首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rubisco, the most abundant protein serving as the primary engine generating organic biomass on Earth, is characterized by a low catalytic constant (in higher plants approx. 3s(-1)) and low specificity for CO(2) leading to photorespiration. We analyze here why this enzyme evolved as the main carbon fixation engine. The high concentration of Rubisco exceeding the concentration of its substrate CO(2) by 2-3 orders of magnitude makes application of Michaelis-Menten kinetics invalid and requires alternative kinetic approaches to describe photosynthetic CO(2) assimilation. Efficient operation of Rubisco is supported by a strong flux of CO(2) to the chloroplast stroma provided by fast equilibration of bicarbonate and CO(2) and forwarding the latter to Rubisco reaction centers. The main part of this feedforward mechanism is a thylakoidal carbonic anhydrase associated with photosystem II and pumping CO(2) from the thylakoid lumen in coordination with the rate of electron transport, water splitting and proton gradient across the thylakoid membrane. This steady flux of CO(2) limits photosynthesis at saturating CO(2) concentrations. At low ambient CO(2) and correspondingly limited capacity of the bicarbonate pool in the stroma, its depletion at the sites of Rubisco is relieved by utilizing O(2) instead of CO(2), i.e. by photorespiration, a process which supplies CO(2) back to Rubisco and buffers the redox state and energy level in the chloroplast. Thus, the regulation of Rubisco function aims to keep steady non-equilibrium levels of CO(2), NADPH/NADP and ATP/ADP in the chloroplast stroma and to optimize the condition of homeostatic photosynthetic flux of matter and energy.  相似文献   

2.
Laisk A  Sumberg A 《Plant physiology》1994,106(2):689-695
Photorespiration was calculated from chlorophyll fluorescence and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) kinetics and compared with CO2 evolution rate in the light, measured by three gas-exchange methods in mature sunflower (Helianthus annuus L.) leaves. The gas-exchange methods were (a) postillumination CO2 burst at unchanged CO2 concentration, (b) postillumination CO2 burst with simultaneous transfer into CO2-free air, and (c) extrapolation of the CO2 uptake to zero CO2 concentration at Rubisco active sites. The steady-state CO2 compensation point was proportional to O2 concentration, revealing the Rubisco specificity coefficient (Ksp) of 86. Electron transport rate (ETR) was calculated from fluorescence, and photorespiration rate was calculated from ETR using CO2 and O2 concentrations, Ksp, and diffusion resistances. The values of the best-fit mesophyll diffusion resistance for CO2 ranged between 0.3 and 0.8 s cm-1. Comparison of the gas-exchange and fluorescence data showed that only ribulose-1,5-bisphosphate (RuBP) carboxylation and photorespiratory CO2 evolution were present at limiting CO2 concentrations. Carboxylation of a substrate other than RuBP, in addition to RuBP carboxylation, was detected at high CO2 concentrations. A simultaneous decarboxylation process not related to RuBP oxygenation was also detected at high CO2 concentrations in the light. We propose that these processes reflect carboxylation of phosphoenolpyruvate, formed from phosphoglyceric acid and the subsequent decarboxylation of malate.  相似文献   

3.
The binding of bovine oxyhemoglobin to bovine carbonic anhydrase with a dissociation constant between 10(-5) and 10(-7) M has been determined by countercurrent distribution using aqueous, biphasic polymer systems. This result provides an explanation for the very efficient proton transfer between hemoglobin and carbonic anhydrase, a transfer which enhances the catalytic activity of carbonic anhydrase as measured by 18O exchange between bicarbonate and water at chemical equilibrium (Silverman, D. N., Tu, C. K., and Wynns, G. C. (1978) J. Biol. Chem, 253, 2563-2567). Two rate constants describing 18O exchange activity of carbonic anhydrase at pH 7.5 show saturation behavior when plotted against hemoglobin concentration consistent with a dissociation constant of 2.5 X 10(-6) M between bovine hemoglobin and carbonic anhydrase. Interpretation of these rate constants in terms of a two-step model for 18O exchange indicates that hemoglobin enhances the rate of exchange from carbonic anhydrase of water containing the oxygen abstracted from bicarbonate, but does not affect the catalytic interconversion of CO2 and HCO3- at chemical equilibrium.  相似文献   

4.
Immunocytolocalization experiments indicate that carbonic anhydrase, phosphoribulokinase, and P-glycerate kinase are near neighbors of Rubisco in the pea leaf chloroplast stroma. Direct transfer of ribulose bisphosphate and gaseous CO(2) from phosphoribulokinase and carbonic anhydrase to Rubisco, and direct transfer of P-glycerate from Rubisco to P-glycerate kinase in the chloroplast stroma, is then a possibility. Rubisco activase, responsible for the removal of inhibitory sugar phosphates that bind to the active site of Rubisco in the dark, also appears to be co-localized with Rubisco.  相似文献   

5.
The dependence of the CO2 concentration on the discharge conditions and the mixture composition in a CO laser is studied experimentally. The experimental data are compared with the calculated results. A scheme of the reactions that govern the concentration of CO2 molecules under the experimental conditions in question is constructed. It is shown that, in a gas-discharge plasma, an admixture of Xe in a mixture containing CO molecules gives rise to a new mechanism for the dissociation of CO2 molecules by metastable xenon atoms. Under conditions close to the operating conditions of sealed-off CO lasers, the dissociation of CO2 molecules in collisions with metastable. Xe(3P2) atoms becomes the dominant dissociation mechanism in a He: CO mixture because it proceeds at a fast rate. This explains the observed decrease in the CO2 concentration in a xenon-containing He: CO mixture.  相似文献   

6.
CO(2) transfer conductance from the intercellular airspaces of the leaf into the chloroplast, defined as mesophyll conductance (g(m)), is finite. Therefore, it will limit photosynthesis when CO(2) is not saturating, as in C3 leaves in the present atmosphere. Little is known about the processes that determine the magnitude of g(m). The process dominating g(m) is uncertain, though carbonic anhydrase, aquaporins, and the diffusivity of CO(2) in water have all been suggested. The response of g(m) to temperature (10 degrees C-40 degrees C) in mature leaves of tobacco (Nicotiana tabacum L. cv W38) was determined using measurements of leaf carbon dioxide and water vapor exchange, coupled with modulated chlorophyll fluorescence. These measurements revealed a temperature coefficient (Q(10)) of approximately 2.2 for g(m), suggesting control by a protein-facilitated process because the Q(10) for diffusion of CO(2) in water is about 1.25. Further, g(m) values are maximal at 35 degrees C to 37.5 degrees C, again suggesting a protein-facilitated process, but with a lower energy of deactivation than Rubisco. Using the temperature response of g(m) to calculate CO(2) at Rubisco, the kinetic parameters of Rubisco were calculated in vivo from 10 degrees C to 40 degrees C. Using these parameters, we determined the limitation imposed on photosynthesis by g(m). Despite an exponential rise with temperature, g(m) does not keep pace with increased capacity for CO(2) uptake at the site of Rubisco. The fraction of the total limitations to CO(2) uptake within the leaf attributable to g(m) rose from 0.10 at 10 degrees C to 0.22 at 40 degrees C. This shows that transfer of CO(2) from the intercellular air space to Rubisco is a very substantial limitation on photosynthesis, especially at high temperature.  相似文献   

7.
The presupposition for the hatching of the eggs of Fasciola hepatica is the presence of undissociated CO2 with the most effective concentration of 2-10 mMols/l. Higher concentrations show inhibitory effects (Abb. 6). In hatching pH has only importance in dissociation of carbonic acid and so in maintaining free CO2. To provide for sufficient CO2 at higher pH - but below 8.3 - the concentration of carbonic acid must be increased by higher concentrations of metallic ions electrically neutralized by hydrogen carbonate (e.g. in Abb. 1-4). Higher pH is necessary for miracidia surviving. Beside the wellknown hatching factors of exposure to light and cooling, darkening is a new found factor (s. Abb. 7) as well as sufficient increase of CO2 itself. The effect of light stimulation is lasting for at most 3 h with exponential decrease (Abb. 7). At low CO2-pressure the occurrence of hatching is greater without any oxygen (Abb. 5).  相似文献   

8.
The acid-tolerant green alga Chlamydomonas (UTCC 121) grows in media ranging in pH from 2.5 to 7.0. Determination of the overall internal pH of the cells, using (14)C-benzoic acid (BA) or [2-(14)C]-5,5-dimethyloxazolidine-2,4-dione (DMO), showed that the cells maintain a neutral pH (6.6 to 7.2) over an external pH range of 3.0-7.0. The cells express an external carbonic anhydrase (CA) when grown in media above pH 5.5, and CA increases to a maximum at pH 7.0. Removal of external CA by trypsin digestion or by acetazolamide (AZA) inhibition indicated that CA was essential for photosynthesis at pH 7.0 and that the cells had no capacity for direct bicarbonate uptake. Monitoring of CO(2) uptake and O(2) evolution by mass spectrometry during photosynthesis did not provide any evidence of active CO(2) uptake. The CO(2) compensation concentration of the cells ranged from 9.4 microM at pH 4.5 to 16.2 microM at pH 7.0. An examination of the kinetics of ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco), in homogenates of cells grown at pH 7.0, showed that the K(m) (CO(2)) was 16.3 microM. These data indicate that the pH between the cell interior and the external medium was large enough at acid pH to allow the accumulation of inorganic carbon (Ci) by the diffusive uptake of CO(2), and the expression of external CA at neutral pH values would maintain an equilibrium CO(2) concentration at the cell surface. This species does not possess a CO(2)-concentrating mechanism because the whole cell affinity for Ci appears to be determined by the low K(m) (CO(2)) Rubisco of the alga.  相似文献   

9.
10.
The life of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), from gene to protein to irreplaceable component of photosynthetic CO2 assimilation, has successfully served as a model for a number of essential cellular processes centered on protein chemistry and amino acid modifications. Once translated, the two subunits of Rubisco undergo a myriad of co- and posttranslational modifications accompanied by constant interactions with structurally modifying enzymes. Even after final assembly, the essential role played by Rubisco in photosynthetic CO2 assimilation is dependent on continuous conformation modifications by Rubisco activase. Rubisco is also continuously assaulted by various environmental factors, resulting in its turnover and degradation by processes that appear to be enhanced during plant senescence.  相似文献   

11.
P Paneth  M H O'Leary 《Biochemistry》1985,24(19):5143-5147
The carbon-13 kinetic isotope effect on the dehydration of HCO3- by bovine carbonic anhydrase has been measured. To accomplish this, bicarbonate was added to a buffer solution at pH 8 containing carbonic anhydrase under conditions where purging of the product CO2 from the solution is rapid. Measurement of the isotopic composition of the purged CO2 as a function of the concentration of carbonic anhydrase permits calculation of the isotope effect on the enzymic reaction. The isotope effect on the dehydration is k12/k13 = 1.0101 +/- 0.0004. This effect is most consistent with a ping-pong mechanism for carbonic anhydrase action, in which proton transfer to or from the enzyme occurs in a step separate from the dehydration step. Substrate and product dissociation steps are at least 2-3-fold faster than the hydration/dehydration step.  相似文献   

12.
Cyanobacteria, blue-green algae, are the most abundant autotrophs in aquatic environments and form the base of the food chain by fixing carbon and nitrogen into cellular biomass. To compensate for the low selectivity of Rubisco for CO2 over O2, cyanobacteria have developed highly efficient CO2-concentrating machinery of which the ABC transport system CmpABCD from Synechocystis PCC 6803 is one component. Here, we have described the structure of the bicarbonate-binding protein CmpA in the absence and presence of bicarbonate and carbonic acid. CmpA is highly homologous to the nitrate transport protein NrtA. CmpA binds carbonic acid at the entrance to the ligand-binding pocket, whereas bicarbonate binds in nearly an identical location compared with nitrate binding to NrtA. Unexpectedly, bicarbonate binding is accompanied by a metal ion, identified as Ca2+ via inductively coupled plasma optical emission spectrometry. The binding of bicarbonate and metal appears to be highly cooperative and suggests that CmpA may co-transport bicarbonate and calcium or that calcium acts a cofactor in bicarbonate transport.  相似文献   

13.
The maximal velocity in the hydration of CO(2) catalyzed by the carbonic anhydrases in well-buffered solutions is limited by an intramolecular proton transfer from zinc-bound water to acceptor groups of the enzyme and hence to buffer in solution. Stopped-flow spectrophotometry was used to accumulate evidence that this maximal velocity is affected by residues of basic pK(a), near 8 to above 9, in catalysis of the hydration of CO(2) by carbonic anhydrases III, IV, V, and VII. A mutant of carbonic anhydrase II containing the replacement His-64-->Ala, which removes the prominent histidine proton shuttle (with pK(a) near 7), allows better observation of these basic groups. We suggest this feature of catalysis is general for the human and animal carbonic anhydrases and is due to residues of basic pK(a), predominantly lysines and tyrosines more distant from the zinc than His-64, that act as proton acceptors. These groups supplement the well-studied proton transfer from zinc-bound water to His-64 in the most efficient of the carbonic anhydrases, isozymes II, IV, and VII.  相似文献   

14.
Evidence is presented that the bicarbonate ion (HCO3-), not CO2, H2CO3 or CO32-, is the species that stimulates electron transport in Photosystem II from spinach (Spinacia oleracea). Advantage was taken of the pH dependence of the ratio of HCO3- to CO2 at equilibrium in order to vary effectively the concentration of one species while holding the other constant. The Hill reaction was stimulated in direct proportion with the equilibrium HCO3- concentration, but it was independent of the equilibrium CO2 concentration. The other two carbonic species, H2CO3 and CO32-, are also shown to have no direct involvement. It is suggested that HCO3- is the species which binds to the effector site.  相似文献   

15.
Wang ZY  Portis AR 《Plant physiology》1992,99(4):1348-1353
Ribulose bisphosphate (RuBP), a substrate of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is an inhibitor of Rubisco activation by carbamylation if bound to the inactive, noncarbamylated form of the enzyme. The effect of Rubisco activase on the dissociation kinetics of RuBP bound to this form of the enzyme was examined and characterized with the use of 3H-labeled RuBP and proteins purified from spinach (Spinacia oleracea L.) In the absence of Rubisco activase and in the presence of a large excess of unlabeled RuBP, the dissociation rate of bound [1-3H]RuBP was much faster after a short (30 second) incubation than after an extended incubation (1 hour). After 1 hour of incubation, the dissociation rate constant (Koff) of the bound RuBP was 4.8 × 10−4 per second, equal to a half-time of about 35 minutes, whereas the rate after only 30 seconds was too fast to be accurately measured. This time-dependent change in the dissociation rate was reflected in the subsequent activation kinetics of Rubisco in the presence of RuBP, CO2, and Mg2+, and in both the absence or presence of Rubisco activase. However, the activation of Rubisco also proceeded relatively rapidly without Rubisco activase if the RuBP level decreased below the estimated catalytic site concentration. High pH (pH 8.5) and the presence of Mg2+ in the medium also enhanced the dissociation of the bound RuBP from Rubisco in the presence of RuBP. In the presence of Rubisco activase, Mg2+, ATP (but not the nonhydrolyzable analog, adenosine-5′-O-[3-thiotriphosphate]), excess RuBP, and an ATP-regenerating system, the dissociation of [1-3H]RuBP from Rubisco was increased in proportion to the amount of Rubisco activase added. This result indicates that Rubisco activase-mediated hydrolysis of ATP is required for promotion of the enhanced dissociation of the bound RuBP from Rubisco. Furthermore, product analysis by ion-exchange chromatography demonstrated that the release of the bound RuBP, in an unchanged form, was considerably faster than the observed increase in Rubisco activity. Thus, RuBP dissociation was experimentally separated from activation and precedes the subsequent formation of active, carbamylated Rubisco during activation of Rubisco by Rubisco activase.  相似文献   

16.
Unicellular green algae and cyanobacteria have mechanism to actively concentrate dissolved inorganic carbon into the cells, only if they are grown with air levels of CO2. The carbon concentration mechanisms are commonly known as "CCM" or "DIC-pumps". The DIC-pumps are environmental adaptation that function to actively transport and accumulate inorganic carbon (HCO3- and CO2; Ci) within the cell and then uses this Ci pool to actively increase the concentration of CO2 at the site of ribulose bisphosphate carboxylase-oxygenase (Rubisco), the primary CO2-fixing enzyme. The current working model for dissolved inorganic carbon concentration mechanism in unicellular green algae includes several isoforms of carbonic anhydrase (CA), and ATPase driven active transporters at the plasmalemma and at the inner chloroplast envelopes. In the past fifteen years, significant progress has been made in isolating and characterizing the various isoforms of carbonic anhydrase at the biochemical and molecular level. However, we have an inadequate understanding of active transporters that are located on the plasmalemma and at the chloroplast envelopes. In this mini-review we focus on certain aspects of the induction, function and significance of the dissolved inorganic carbon concentration mechanisms in aquatic photosynthetic microorganisms.  相似文献   

17.
Rates of CO2/HCO-3 exchange, catalyzed by human carbonic anhydrase I (or B) at chemical equilibrium, were estimated from the nuclear magnetic resonance linewidths of 13C-labeled substrates. The results show that the maximal exchange rate constant is independent of pH in the range 5.7-8.0, whereas the apparent substrate dissociation constant depends on pH. Exchange proceeds rapidly in the absence of added buffers, and the addition of buffers has negligible effects on exchange rates. Exchange is equally rapid with 1H2O or 2H2O as solvents. Chloride ions inhibit CO2/HCO-3 exchange competitively. The maximal exchange rates obtained with human carbonic anhydrase I are 50 times slower than those obtained with human isoenzyme II (or C). From a comparison of the exchange kinetics with the steady-state kinetics of CO2 hydration and HCO-3 dehydration it is tentatively concluded that the transfer of H+ between active site and medium proceeds with rates of similar magnitudes in the two isoenzymes, whereas the central catalytic step, the interconversion of enzyme-bound CO2 and HCO-3, is much slower in isoenzyme I than in isoenzyme II.  相似文献   

18.
Marine diatoms, the major primary producer in ocean environment, are known to take up both CO(2) and HCO(3)(-) in seawater and efficiently concentrate them intracellularly, which enable diatom cells to perform high-affinity photosynthesis under limiting CO(2). However, mechanisms so far proposed for the inorganic carbon acquisition in marine diatoms are significantly diverse despite that physiological studies on this aspect have been done with only limited number of species. There are two major hypotheses about this; that is, they take up and concentrate both CO(2) and HCO(3)(-) as inorganic forms, and efficiently supply CO(2) to Rubisco by an aid of carbonic anhydrases (biophysical CO(2)-concentrating mechanism: CCM); and as the other hypothesis, biochemical conversion of HCO(3)(-) into C(4) compounds may play a major role to supply concentrated CO(2) to Rubisco. At moment however, physiological evidence for these hypotheses were not related well to molecular level evidence. In this study, recent progresses in molecular studies on diatom-carbon-metabolism genes were related to the physiological aspects of carbon acquisition. Furthermore, we discussed the mechanisms regulating CO(2) acquisition systems in response to changes in pCO(2). Recent findings about the participation of cAMP in the signaling pathway of CO(2) concentration strongly suggested the occurrences of mammalian-type-signaling pathways in diatoms to respond to changes in pCO(2). In fact, there were considerable numbers of putative adenylyl cyclases, which may take part in the processes of CO(2) signal capturing.  相似文献   

19.
C K Tu  D N Silverman 《Biochemistry》1985,24(21):5881-5887
We have measured the catalysis by Co(II)-substituted bovine carbonic anhydrase II from red cells of the exchange of 18O between CO2 and H2O using membrane-inlet mass spectrometry. We chose Co(II)-substituted carbonic anhydrase II because the apparent equilibrium dissociation constant of HCO3- and enzyme at pH 7.4, KHCO3-eff approximately equal to 55 mM, was within a practicable range of substrate concentrations for the 18O method. For the native, zinc-containing enzyme KHCO3-eff is close to 500 mM at this pH. The rate constant for the release from the active site of water bearing substrate oxygen kH2O was dependent on the fraction of enzyme that was free, not bound by substrate HCO3- or anions. The pH dependence of kH2O in the pH range 6.0-9.0 can be explained entirely by a rate-limiting, intramolecular proton transfer between cobalt-bound hydroxide and a nearby group, probably His-64. The rate constant for this proton transfer was found to be 7 X 10(5) S-1 for the Co(II)-substituted enzyme and 2 X 10(6) S-1 for the native enzyme. These results are applied to models derived from proton-relaxation enhancement of water exchanging from the inner coordination shell of the cobalt in carbonic anhydrase. The anions iodide, cyanate, and thiocyanate inhibited catalysis of 18O exchange by Co(II)-substituted carbonic anhydrase II in a manner competitive with total substrate (CO2 and HCO3-) at chemical equilibrium and pH 7.4. These results are discussed in terms of observed steady-state inhibition patterns and suggest that there is no significant contribution of a ternary complex between substrate, inhibitor, and enzyme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号