共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The binding of oligopeptides containing basic and aromatic residues to phospholipid vesicles has been studied by fluorescence spectroscopy. Tryptophan-containing peptide such as Lys-Trp-Lys or Lys-Trp(OMe) exhibit a shift of their fluorescence toward shorter wavelengths and an increased fluorescence quantum yield upon binding to phosphatidylinositol (PI) or phosphatidylserine (PS) vesicles. No binding was detected with phosphatidylcholine vesicles. The binding is strongly dependent on ionic strength and pH. Binding decreases when ionic strength increases indicating an important role of electrostatic interactions. The pH-dependence of binding reveals that the apparent of the terminal carboxyl group of Lys-Trp-Lys is raised by ~3 units upon binding to PI and PS vesicles. The binding of tyrosine-containing peptides to PI and PS vesicles is characterized by an increase in the fluorescence quantum yield of the peptide without any shift in fluorescence maximum. A natural nonapeptide from the myelin basic protein which contains one tryptophan residue binds to PI and PS vesicles at low pH when the acidic groups are neutralized. This binding is accompanied by a shift of the tryptophyl fluorescence toward shorter wavelengths together with an enhancement of the fluorescence quantum yield. Dissociation of the complex is achieved at high ionic strength. These results indicate that aromatic residues of oligopeptides bound to the phospholipid polar heads by electrostatic interactions become buried in a more hydrophobic environment in the vicinity of the aliphatic chains of the lipids. 相似文献
3.
The tertiary structure of murine adipocyte fatty acid-binding protein (AFABP) is a flattened 10-stranded beta-barrel capped by a helix-turn-helix segment. This helical domain is hypothesized to behave as a "lid" or portal for ligand entry into and exit from the binding cavity. Previously, we demonstrated that anthroyloxy-labeled fatty acid (AOFA) transfer from AFABP to phospholipid membranes occurs by a collisional process, in which ionic interactions between positively charged lysine residues on the protein surface and negatively charged phospholipid headgroups are involved. In the present study, the role of specific lysine residues located in the portal and other regions of AFABP was directly examined using site-directed mutagenesis. The results showed that isoleucine replacement for lysine in the portal region, including the alphaI- and alphaII-helices and the beta C-D turn, resulted in much slower 2-(9-anthroyloxy)palmitate (2AP) transfer rates to acidic membranes than those of native AFABP. An additive effect was found for mutant K22,59I, displaying the slowest rates of FA transfer. Rates of 2AP transfer from "nonportal" mutants on the beta-G and I strands were affected only moderately; however, a lysine --> isoleucine mutation in the nonportal beta-A strand decreased the 2AP transfer rate. These studies suggest that lysines in the helical cap domain are important for governing ionic interactions between AFABP and membranes. Furthermore, it appears that more than one distinct region, including the alphaI-helix, alphaII-helix, beta C-D turn, and the beta-A strand, is involved in these charge-charge interactions. 相似文献
4.
5.
Eosinophil granule proteins, eosinophil cationic protein (ECP) and eosinophil-derived neurotoxin are members of the RNase A superfamily, which play a crucial role in host defense against various pathogens as they are endowed with several biological activities. Some of the biological activities possessed by ECP have been attributed to its strong basic character. In the current study, we have investigated the role of five unique basic residues, Arg22, Arg34, Arg61, Arg77 and His64 of ECP in its catalytic, cytotoxic, antibacterial and antiparasitic activities. These residues were changed to alanine to generate single and double mutants. None of the selected residues was found to be involved in the RNase activity of ECP. The substitution of all five residues individually was detrimental for the cytotoxic, antibacterial and antiparasitic activities of ECP; however, mutation of Arg22 and Arg34 resulted in the most significant effects. The double mutants also had reduced biological activities. All ECP mutants that had significantly reduced toxicity also had reduced membrane destabilization activity. Our study demonstrates that Arg22, Arg34, Arg61, Arg77 and His64 of ECP are crucial for its membrane destabilization activity, which appears to be the underlying mechanism of its cytotoxic, antibacterial and antiparasitic activities. 相似文献
6.
A single histidine residue has been placed at either the N-terminus or the C-terminus of each of the two alpha-helices of barnase. The pKa of that histidine residue in each of the four mutants has been determined by 1H NMR. The pKas of the two residues at the C-terminus are, on average, 0.5 unit higher, and those of the residues at the N-terminus are 0.8 unit lower, than the pKa of histidines in unfolded barnase at low ionic strength. The conformational stability of the mutant proteins at different values of pH has been measured by urea denaturation. C-Terminal histidine mutants are approximately 0.6 kcal mol-1 more stable when the introduced histidine is protonated, both at low and high ionic strength. N-Terminal mutants with a protonated histidine residue are approximately 1.1 kcal mol-1 less stable at low ionic strength and 0.5 kcal mol-1 less stable at high ionic strength (1 M NaCl). The low-field 1H NMR spectra of the mutant proteins at low pH suggest that the C-terminal histidines form hydrogen bonds with the protein while the N-terminal histidines do not form the same. The perturbations of pKa and stability result from a combination of different electrostatic environments and hydrogen-bonding patterns at either ends of helices. The value of 0.6 kcal mol-1 represents a lower limit to the favorable electrostatic interaction between the alpha-helix dipole and a protonated histidine residue at the C-terminal end of the helix.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
7.
Zinc finger (ZF) domains in retroviral nucleocapsid proteins usually contain one histidine per metal ion coordination complex (Cys-X(2)-Cys-X(4)-His-X(4)-Cys). Visna virus nucleocapsid protein, p8, has two additional histidines (in the second of its two ZFs) that could potentially bind metal ions. Absorption spectra of cobalt-bound ZF2 peptides were altered by Cys alkylation and mutation, but not by mutation of the extra histidines. Our results show that visna p8 ZFs involve three Cys and one His in the canonical spacing in metal ion coordination, and that the two additional histidines appear to interact with nucleic acid bases in p8-DNA complexes. 相似文献
8.
Cao X Kambe F Lu X Kobayashi N Ohmori S Seo H 《The Journal of biological chemistry》2005,280(27):25901-25906
We reported that the first two cysteine residues out of three present in paired domain (PD), a DNA-binding domain, are responsible for redox regulation of Pax-8 DNA binding activity. We show that glutathionylation of these cysteines has a regulatory role in PD binding. Wild-type PD and its mutants with substitution of cysteine to serine were synthesized and named CCC, CSS, SCS, SSC, and SSS according to the positions of substituted cysteines. They were incubated in a buffer containing various ratios of GSH/GSSG and subjected to gel shift assay. Binding of CCC, CSS, and SCS was impaired with decreasing GSH/GSSG ratio, whereas that of SSC and SSS was not affected. Because [3H]glutathione was incorporated into CCC, CSS, and SCS, but not into SSC and SSS, the binding impairment was ascribed to glutathionylation of the redox-reactive cysteines. This oxidative inactivation of PD binding was reversed by a reductant dithiothreitol and by redox factor (Ref)-1 in vitro. To explore the glutathionylation in cells, Chinese hamster ovary cells overexpressing CSS and SCS were labeled with [35S]cysteine in the presence of cycloheximide. Immunoprecipitation with an antibody against PD revealed that treatment of the cells with an oxidant diamide induced the 35S incorporation into both mutants, suggesting the PD glutathionylation in cells. Since the two cysteine residues in PD are conserved in all Pax members, this novel posttranslational modification of PD would provide a new insight into molecular basis for modulation of Pax function. 相似文献
9.
Wang QJ Fang TW Nacro K Marquez VE Wang S Blumberg PM 《The Journal of biological chemistry》2001,276(22):19580-19587
The C1 domains of conventional and novel protein kinase C (PKC) isoforms bind diacylglycerol and phorbol esters with high affinity. Highly conserved hydrophobic residues at or near the rim of the binding cleft in the second cysteine-rich domain of PKC-delta (PKC-deltaC1b) were mutated to probe their roles in ligand recognition and lipid interaction. [(3)H]Phorbol 12,13-dibutyrate (PDBu) binding was carried out both in the presence and absence of phospholipids to determine the contribution of lipid association to the ligand affinity. Lipid dependence was determined as a function of lipid concentration and composition. The binding properties of a high affinity branched diacylglycerol with lipophilicity similar to PDBu were compared with those of PDBu to identify residues important for ligand selectivity. As expected, Leu-20 and Leu-24 strongly influenced binding. Substitution of either by aspartic acid abolished binding in either the presence or absence of phosphatidylserine. Mutation of Leu-20 to Arg or of Leu-24 to Lys caused a dramatic (340- and 250-fold, respectively) reduction in PDBu binding in the presence of lipid but only a modest reduction in the weaker binding of PDBu observed in the absence of lipid, suggesting that the main effect was on C1 domain -phospholipid interactions. Mutation of Leu-20 to Lys or of Trp-22 to Lys had modest (3-fold) effects and mutation of Phe-13 to Tyr or Lys was without effect. Binding of the branched diacylglycerol was less dependent on phospholipid and was more sensitive to mutation of Trp-22 to Tyr or Lys, especially in the presence of phospholipid, than was PDBu. In terms of specific PKC isoforms, our results suggest that the presence of Arg-20 in PKC-zeta may contribute to its lack of phorbol ester binding activity. More generally, the results emphasize the interplay between the C1 domain, ligand, and phospholipid in the ternary binding complex. 相似文献
10.
Differential regulation of basic protein phosphorylation by calcium phospholipid and cyclic-AMP-dependent protein kinases 总被引:2,自引:0,他引:2
Myelin basic protein, an 80-kilodalton (kDa) protein in rat oligodendrocytes, and an 80-kDa basic protein in neuroblastoma x neonatal Chinese hamster brain explant hybrids were phosphorylated extensively when the cells were treated with either phorbol esters (TPA) or diacylglycerols (e.g., oleyoyl-acetylglycerol). TPA-stimulated phosphorylation was inhibited by pre-incubation with 50 microM psychosine (galactosyl-sphingosine), confirming that it is mediated through the phospholipid-dependent protein kinase C (PK-C). Surprisingly, phosphorylation of these proteins was inhibited by incubation of cells with agents which result in activation of cyclic-AMP-dependent protein kinase (dibutyryl cyclic AMP or forskolin). In contrast, phosphorylation of other nonbasic proteins, for example, the oligodendrocyte-specific 2',3'-cyclic nucleotide phosphohydrolase, was stimulated under these conditions (Vartanian et al.: Proceedings of the National Academy of Sciences of the United States of America 85:939, 1988). The possible role of cyclic AMP in activating specific phosphatases or restricting the availability of diacylglycerol for PK-C activation is discussed. 相似文献
11.
Rat brain plasma membranes were solubilized in detergent and a glycoprotein-enriched fraction was obtained by lectin affinity chromatography. This glycoprotein fraction contained insulin receptors, as well as protein kinases capable of phosphorylating some exogenously added substrates such as MAP2 (microtubule associated protein 2) and MBP (myelin basic protein), but not ribosomal protein S6. Phosphoamino acid analysis of MAP2 and MBP showed that phosphotyrosine residues, as well as phosphoserine/phosphotheronine residues, were present in both proteins under basal conditions. Whereas the addition of insulin to the rat brain membrane glycoprotein fraction in vitro had no effect on MAP2 phosphorylation, MBP phosphorylation was stimulated 2.7-fold in response to insulin. This phenomenon was dose-dependent, with half-maximal stimulation of MBP phosphorylation observed with 2 nM insulin. Phosphoamino acid analysis of MBP indicated that insulin stimulated the phosphorylation of tyrosine residues nearly three-fold, whereas the phosphorylation of serine or threonine residues was not increased. These results identify MBP as a substrate for the rat brain insulin receptor tyrosine-specific protein kinase in vitro. 相似文献
12.
The phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus thuringiensis exhibits several types of interfacial activation. In the crystal structure of the closely related Bacillus cereus PI-PLC, the rim of the active site is flanked by a short helix B and a loop that show an unusual clustering of hydrophobic amino acids. Two of the seven tryptophans in PI-PLC are among the exposed residues. To test the importance of these residues in substrate and activator binding, we prepared several mutants of Trp-47 (in helix B) and Trp-242 (in the loop). Two other tryptophans, Trp-178 and Trp-280, which are not near the rim, were mutated as controls. Kinetic (both phosphotransferase and cyclic phosphodiesterase activities), fluorescence, and vesicle binding analyses showed that both Trp-47 and Trp-242 residues are important for the enzyme to bind to interfaces, both activating zwitterionic and substrate anionic surfaces. Partitioning of the enzyme to vesicles is decreased more than 10-fold for either W47A or W242A, and removal of both tryptophans (W47A/W242A) yields enzyme with virtually no affinity for phospholipid surfaces. Replacement of either tryptophan with phenylalanine or isoleucine has moderate effects on enzyme affinity for surfaces but yields a fully active enzyme. These results are used to describe how the enzyme is activated by interfaces. 相似文献
13.
Skiniotis G Cochran JC Müller J Mandelkow E Gilbert SP Hoenger A 《The EMBO journal》2004,23(5):989-999
The flexible tubulin C-terminal tails (CTTs) have recently been implicated in the walking mechanism of dynein and kinesin. To address their role in the case of conventional kinesin, we examined the structure of kinesin-microtubule (MT) complexes before and after CTT cleavage by subtilisin. Our results show that the CTTs directly modulate the motor-tubulin interface and the binding properties of motors. CTT cleavage increases motor binding stability, and kinesin appears to adopt a binding conformation close to the nucleotide-free configuration under most nucleotide conditions. Moreover, C-terminal cleavage results in trapping a transient motor-ADP-MT intermediate. Using SH3-tagged dimeric and monomeric constructs, we could also show that the position of the kinesin neck is not affected by the C-terminal segments of tubulin. Overall, our study reveals that the tubulin C-termini define the stability of the MT-kinesin complex in a nucleotide-dependent manner, and highlights the involvement of tubulin in the regulation of weak and strong kinesin binding states. 相似文献
14.
Kawasaki Y Sato K Shinmoto H Dosako S 《Bioscience, biotechnology, and biochemistry》2000,64(2):314-318
We have previously demonstrated that lactoferrin was incorporated into B lymphocytes and that a trypsin treatment for a short period reduced the number of lactoferrin molecules incorporated into B lymphocytes. An N-terminal sequence analysis revealed that the mild trypsin treatment had cleaved the three N-terminal amino acids, Gly1-Arg2-Arg3. Chemical conjugation of lost sequence analogue Gly-Arg-Arg-Gly with the mildly digested lactoferrin recovered the interaction with B lymphocytes, while conjugation of acetyl-Arg-Arg-Gly, a deamino analogue of Gly-Arg-Arg-Gly, did not recover the interaction. This shows that the N-terminal basic region containing N-terminal Gly played an important role in the interaction with B lymphocytes. Acylation of the amino groups of lactoferrin also significantly reduced the interaction with B lymphocytes, and an O-methylisourea treatment of the amino groups, which preserved the positive charge, hardly affected the interaction. These results suggest that both the N-terminal basic region and the basic characteristics of the whole molecule contributed to its interaction with B lymphocytes. 相似文献
15.
It has been hypothesized that nonspecific reversible binding of cytoskeletal proteins to lipids in cells may guide their binding to integral membrane anchor proteins. In a model system, we measured desorption rates k(off) (off-rates) of the erythrocyte cytoskeletal proteins spectrin and protein 4.1 labeled with carboxyfluorescein (CF), at two different compositions of planar phospholipid membranes (supported on glass), using the total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP) technique. The lipid membranes consisted of either pure phosphatidylcholine (PC) or a 3:1 mixture of PC with phosphatidylserine (PS). In general, the off-rates were not single exponentials and were fit to a combination of fast, slow, and irreversible fractions, reported both separately and as a weighted average. By a variation of TIR/FRAP, we also measured equilibrium affinities (the ratio of surface-bound to bulk protein concentration) and thereby calculated on-rates, k(on). The average off-rate of CF-4.1 from PC/PS (approximately 0.008/s) is much slower than that from pure PC (approximately 1.7/s). Despite the consequent increase in equilibrium affinity at PC/PS, the on-rate at PC/PS is also substantially decreased (by a factor of 40) relative to that at pure PC. The simultaneous presence of (unlabeled) spectrin tends to substantially decrease the on-rate (and the affinity) of CF-4.1 at both membrane types. Similar experiments for CF-spectrin alone showed much less sensitivity to membrane type and generally faster off-rates than those exhibited by CF-4.1. However, when mixed with (unlabeled) 4.1, both the on-rate and off-rate of CF-spectrin decreased drastically at PC/PS (but not PC), leading to a somewhat increased affinity. Clearly, changes in affinity often involve countervailing changes in both on-rates and off-rates. In many of these studies, the effect of varying ionic strength and bulk concentrations was examined; it appears that the binding is an electrostatic attraction and is far from saturation at the concentrations employed. These results and the techniques implemented carry general implications for understanding the functional role of nonspecific protein binding to cellular lipid membranes. 相似文献
16.
P. Riccio S. Giovannelli A. Bobba E. Romito A. Fasano T. Bleve-Zacheo R. Favilla E. Quagliariello P. Cavatorta 《Neurochemical research》1995,20(9):1107-1113
Z2+ appears to stabilize the myelin sheath but the mechanism of this effect is unknown. In a previous report we have shown that zinc binds to CNS myelin basic protein (MBP) in the presence of phosphate and this results in MBP aggregation. For this paper we used a solid phase zinc blotting assay to identify which myelin proteins bind zinc. MBP and a 58 kDa band were found to be the major targets of65Zn binding. Moreover, using fluorescence, light scattering and electron microscopy we investigated the binding of zinc and other cations to purified MBP in solution. Among the cations tested for their ability to interfere with the binding of zinc, the most effective were cadmium, mercury and copper, but only cadmium and mercury increased the scattering intensity, whereas MBP aggregation was not inhibited by copper ions. Thus, the effect of zinc on the formation of MBP clusters seems to be specific. 相似文献
17.
John J. Albers Simona Vuletic Marian C. Cheung 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2012,1821(3):345-357
The understanding of the physiological and pathophysiological role of PLTP has greatly increased since the discovery of PLTP more than a quarter of century ago. A comprehensive review of PLTP is presented on the following topics: PLTP gene organization and structure; PLTP transfer properties; different forms of PLTP; characteristics of plasma PLTP complexes; relationship of plasma PLTP activity, mass and specific activity with lipoprotein and metabolic factors; role of PLTP in lipoprotein metabolism; PLTP and reverse cholesterol transport; insights from studies of PLTP variants; insights of PLTP from animal studies; PLTP and atherosclerosis; PLTP and signal transduction; PLTP in the brain; and PLTP in human disease.PLTP's central role in lipoprotein metabolism and lipid transport in the vascular compartment has been firmly established. However, more studies are needed to further delineate PLTP's functions in specific tissues, such as the lung, brain and adipose tissue. Furthermore, the specific role that PLTP plays in human diseases, such as atherosclerosis, cancer, or neurodegenerative disease, remains to be clarified. Exciting directions for future research include evaluation of PLTP's physiological relevance in intracellular lipid metabolism and signal transduction, which undoubtedly will advance our knowledge of PLTP functions in health and disease. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010). 相似文献
18.
Surface-exposed regions of membrane-bound myelin basic protein--the major extrinsic membrane protein of central nervous system myelin--have been implicated as possible antigenic sites in diseased myelin. With the goal of determining the extent and nature of these regions, we have prepared basic protein modified with 13CH3-enriched acetyl groups at 7 of its 13 lysine residues. The resulting protein was placed in a membrane environment and studied by NMR spectroscopy to determine the location and rates of molecular motion of the labeled side chains with respect to lipid bilayers of the membrane. When 13C NMR spectra were obtained of the acetylated protein bound to multilamellar vesicles prepared from dimyristoylphosphatidic acid in the gel state (T = 33 degrees C), conditions under which reduced motion in the lipid bilayer broadens methylene and methyl 13C resonances of the membrane beyond detection (i.e. greater than 75-100 Hz), line widths of membrane-bound protein were measured to be 7.8 Hz, an increase of 4 Hz versus free protein. A reduction of 25-30% in integrated intensity observed in protein acetyl resonances upon membrane interaction was shown to be attributable to a population of protein-aggregated liposomes whose resonances were similarly too broad to be observed. Thus, the epsilon-acetyllysyl probes distributed throughout the protein do not penetrate the dimyristoylphosphatidic acid bilayer, but must reside in the interstitial aqueous spaces at or between membrane surfaces. These findings suggest an overall surface accessibility of membrane-bound myelin basic protein and are therefore incompatible with a model for the protein involving membrane-embedded loops or regions of functional significance. 相似文献
19.
S M Stirdivant J D Ahern A Oliff D C Heimbrook 《The Journal of biological chemistry》1992,267(21):14846-14851
The retinoblastoma gene product (pRB) participates in regulating mammalian cell replication. The mechanism responsible for pRB's growth regulatory activity is uncertain. However, pRB is known to bind viral transforming proteins including the papilloma virus E7 protein, cellular proteins, and DNA. pRB contains a critical domain termed the "binding pocket" which is required for binding activities. This binding pocket contains 8 cysteine residues. A naturally occurring mutation affecting one of these cysteines is known to eliminate pRB's protein and DNA binding activities. To investigate the cysteine residues in pRB's binding pocket, each residue was mutated to alanine, phenylalanine, or serine. These mutant genes were used to prepare pRBs harboring specific amino acid substitutions. Individual mutations at positions 407, 553, 666, and 706 depressed pRB binding to E7 protein, DNA, and a conformation-specific anti-pRB antibody, XZ133. Combinations of these inhibitory mutations exhibited additive inhibitory effects on pRB's binding properties. Mutations at positions 438, 489, 590, 712, and 853 did not affect pRB binding to E7 protein, DNA, or the XZ133 antibody. Combination of these five neutral mutations yielded a pRB species with full E7 protein, DNA, and XZ133 binding activities. These studies indicate that the cysteine residues at positions 407, 553, 666, and 706 contribute to the E7 protein and DNA binding properties of pRB and appear to do so by maintaining pRB's normal conformation. 相似文献
20.
An endopeptidase associated with bovine neurohypophysis secretory granules cleaves pro-ocytocin/neurophysin peptide at paired basic residues 总被引:2,自引:0,他引:2
C Clamagirand M Camier H Boussetta C Fahy A Morel P Nicolas P Cohen 《Biochemical and biophysical research communications》1986,134(3):1190-1196
The octacosapeptide sequence [Tyr18] pro-ocytocin/neurophysin (1-18)NH2 [pro-OT/Np(1-18)NH2] was synthesized and used as substrate to detect endoprotease(s) possibly involved in the processing of this precursor in bovine hypothalamo-neurohypophyseal tract. An endopeptidase (58 Kda) was detected in Lysates made from highly purified neurosecretory granules. This protease which cleaves the peptide bond on the carboxyl side of the Lys-Arg doublet, and no single basic residue, generates both OT-Gly10-Lys11-Arg12+Ala13-Val-Leu-Asp-Leu-Tyr18 (NH2) from the octacosapeptide substrate. In addition, a carboxypeptidase B-like activity converting OT-Gly10-Lys11-Arg12 into OT-Gly10 was detected in the same granule Lysates. It is hypothesized that a combination of these endoprotease and carboxypeptidase B-like activities together with the amidating enzyme of secretory granules might participate in the cleavage and processing of pro-OT/Np in vivo. 相似文献