首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A slow transient electric potential change (electro-olfactogram, EOG) can be recorded through an Ag-AgCl electrode placed on the olfactory epithelium in response to stimulation with an air stream to the tissue in toads (Bufo japonicus). During the breeding season, oscillatory potential changes (OSC) superimpose on the EOG. In the present study the OSC amplitude was found to be highly correlated with the migratory behavior. Since toads track the route to and from the breeding pond using olfactory cues along the migration route, the enhanced OSC should be responsible for the breeding migration.A significant positive correlation was found between plasma gonadotropin levels and the OSC amplitude in males captured during the breeding migration. There was no significant relationship between plasma gonadotropin levels and the OSC amplitude in female toads during the breeding season, but there was a significant correlation between plasma progesterone levels and the OSC amplitude. In males, hypophysectomy just before the breeding season decreased the OSC amplitude. And testis weight was also positively correlated with the OSC amplitude in January. These results suggest that the appearance of the OSC is related to the timing of the activation of the reproductive system. However, treatment of toads with hCG (human chorionic gonadotropin), testosterone, estradiol or progesterone in the non-breeding season did not induce a significant change in the OSC amplitude. Other factor or factors may be required in activation of the olfactory system of the toad in a non-reproductive stage together with the hormones of the gonadal axis.  相似文献   

2.
3.
Correlations between morphological and functional changes occurring in the olfactory epithelium after treatment with various concentrations of zinc sulfate were investigated during experiments on mice. Electroolfactogram recordings (EOG) and epithelium morphometry showed that the intensity of damaging effects and the speed of regenerative processes at work in the epithelium are concentration-dependent. Amplitude of EOG and thickness of the olfactory epithelium have almost reached their normal level by the first month after olfactory epithelium treatment with a 1% zinc sulfate solution, while recuperative processes have only just started during this period when higher concentrations were used. It was noted that the capacity for generating EOG recovered well after processes of structural recovery in the olfactory epithelium and that application of higher concentrations of zinc sulfate (3 and 5%) increased the amount by which rise in EOG amplitude lagged behind thickening of the epithelium compared with the 1% solution.Research Institute of Applied Mathematics and Cybernetics, N. I. Lobachevskii University, Gor'kii. Translated from Neirofiziologiya, Vol. 19, No. 6, pp. 796–802, November–December, 1987.  相似文献   

4.
Changes of amplitude in the electroolfactogram (EOG) were investigated following unilateral section of the olfactory nerve. A reduction in EOG amplitude was observed during the first two weeks after the operation; electrical activity gradually began to return to normal and reached 80–100% of control level for trial substances by the end of the third week. Complete disappearance of EOG over the entire surface of the olfactory organ was not observed in any of the animals. A reduction in EOG amplitude was also noted on the unoperated side of the olfactory organ. These changes were less pronounced: the decrease in electrical response level began at a later stage, while complete recovery in amplitude was achieved sooner. Findings showed that EOG amplitude changed at different rates in different areas of the olfactory epithelium; it decreased sooner and began to recover at a later stage in the caudal than in the centromedial portion of the olfactory organ.Institute of Applied Mathematics and Cybernetics, N. I. Lobachevskii University, Gor'kii. Translated from Neirofiziologiya, Vol. 18, No. 5, pp. 603–610, September–October, 1986.  相似文献   

5.
Sodefrin is a female-attracting pheromone isolated from the abdominal glands of male newts, Cynops pyrrhogaster. Previously, the preference of conspecific female newts for sodefrin was shown to be completely abolished by plugging the bilateral nostrils, indicating that it acts on the olfactory organ. To determine the sensitivity of the olfactory receptor cells to sodefrin, electro-olfactograms (EOGs) in response to sodefrin solution were recorded from the ventral nasal epithelium of sexually developed female newts. Sodefrin elicited marked EOG responses in a dose-dependent manner on the epithelium of the lateral nasal sinus (LNS) region, a putative vomeronasal organ. In ovariectomized females, treatment with prolactin (PRL) and estrogen markedly enhanced the EOG response to sodefrin. The EOG response to the pheromone was also enhanced considerably by treatment with either PRL or estrogen alone. A slight but significant elevation was observed in castrated males receiving PRL plus estrogen or estrogen alone. It was concluded that the main site of action of sodefrin resides in the lateral sinus region and that sensitivity to sodefrin is under the control of PRL and estrogen. The presence of a sex difference in olfactory sensitivity to the hormones and/or pheromone was also suggested.  相似文献   

6.
A short-tern (1-1.5 min.) irrigation of the olfactory mucose of the frog Rana temporaria with 0.1-0.15% Triton X-100 in Ringer's solution led to the destroying of olfactory flagella but did not damage the olfactory knob and its flagellar basal bodies. Simultaneously, the generator potential of the olfactory cells-elecroolfactogram (EOG)-disappears. The olfactory cells deprived of fragella were able to produce these organelles. This process begins 2 or 3 hours following theflagellum removal, proceeds in some stages and completes within 2 or 3 days. During the flagellum regeneration the ability of olfactory cells to generate EOG is seen to resotre. The data obtained confirm the presence of receptive sites on flagellar surface.  相似文献   

7.
A large set of xenobiotic-metabolizing enzymes (XMEs), such as the cytochrome P450 monooxygenases (CYPs), esterases and transferases, are highly expressed in mammalian olfactory mucosa (OM). These enzymes are known to catalyze the biotransformation of exogenous compounds to facilitate elimination. However, the functions of these enzymes in the olfactory epithelium are not clearly understood. In addition to protecting against inhaled toxic compounds, these enzymes could also metabolize odorant molecules, and thus modify their stimulating properties or inactivate them. In the present study, we investigated the in vitro biotransformation of odorant molecules in the rat OM and assessed the impact of this metabolism on peripheral olfactory responses. Rat OM was found to efficiently metabolize quinoline, coumarin and isoamyl acetate. Quinoline and coumarin are metabolized by CYPs whereas isoamyl acetate is hydrolyzed by carboxylesterases. Electro-olfactogram (EOG) recordings revealed that the hydroxylated metabolites derived from these odorants elicited lower olfactory response amplitudes than the parent molecules. We also observed that glucurono-conjugated derivatives induced no olfactory signal. Furthermore, we demonstrated that the local application of a CYP inhibitor on rat olfactory epithelium increased EOG responses elicited by quinoline and coumarin. Similarly, the application of a carboxylesterase inhibitor increased the EOG response elicited by isoamyl acetate. This increase in EOG amplitude provoked by XME inhibitors is likely due to enhanced olfactory sensory neuron activation in response to odorant accumulation. Taken together, these findings strongly suggest that biotransformation of odorant molecules by enzymes localized to the olfactory mucosa may change the odorant’s stimulating properties and may facilitate the clearance of odorants to avoid receptor saturation.  相似文献   

8.
An important issue in migration research is how small‐bodied passerines pass over vast geographical barriers; in European–African avian migration, these are represented by the Mediterranean Sea and the Sahara Desert. Eastern (passing eastern Mediterranean), central (passing Apennine Peninsula) and western (via western Mediterranean) major migration flyways are distinguished for European migratory birds. The autumn and spring migration routes may differ (loop migration) and there could be a certain level of individual flexibility in how individuals navigate themselves during a single migration cycle. We used light‐level loggers to map migration routes of barn swallows Hirundo rustica breeding in the centre of a wide putative contact zone between the northeastern and southernwestern European populations that differ in migration flyways utilised and wintering grounds. Our data documented high variation in migration patterns and wintering sites of tracked birds (n = 19 individuals) from a single breeding colony, with evidence for loop migration in all but one of the tracked swallows. In general, two migratory strategies were distinguished. In the first, birds wintering in a belt stretching from southcentral to southern Africa that used an eastern route for both the spring and autumn migration, then shifted their spring migration eastwards (anti‐clockwise loops, n = 12). In the second, birds used an eastern or central route to their wintering grounds in central Africa, shifting the spring migration route westward (clockwise loops, n = 7). In addition, we observed an extremely wide clockwise loop migration encompassing the entire Mediterranean, with one individual utilising both the eastern (autumn) and western (spring) migratory flyway during a single annual migration cycle. Further investigation is needed to ascertain whether clockwise migratory loops encircling the entire Mediterranean also occur other small long‐distance passerine species.  相似文献   

9.
Organotypic cultures of the mouse olfactory epithelium connected to the olfactory bulb were obtained with the roller tube technique from postnatal mice aged between 13 and 66 days. To test the functionality of the cultures, we measured electroolfactograms (EOGs) at different days in vitro (DIV), up to 7 DIV, and we compared them with EOGs from identical acute preparations (0 DIV). Average amplitudes of EOG responses to 2 mixtures of various odorants at concentrations of 1 mM or 100 microM decreased in cultures between 2 and 5 DIV compared with 0 DIV. The percentage of responsive cultures was 57%. We also used the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) to trigger the olfactory transduction cascade bypassing odorant receptor activation. Average amplitudes of EOG responses to 500 microM IBMX were not significantly different in cultures up to 6 DIV or 0 DIV, and the average percentage of responsive cultures between 2 and 5 DIV was 72%. The dose-response curve to IBMX measured in cultures up to 7 DIV was similar to that at 0 DIV. Moreover, the percentage of EOG response to IBMX blocked by niflumic acid, a blocker of Ca-activated Cl channels, was not significantly different in cultured or acute preparations.  相似文献   

10.
Sharks and rays are highly sensitive to chemical stimuli in their natural environment but several hypotheses predict that hammerhead sharks, with their expanded head and enlarged olfactory epithelium, have particularly acute olfactory systems. We used the electro-olfactogram (EOG) technique to compare the relative response of the scalloped hammerhead shark (Sphyrna lewini) olfactory epithelium to 20 proteinogenic amino acids and determine the sensitivity for 6 amino acids. At micromolar concentrations, cysteine evoked the greatest EOG response which was approximately twice as large as that of alanine. The weakest response was obtained for proline followed by aspartic acid and isoleucine. The olfactory epithelium showed adaptation to sequential stimulation, and recovery was related to the inter-stimulus time period. Estimated EOG response thresholds were in the sub-nanomolar range for both alanine (9.2 × 10−11 M) and cysteine (8.4 × 10−10 M) and in the micromolar range for proline and serine. These thresholds from 10−10 to 10−6 M for the scalloped hammerhead shark are comparable or lower than those reported for other teleost and elasmobranch species. Future work should focus on binary and more complex compounds to test for competition and cross-adaptation for different classes of peripheral receptors, and their responses to molecules found in biologically relevant stimuli.  相似文献   

11.
Jungblut, L.D., Pozzi, A.G. and Paz, D.A. 2010. Larval development and metamorphosis of the olfactory and vomeronasal organs in the toad Rhinella (Bufo) arenarum (Hensel, 1867). — Acta Zoologica (Stockholm) 92 : 305–315. The olfactory and the vomeronasal system are the two major chemosensory systems found in terrestrial vertebrates. Among tetrapods, amphibians are unique in having an aquatic larval stage, followed by metamorphosis to a terrestrial adult. In the present work, we studied the histological development of the olfactory and vomeronasal organ and associated multicellular glands of the toad Rhinella (Bufo) arenarum, from early poshatching larva to postmetamorphic toadlets. As in other bufonids, the olfactory epithelium of R. arenarum in larvae is divided into dorsal and ventral branches in the rostral and mid‐nasal regions. At metamorphic climax, the larval pattern changes drastically and the adult olfactory configuration develops. Bowman’s glands appear in the olfactory epithelium of R. arenarum at the onset of metamorphic climax. The vomeronasal epithelium develops early in larval development in R. arenarum, around the time of operculum development. Interestingly, a novel sensory epithelium develops in the floor of the principal chamber of R. arenarum at metamorphic climax. This novel sensory epithelium resembles larval sensory epithelium lacking Bowman’s glands, and suggests that these animals would be able to sense not only air‐borne, but also water‐borne odors during their adult terrestrial life.  相似文献   

12.
Electrophysiological experiments indicate that olfactory receptors of the channel catfish, Ictalurus punctatus, contain different receptor sites for the acidic (A), basic (B), and neutral amino acids; further, at least two partially interacting neutral sites exist, one for the hydrophilic neutral amino acids containing short side chains (SCN), and the second for the hydrophobic amino acids containing long side chains (LCN). The extent of cross-adaptation was determined by comparing the electro-olfactogram (EOG) responses to 20 "test" amino acids during continuous bathing of the olfactory mucosa with water only (control) to those during each of the eight "adapting" amino acid regimes. Both the adapting and test amino acids were adjusted in concentrations to provide approximately equal response magnitudes in the unadapted state. Under all eight adapting regimes, the test EOG responses were reduced from those obtained in the unadapted state, but substantial quantitative differences resulted, depending upon the molecular structure of the adapting stimulus. Analyses of the patterns of EOG responses to the test stimuli identified and characterized the respective "transduction processes," a term used to describe membrane events initiated by a particular subset of amino acid stimuli that are intricately linked to the origin of the olfactory receptor potential. Only when the stimulus compounds interact with different transduction processes are the stimuli assumed to bind to different membrane "sites." Four relatively independent L-alpha-amino acid transduction processes (and thus at least four binding sites) identified in this report include: (a) the A process for aspartic and glutamic acids; (b) the B process for arginine and lysine; (c) the SCN process for glycine, alanine, serine, glutamine, and possibly cysteine; (d) the LCN process for methionine, ethionine, valine, norvaline, leucine, norleucine, glutamic acid-gamma-methyl ester, histidine, phenylalanine, and also possibly cysteine. The specificities of these olfactory transduction processes in the catfish are similar to those for the biochemically determined receptor sites for amino acids in other species of fishes and to amino acid transport specificities in tissues of a variety of organisms.  相似文献   

13.
Despite many bird species migrating regularly within the African continent, in response to rainfall and breeding opportunities, documented evidence of the spatiotemporal patterns of such movements is scarce. We use satellite telemetry to document the year round movement of an intra‐African migrant breeding in the savannah zone of sub‐Saharan Africa, the African cuckoo. After breeding in central Nigeria, the birds migrated to more forested sites in the Adamawa region of Cameroon (n = 2) and western Central African Republic (n = 1). Departure from the breeding ground coincided with deteriorating environmental conditions whereas arrival at the non‐breeding sites matched period of increasing vegetation greenness. Migratory movements generally occurred during dark hours. In total, an average distance of 748 km in 66 d was covered during the post‐breeding migration and 744 km in 27 d during return journey with considerable individual variation and with more stopover sites used during post‐breeding migration. The diversity of migration routes followed suggests a relatively variable or flexible initial migration strategy, high individual route consistency as well as high fidelity for non‐breeding grounds.  相似文献   

14.
The objectives of this study were to determine: (1) the frequency and distribution of carbonic anhydrase (CA) activity in the bullfrog nasal cavities, and (2)␣whether inhibition of nasal CA affects the olfactory receptor response to CO2 or other odorants. It was found, using Hansson's staining technique, that some olfactory receptor neurons exhibited CA activity and that these CA-positive receptors were distributed throughout the nasal cavity with peak densities in the dorsal and ventral sensory epithelial regions. To test for the role of CA in olfactory transduction, electro-olfactograms (EOGs) were recorded from the surface of the ventral sensory epithelium in response to 2-s pulses of 5% CO2 and amyl acetate before and after topical CA inhibition with acetazolamide (10−3 mol · l−1). In 52 bullfrogs, 1222 sites on the ventral epithelium were tested resulting in 23 locations that exhibited a response to 5% CO2. Inhibition of CA caused an immediate 65% reduction in the EOG response to CO2 while the response to amyl acetate was not affected. These results, along with the histochemical localization of CA in some olfactory receptor neurons, indicate that CA plays a role in the detection of CO2 in frog olfactory neurons and that only a small population of olfactory receptor neurons are CO2 sensitive. Accepted: 31 July 1997  相似文献   

15.
Based on pharmacological studies of chemosensory transduction in transient receptor potential channel M5 (TRPM5) knockout mice it was hypothesized that this channel is involved in transduction for a subset of putative pheromones in mouse olfactory sensory neurons (OSNs). Yet, in the same study an electroolfactogram (EOG) in the mouse olfactory epithelium showed no significant difference in the responses to pheromones (and odors) between wild type and TRPM5 knockout mice. Here we show that the number of OSNs expressing TRPM5 is increased by unilateral naris occlusion. Importantly, EOG experiments show that mice lacking TRPM5 show a decreased response in the occluded epithelia to putative pheromones as opposed to wild type mice that show no change upon unilateral naris occlusion. This evidence indicates that under decreased olfactory sensory input TRPM5 plays a role in mediating putative pheromone transduction. Furthermore, we demonstrate that cyclic nucleotide gated channel A2 knockout (CNGA2-KO) mice that show substantially decreased or absent responses to odors and pheromones also have elevated levels of TRPM5 compared to wild type mice. Taken together, our evidence suggests that TRPM5 plays a role in mediating transduction for putative pheromones under conditions of reduced chemosensory input.  相似文献   

16.
Olfactory adaptation is a fundamental process for the functioning of the olfactory system, but the underlying mechanisms regulating its occurrence in intact olfactory sensory neurons (OSNs) are not fully understood. In this work, we have combined stochastic computational modeling and a systematic pharmacological study of different signaling pathways to investigate their impact during short-term adaptation (STA). We used odorant stimulation and electroolfactogram (EOG) recordings of the olfactory epithelium treated with pharmacological blockers to study the molecular mechanisms regulating the occurrence of adaptation in OSNs. EOG responses to paired-pulses of odorants showed that inhibition of phosphodiesterases (PDEs) and phosphatases enhanced the levels of STA in the olfactory epithelium, and this effect was mimicked by blocking vesicle exocytosis and reduced by blocking cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and vesicle endocytosis. These results suggest that G-coupled receptors (GPCRs) cycling is involved with the occurrence of STA. To gain insights on the dynamical aspects of this process, we developed a stochastic computational model. The model consists of the olfactory transduction currents mediated by the cyclic nucleotide gated (CNG) channels and calcium ion (Ca2+)-activated chloride (CAC) channels, and the dynamics of their respective ligands, cAMP and Ca2+, and it simulates the EOG results obtained under different experimental conditions through changes in the amplitude and duration of cAMP and Ca2+ response, two second messengers implicated with STA occurrence. The model reproduced the experimental data for each pharmacological treatment and provided a mechanistic explanation for the action of GPCR cycling in the levels of second messengers modulating the levels of STA. All together, these experimental and theoretical results indicate the existence of a mechanism of regulation of STA by signaling pathways that control GPCR cycling and tune the levels of second messengers in OSNs, and not only by CNG channel desensitization as previously thought.  相似文献   

17.
The terminal nerve, which innervates the nasal epithelia of most jawed vertebrates, is believed to release neuropeptides that modulate activity of sensory receptor neurons. The terminal nerve usually contains gonadotropin-releasing hormone as well as at least one other peptide that has not been characterized, but which bears some structural similarity to molluscan cardioexcitatory tetrapeptide (FMRFamide) and neuropeptide tyrosine (NPY). We investigated the effects of FMRFamide on both voltage-gated currents and odorant responses in the olfactory epithelium of axolotls (Ambystoma mexicanum), using whole-cell patch clamp and electro-olfactogram (EOG) recording techniques. In the presence of FMRFamide, the magnitude of a voltage-gated inward current was dramatically increased, reaching an average of 136% of the initial (pre-exposure) magnitude in neurons that showed a response to the peptide. This increase is detectable within approximately 1-2 min of exposure to FMRFamide and is sustained for at least 10 min. In EOG experiments, odorant responses are not affected during FMRFamide application, but are sometimes increased or decreased during the subsequent wash period. On average, the largest single EOG response in each trial was detected approximately 25 min after initial FMRFamide application, and ranged from 110 to 147% of baseline. These results suggest that a compound similar to FMRFamide, if released from the terminal nerve, may function in peripheral olfactory signal modulation.  相似文献   

18.
Migration detours, the spatial deviation from the shortest route, are a widespread phenomenon in migratory species, especially if barriers must be crossed. Moving longer distances causes additional efforts in energy and time, and to be adaptive, this should be counterbalanced by favorable condition en route. We compared migration patterns of nightingales that travelled along different flyways from their European breeding sites to the African nonbreeding sites. We tested for deviations from shortest routes and related the observed and expected routes to the habitat availability at ground during autumn and spring migration. All individuals flew detours of varying extent. Detours were largest and seasonally consistent in western flyway birds, whereas birds on the central and eastern flyways showed less detours during autumn migration, but large detours during spring migration (eastern flyway birds). Neither migration durations nor the time of arrival at destination were related to the lengths of detours. Arrival at the breeding site was nearly synchronous in birds flying different detours. Flying detours increased the potential availability of suitable broad‐scale habitats en route only along the western flyway. Habitat availability on observed routes remained similar or even decreased for individuals flying detours on the central or the eastern flyway as compared to shortest routes. Thus, broad‐scale habitat distribution may partially explain detour performance, but the weak detour‐habitat association along central and eastern flyways suggests that other factors shape detour extent regionally. Prime candidate factors are the distribution of small suitable habitat patches at local scale as well as winds specific for the region and altitude.  相似文献   

19.
Open landfills seem to be playing an increasing role as target feeding areas for several species, not only in their breeding areas or during the winter, but also during the migration period. Evaluating the extent to which landfill sites are used by migrants is crucial to understanding their role in driving stopover decisions during migration, and in the potential health risks linked to feeding on refuse. The aim of this study was to evaluate the role of two open landfills located just before (France) and after (Spain) the East‐Atlantic flyway enters Iberia through the western Pyrenees as potentially important stopover sites for the White Stork populations moving along this route. Overall, we detected that these sites were used by storks that had been ringed from many western European breeding populations, mainly during the migration period, but also in winter. The mean distance between the stork breeding/ringing origin and the landfill sites increased from summer to winter, suggesting that storks breeding further away pass through Iberia later in the season, reflecting population‐specific timing of migration. During the autumn migration period (August–September), the first encountered landfill in France was estimated to be used by c. 1200 storks, and the other in Spain by 4000 storks. Our study hence contributes to a better understanding of the current and potentially hazardous role played by landfill sites in White Stork ecology, which is essential in order to provide management recommendations, and to evaluate the consequences of proposed open landfill closures in Europe.  相似文献   

20.
In the mammalian olfactory system, oscillations related to odour representation have been described in field potential activities. Previous results showed that in olfactory bulb (OB) of awake rats engaged in an olfactory learning, odour presentation produced a decrease of oscillations in gamma frequency range (60-90 Hz) associated with a power increase in beta frequency range (15-40 Hz). This response pattern was strongly amplified in trained animals. The aim of this work was twofold: whether learning also induces similar changes in OB target structures and whether such OB response depends on its centrifugal inputs. Local field potentials (LFPs) were recorded through chronically implanted electrodes in the OB, piriform and enthorhinal cortices of freely moving rats performing an olfactory discrimination. Oscillatory activities characteristics (amplitude, frequency and time-course) were extracted in beta and gamma range by a wavelet analysis. First, we found that odour induced beta oscillatory activity was present not only in the OB, but also in the other olfactory structures. In each recording site, characteristics of the beta oscillatory responses were dependent of odour, structure and learning level. Unilateral section of the olfactory peduncle was made before training, and LFPs were symmetrically recorded in the two bulbs all along the acquisition of the learning task. Data showed that deprivation of centrifugal feedback led to an increase of spontaneous gamma activity. Moreover, under this condition olfactory learning was no longer associated with the typical large beta band. As a whole, learning modulation of the beta oscillatory response in olfactory structures may reflect activity of a distributed functional network involved in odour representation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号