functional systems was shown to be functioning in the area striata in addition to the synapses formed by specific visual afferents. Alterations in the synapses of the area striata of blind rats are developing gradually, achieving the greatest pronouncement in 60-day-old rats. These changes develop according to the type of atrophic process in connection with dysfunction. The atrophic alterations of the synapses were found both in axo-somatic and axo-dendritic synapses on the dendrite trunks and on the thorns. The alterations of synapses being concentrated in layer IV. The quantitative ratio of different kinds of atrophied synapses in the cross-section of the visual cortex was different suggesting the following conclusion about the distribution of the visual afferents. In layers I and III the visual afferents formed mostly axon-thorn contacts and less amount of axo-somatic and axo-dendritic synapses on the dendrite trunks. In layer IV they mainly formed axo-somatic and axo-thorn synapses and less amount of axo-dendritic ones on the dendrite trunks. In layers V and VI they mainly contact with the dendrite trunks and with the nervous cell bodies and more rarely with thorns.  相似文献   

16.
The efferent (olivo-cochlear) innervation of the organ of Corti was studied using a monoclonal antibody against choline acetyltransferase (ChAT). In the inner spiral bundle (ISB), below the inner hair cells (IHCs), the anti-ChAT immunoreactivity was observed within unvesiculated fibers and vesiculated varicosities. Unreactive varicosities, at least as numerous as the immunoreactive ones, were also detected. Both types of vesiculated varicosities synapsed with the dendrites of the primary auditory neurons (afferent fibers) connected to the IHCs. At the outer hair cell (OHC) level, nearly all the vesiculated terminals making axo-somatic synapses with the OHCs were anti-ChAT immunoreactive. Only few terminals synapsing with the OHCs were unreactive. These findings allowed the differentiation of at least three types of efferent synapses in the organ of Corti. In the ISB, a first population of axo-dendritic synapses seems to be cholinergic whereas a second population might use another neurotransmitter. At the OHC level, our results support the hypothesis that acetylcholine is the neurotransmitter of nearly all the large axo-somatic synapses. The rare unreactive axo-somatic synapses could constitute a fourth and minor type of efferent synapse. Thus, it would be helpful to subclassify the efferent innervations of the organ of Corti according to their neurochemical nature. A re-evaluation of the whole body of available electrophysiological data would be also necessary, as until now, acetylcholine was considered as being the only efferent cochlear neurotransmitter.  相似文献   

17.
Within the suprachiasmatic nucleus (SCN) of the rat the fine structure of the synapses and some features of their topological arrangement were studied. Five types of synapses could be distinguished with certainty: A. Two types of Gray-type-I (GTI) or asymmetrical synapses (approximately 33%). The presynaptic elements contain strikingly different types of mitochondria. Size of clear vesicles: approximately 450 A. Synapses with subjunctional bodies often occur, among these also "crest synapses". Localization: dendritic shafts and spines, rarely somata. B. Three types of Gray-type-2 (GTII) or symmetrical synapses (approximately 66%):1) Axo-dendritic and -somatic (=AD) synapses. Size of clear vesicles: approximately 500 A. 2) Invaginated axo-dendritic and -somatic (=IAD) synapses with club-like postsynaptic protrusions within the presynaptic elements (PreE1). Size of clear vesicles is very variable: approximately 400-1,000 A. 3) Dendro-dendritic, -somatic and somato-dendritic (=DD) synapses occurring at least partly in reciprocal arrangements. They represent an intrinsic system. Shape of clear vesicles: often oval; sucrose treatment partly produces flattening. Dense core-vesicles (dcv) are found in all GTII- and most of the GTI-synapses after three-dimensional reconstruction. All types of synapses (mostly GTII-synapses) can be enclosed by multilamellar astroglial formations. The synapses often occur in complex synaptic arrangements. Dendrites and somata of females show significantly more multivesiculated bodies than those of males. Further pecularities of presynaptic (PreELs) and postsynaptic elements (PostELs) within the SCN are described and discussed.  相似文献   

18.
Explants of the hippocampus of newborn rats were studied neurohistologically and with electron microscope within 5--35 days of explantation. Two zones are found in the culture of the hippocampus: a zone of explant, and a zone of outgrowth. Neurons, glial cells and a network of their fibres are compactly arranged in the center of the former, whereas, the latter involves a layer of migrated glial cells. The explant is surrounded by glia limiting cells. Three types of neurons are identified in the long living culture of the hippocampus: pyramidal, polymorphic and granule cells. Numerous nerve endings observed in the hippocampic explant can be recognized as axodendritic, axosomatic and glomerular synapses. The availability of several types of neurons, a variety of synapses and their complication during outgrowth of the culture are suggestive of a formation in the hippocampic explant of a functional reflex activity.  相似文献   

19.
The slowly adapting abdominal stretch receptors of Orconectes limosus (RAF) have been investigated morphologically; 1. Despite their variety of size and shape all slowly adapting receptor neurons show common characteristic features which in addition distinguish them clearly from the fast adapting receptor neuron type SN2. The slightly globular cells have always several dendrites (often 4-6). They originate apical or lateral to the neuron, are oriented mainly longitudinal to the muscle fibres and are brodly ramified. The fine dendrites form a 3-dimensional fibrilar network. 2. The structure and distribution of the connective tissue in the "intertendon" of the muscle receptor organ correspond to the dendrite ramification; In this area, some muscle fibres end direktly at tendon-like connective tissue structures, but a number of different fibres run uninerruptedly through the whole muscular fascicle. 3. The perikaryon of every sensory neuron shows 2 "cytoplasm types" which are clearly distinguishable one against the other. A characteristic feature of the granular-lamellar neuroplasm that closely surrounds the nucleus are many flat vesicles of the granular endoplasmatic reticulum, accumulations of free ribosomes, numerous mitochondria and Golgi fields. The fibril-rich neuroplasm on the contrary contains only few mitochondria, but very many neurofilaments, here and there also neurotubuli. It projects directly into the dendrites and neuritek. Cell bodies, axon and dendrites are surrounded alternatingly by sheath cells and connective tissue of collagenous nature. The innermost layer of the coat cells borders directly on the neuron membrane. Finer dendrites are enclosed by nothing more but a thin layer of sheath cell plasm and intercellular substance. The dendrite terminals are either stored directly in connective tissue ground substance or border immediately on the sarcoplasm. 5. The axo-dendritic or axo-somatic synapses, respectively, contain numerous ellipsoidal (250-350 X 400-500 A), but also many spherical, vesicles. Some vesicles have a slightly larger diameter (700-900 A) and contain an electron-dense core. The synaptic gap measures 150 to 200 A. The neuromuscular (supposedly excitatory) synapses are filled much lighter with vesicles as compared with those just mentioned, which show a relatively unique form and size (nearly all spherical, phi 400-500 A). There are less vesicles with an electron-dense centre. On the average, the synaptic gap is broader (200-250 A) and the contact zone is larger. Apart from these, terminals could be observed in the dendritic ramification area, too, resembling the axo-dendritic and axo-somatic ones, respectively. 6. Finer dendrite branches contain vesicles differing slightly from those mentioned above as far as shape and size are concerned. Their diameters vary between 500 and 1 000 A. "Dense bodies" could be observed sporadically in these vesicles.  相似文献   

20.
Summary An electron microscope study of the rat supraoptic nucleus, substantia nigra, neostriatum and periventricular preoptic area demonstrates that nematosomes are present within the perikaryon of neurons located in these structures. The latter structure may be found in close association with the subsynaptic web of axosomatic synapses. Numerous micro-filaments fan out from the nematosome and link the latter organelle to the ribosomes, the cytoplasmic membranes and the plasma membrane thus establishing an interwoven filamentous cytoplasmic network. A possible close relationship between the nematosomes and the neurofilaments and neurotubules is discussed.This work was supported by research grant MA-3448 from the Medical Research Council of Canada. The skillful technical assistance of Miss Marjolaine Thiffeault is gratefully acknowledged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号