首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Behavior and physiological changes are under the influence of circadian and homeostatic variations. Temporal alignment regulates timing of neurobiological phenomena, such as protein phosphorylation. In the current report, we describe the circadian and sleep homeostatic phosphorylated mitogen-activated protein kinase (MAP-K) variations in hypothalamus and pons of rats across 24 h as well as after sleep deprivation. In the circadian study, MAP-K expression showed a building-up profile during the dark phase in hypothalamus, whereas an increase across the lights-on period was found in pons. On the other hand, that phosphorylation of MAP-K in hypothalamus and pons displayed a significant reduction after sleep rebound period. Data demonstrate that MAP-K phosphorylation undergoes circadian and sleep homeostatic variations in brain areas linked to sleep modulation.  相似文献   

2.
Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and cannabidiol (CBD) are two major constituents of Cannabis sativa. Delta(9)-THC modulates sleep, but no clear evidence on the role of CBD is available. In order to determine the effects of CBD on sleep, it was administered intracerebroventricular (icv) in a dose of 10 microg/5 microl at the beginning of either the lights-on or the lights-off period. We found that CBD administered during the lights-on period increased wakefulness (W) and decreased rapid eye movement sleep (REMS). No changes on sleep were observed during the dark phase. Icv injections of CBD (10 microg/5microl) induced an enhancement of c-Fos expression in waking-related brain areas such as hypothalamus and dorsal raphe nucleus (DRD). Microdialysis in unanesthetized rats was carried out to characterize the effects of icv administration of CBD (10 microg/5 microl) on extracellular levels of dopamine (DA) within the nucleus accumbens. CBD induced an increase in DA release. Finally, in order to test if the waking properties of CBD could be blocked by the sleep-inducing endocannabinoid anandamide (ANA), animals received ANA (10 microg/2.5 microl, icv) followed 15 min later by CBD (10 microg/2.5 microl). Results showed that the waking properties of CBD were not blocked by ANA. In conclusion, we found that CBD modulates waking via activation of neurons in the hypothalamus and DRD. Both regions are apparently involved in the generation of alertness. Also, CBD increases DA levels as measured by microdialysis and HPLC procedures. Since CBD induces alertness, it might be of therapeutic value in sleep disorders such as excessive somnolence.  相似文献   

3.

Background

Oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are amides of fatty acids and ethanolamine named N-acylethanolamines or acylethanolamides. The hydrolysis of OEA and PEA is catalyzed by the fatty acid amide hydrolase (FAAH). A number of FAAH inhibitors that increase the levels of OEA and PEA in the brain have been developed, including URB597. In the present report, we examined whether URB597, OEA or PEA injected into wake-related brain areas, such as lateral hypothalamus (LH) or dorsal raphe nuclei (DRN) would promote wakefulness (W) in rats.

Methodology and Principal Findings

Male Wistar rats (250–300 g) were implanted for sleep studies with electrodes to record the electroencephalogram and electromyogram as well as a cannulae aimed either into LH or into DRN. Sleep stages were scored to determine W, slow wave sleep (SWS) and rapid eye movement sleep (REMS). Power spectra bands underly neurophysiological mechanisms of the sleep-wake cycle and provide information about quality rather than quantity of sleep, thus fast Fourier transformation analysis was collected after the pharmacological trials for alpha (for W; α = 8–12 Hz), delta (for SWS; δ = 0.5–4.0 Hz) and theta (for REMS; θ = 6.0–12.0 Hz). Finally, microdialysis samples were collected from a cannula placed into the nucleus accumbens (AcbC) and the levels of dopamine (DA) were determined by HPLC means after the injection of URB597, OEA or PEA. We found that microinjection of compounds (10, 20, 30 µg/1 µL; each) into LH or DRN during the lights-on period increased W and decreased SWS as well as REMS and enhanced DA extracellular levels.

Conclusions

URB597, OEA or PEA promoted waking and enhanced DA if injected into LH or DRN. The wake-promoting effects of these compounds could be linked with the enhancement in levels of DA and indirectly mediated by anandamide.  相似文献   

4.
Locomotor activity rhythms in the crayfish, Faxonella clypeata, were recorded under conditions of controlled light and temperature. In LD 12:12, dark active rhythms with a major activity onset at lights-off, and bimodally active rhythms with onsets at both lights-on and lights-off were recorded. In DD, most of the LD dark active rhythms retained the lights-off activity onset. However, among the majority of the LD bimodally active crayfish, only the lights-on activity peak persisted in DD. A small number of the LD bimodal rhythms remained bimodal in DD. DD records revealed free-running period lengths both greater and less than 24 hrs. An hypothesis stating that the two recorded LD rhythms represent two basically different rhythmic types is presented. The dark active crayfish appear to entrain to the lights-off position, but the bimodally rhythmic crayfish appear to entrain to the lights-on position.  相似文献   

5.
Summary By means of morphometric analytical procedures, a diurnal rhythm in the cellular volume of gerbil pinealocytes was determined. This rhythm has been attributed primarily to a change in the cytoplasmic volume of the pinealocytes which is low during the daylight hours and increases to reach a peak during the middle of the dark period. At the ultrastructural level, six cytoplasmic components of the pinealocytes were found to exhibit a rhythm: free cytoplasm, smooth endoplasmic reticulum (SER), rough endoplasmic reticulum (RER) and ribosomes, secretory vesicles, microtubules, and mitochondria. The presumptive secretory vesicles and the microtubules reached a peak in volume one hour before lights-off. It is suggested that lights-on and lights-off both signal a decrease in size and/or number of the secretory vesicles. The SER and RER/ribosomes reached their peak volume one hour after lights-off which is interpreted as indicating a peak in indoleamine synthesis and protein synthesis, respectively. The volume of free cytoplasm exhibits two peaks; one occurs one hour before lights-off while the second peak occurs in the middle of the dark phase. It is suggested that, although part of the secretory product of the pinealocyte may be present in dense-cored vesicles, other locations could include the free cytoplasm and clear secretory vesicles.Supported by NSF grant #PCM 77-05734  相似文献   

6.
Most mammals show daily rhythms in sleep and wakefulness controlled by the primary circadian pacemaker, the suprachiasmatic nucleus (SCN). Regardless of whether a species is diurnal or nocturnal, neural activity in the SCN and expression of the immediate-early gene product Fos increases during the light phase of the cycle. This study investigated daily patterns of Fos expression in brain areas outside the SCN in the diurnal rodent Arvicanthis niloticus. We specifically focused on regions related to sleep and arousal in animals kept on a 12:12-h light-dark cycle and killed at 1 and 5 h after both lights-on and lights-off. The ventrolateral preoptic area (VLPO), which contained cells immunopositive for galanin, showed a rhythm in Fos expression with a peak at zeitgeber time (ZT) 17 (with lights-on at ZT 0). Fos expression in the paraventricular thalamic nucleus (PVT) increased during the morning (ZT 1) but not the evening activity peak of these animals. No rhythm in Fos expression was found in the centromedial thalamic nucleus (CMT), but Fos expression in the CMT and PVT was positively correlated. A rhythm in Fos expression in the ventral tuberomammillary nucleus (VTM) was 180 degrees out of phase with the rhythm in the VLPO. Furthermore, Fos production in histamine-immunoreactive neurons of the VTM cells increased at the light-dark transitions when A. niloticus show peaks of activity. The difference in the timing of the sleep-wake cycle in diurnal and nocturnal mammals may be due to changes in the daily pattern of activity in brain regions important in sleep and wakefulness such as the VLPO and the VTM.  相似文献   

7.
ABSTRACT. The periodicity of calling by female Platyptilia carduidactyla (Riley) is influenced by temperature and photoperiod. Both diurnal and nocturnal temperature changes shift the period of nocturnal calling, but in fundamentally different ways; lower daytime temperatures delay activity, while lower night temperatures result in earlier activity. Lengthening photoperiods result in activity earlier in the scotophase, but the period of activity does not maintain a constant phase relationship with either lights-on or lights-off. The periodicity of the behavioural response of males parallels that of calling by females, resulting in coordination of reproductive activities in the field. The result of these responses to environmental stimuli is that mating activity can occur throughout the year in coastal California.  相似文献   

8.
A radioimmunoassay for serum testosterone which does not require chromatographic separation was used to measure the diurnal variations in intact and orchidecomized males and intact and ovariectomized females. The intact male rhesus monkey shows a distinctive diurnal variation in serum levels of testosterone characterized by lower values during the day and a marked increase in the early evening (1900-2200 hr). The testosterone levels remain high throughout most of the lights-off period in the intact male. In contrast to the intact male, the markedly lowered serum levels of testosterone in the orchidectomized male were higher during the day and consistently showed a nadir during the early evening (2000-2200 hr). The evening nadir of testosterone levels was 51.0% lower than the 24-hr mean whereas the maximum serum level was 46.4% higher. A similar circadian pattern of testosterone was seen in both the intact and ovariectomized females. The testosterone values were higher during the day and consistently showed a nadir during the early evening. These results suggest that the adrenal secretion of testosterone varies in a diurnal pattern characterized by an early evening nadir. This adrenal pattern is overshadowed by a much larger gonadal rhythm in the intact male.  相似文献   

9.
Concentrations of dopamine (DA), its metabolites 3-methoxytyramine and homovanillic acid (HVA), noradrenaline (NA), its metabolites normetanephrine (NM) and 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxytryptamine (5-HT, serotonin), and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were measured in 14 brain regions and in CSF from the third ventricle of 27 human autopsy cases. In addition, in six cases, lumbar CSF was obtained. Monoamine concentrations were determined by reversed-phase liquid chromatography with electrochemical detection. Ventricular/lumbar CSF ratios indicated persistence of rostrocaudal gradients for HVA and 5-HIAA post mortem. Ventricular CSF concentrations of DA and HVA correlated positively with striatal DA and HVA. CSF NA correlated positively with NA in hypothalamus, and CSF MHPG with levels of MHPG in hypothalamus, temporal cortex, and pons, whereas CSF NM concentration showed positive correlations with NM in striatum, pons, cingulate cortex, and olfactory tubercle. CSF 5-HT concentrations correlated positively with 5-HT in caudate nucleus, whereas the concentration of CSF 5-HIAA correlated to 5-HIAA levels in thalamus, hypothalamus, and the cortical areas. These data suggest a specific topographic origin for monoamine neurotransmitters and their metabolites in human ventricular CSF and support the contention that CSF measurements are useful indices of central monoaminergic activity in man.  相似文献   

10.
Circadian variations in alpha-melanocyte-stimulating hormone (alpha-MSH) content of discrete hypothalamic areas of the male rat were observed either with radioimmunoassay or bioassay. In the medial basal hypothalamus and preoptic area the alpha-MSH content increased sharply between 02.00 and 06.00 h, showing the highest concentration at 06.00 h. In contrast, no significant changes in alpha-MSH content were detected in the lateral hypothalamus during a 24-hour period. Pituitary alpha-MSH also showed a diurnal variation which was different from that in the two hypothalamic areas. The finding that alpha-MSH values in the brain are maximal during the activity period of the rat is in agreement with results demonstrating a role of alpha-MSH in behaviour and locomotor activity.  相似文献   

11.
Abstract

Acetylcholinesterase (AChE) activity of the adenohypophysis, cerebellum, cerebral cortex, hypothalamus, amygdala, hippocampus, midbrain, pons, medulla oblongata and caudate nucleus was determined by a spectro‐photometric method in adult, male rats adapted toan LD 12:12cycle. Results of the study show that AChE activity is highest during the light phase and lowest during the dark phase of the cycle in all the brain areas studied except the adenohypophysis, cerebellum, hippocampus and hypothalamus. These findings expand earlier observations on the circadian variation in rat brain AChE activity and suggests a relationship with reported circadian variation in the acetylcholine levels of rat brain.  相似文献   

12.
The binding of 3H-naltrexone, an opiate receptor antagonist, to membranes of discrete brain regions and spinal cord of 10 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. The brain regions examined were hypothalamus, amygdala, hippocampus, corpus striatum, pons and medulla, midbrain and cortex. 3H-Naltrexone bound to membranes of brain regions and spinal cord at a single high affinity site with an apparent dissociation constant value of 3 nM. The highest density of 3H-naltrexone binding sites were in hippocampus and lowest in the cerebral cortex. The receptor density (Bmax value) and apparent dissociation constant (Kd value) values of 3H-naltrexone to bind to opiate receptors on the membranes of amygdala, hippocampus, corpus striatum, pons and medulla, midbrain, cortex and spinal cord of WKY and SHR rats did not differ. The Bmax value of 3H-naltrexone binding to membranes of hypothalamus of SHR rats was 518% higher than WKY rats but the Kd values in the two strains did not differ. It is concluded that SHR rats have higher density of opiate receptors labeled with 3H-naltrexone in the hypothalamus only, in comparison with WKY rats, and that such a difference in the density of opiate receptors may be related to the elevated blood pressure in SHR rats.  相似文献   

13.
Plasma and cerebrospinal fluid (CSF) beta-endorphin levels were determined by a RIA method in seven hydrocephalic male patients. The samples were simultaneously collected every two hours from 8 AM to 12 midnight and every hour from 1 AM to 7 AM. In both plasma and CSF beta-endorphin levels showed significant time-related variations during the 24 hour period. These results suggest the existence of diurnal CSF beta-endorphin variations analogous to those observed in plasma.  相似文献   

14.
N‐oleoylethanolamine (OEA) and N‐palmitoylethanolamine (PEA) are endogenous lipids that activate peroxisome proliferator–activated receptor‐α with high and intermediate potency, and exert anorectic and anti‐inflammatory actions in rats, respectively. We investigated OEA and PEA tissue level regulation by the nutritional status in lean and obese rats. OEA and PEA levels in the brainstem, duodenum, liver, pancreas, and visceral (VAT) or subcutaneous (SAT) adipose tissues of 7‐week‐old wild‐type (WT) and Zucker rats, fed ad libitum or following overnight food deprivation, with and without refeeding, were measured by liquid chromatography–mass spectrometry. In WT rats, duodenal OEA, but not PEA, levels were reduced by food deprivation and restored by refeeding, whereas the opposite was observed for OEA in the pancreas, and for both mediators in the liver and SAT. In ad lib fed Zucker rats, PEA and OEA levels were up to tenfold higher in the duodenum, slightly higher in the brainstem, and lower in the other tissues. Fasting/refeeding‐induced changes in OEA levels were maintained in the duodenum, liver, and SAT, and lost in the pancreas, whereas fasting upregulated this compound also in the VAT. The observed changes in OEA levels in WT rats are relevant to the actions of this mediator on satiety, hepatic and adipocyte metabolism, and insulin release. OEA dysregulation in Zucker rats might counteract hyperphagia in the duodenum, but contribute to hyperinsulinemia in the pancreas, and to fat accumulation in adipose tissues and liver. Changes in PEA levels might be relevant to the inflammatory state of Zucker rats.  相似文献   

15.
Phospholipase D (PL-D) activity per mg protein of whole homogenate increased 5.1 fold between Embryonic (E) day 17 and Postpartum (P) day 14 and slightly decreased by P 30 days. This was due to the decrease of PL-D activity of the P2 fraction. The PL-D activity of P2 and P3 fractions increased 11.2 and 6.1 fold respectively between E 17 and P 14. The 3 base exchange enzyme (BEE) activities per mg protein of whole homogenate increased up to P 14 or P 21 and then decreased. This decrease was greater in the P2 fraction and the P3 fraction increased after P14. Brains from 1 day to 25 month old rats were dissected into 7 separate regions and both PL-D and BEE activities were measured. In adult rats, the hippocampus and hypothalamus had the highest PL-D activities while medulla+pons and cerebellum had the lowest PL-D activities. The developmental patterns of 5 regions except for hippocampus and hypothalamus were similar. PL-D activity in the hippocampus was maximum at P 7 followed by a steep decrease till P30 suggesting that the PL-D activity of the hypothalamus develops later and that of the hippocampus develops earlier than any other region. The distributions of BEE activities were quite different from those of PL-D activities. In adult rats, the cerebellum had the highest activity while the striatum and medulla+pons had the lowest. The BEE activities of cerebellum were lowest at P 1 and showed steep increase during the next 2 weeks.To whom to address reprint request are to be sent.  相似文献   

16.
Coupling of CNS receptors to phosphoinositide turnover has previously been found to vary with both age and brain region. To determine whether the metabolism of the second messenger inositol 1,4,5-trisphosphate also displays such variations, activities of inositol 1,4,5-trisphosphate 5'-phosphatase and 3'-kinase were measured in developing rat cerebral cortex and adult rat brain regions. The 5'-phosphatase activity was relatively high at birth (approximately 50% of adult values) and increased to adult levels by 2 weeks postnatal. In contrast, the 3'-kinase activity was low at birth and reached approximately 50% of adult levels by 2 weeks postnatal. In the adult rat, activities of the 3'-kinase were comparable in the cerebral cortex, hippocampus, and cerebellum, whereas much lower activities were found in hypothalamus and pons/medulla. The 5'-phosphatase activities were similar in cerebral cortex, hippocampus, hypothalamus, and pons/medulla, whereas 5- to 10-fold higher activity was present in the cerebellum. The cerebellum is estimated to contain 50-60% of the total inositol 1,4,5-trisphosphate 5'-phosphatase activity present in whole adult rat brain. The localization of the enriched 5'-phosphatase activity within the cerebellum was examined. Application of a histochemical lead-trapping technique for phosphatase indicated a concentration of inositol 1,4,5-trisphosphate 5'-phosphatase activity in the cerebellar molecular layer. Further support for this conclusion was obtained from studies of Purkinje cell-deficient mutant mice, in which a marked decrement of cerebellar 5'-phosphatase was observed. These results suggest that the metabolic fate of inositol 1,4,5-trisphosphate depends on both brain region and stage of development.  相似文献   

17.
The comparisons of food consumption and locomotor activity among Taiwan native rodents, Formosan wood mice (Apodemus semotus), and laboratory mice, C57BL/6, were examined in this study. The food consumption exhibited the circadian rhythmicity, e.g. higher in the lights-off period and lower in the lights-on period, in either Formosan wood mice (WM) or C57BL/6 mice. We also found that Formosan WM ate more food than C57BL/6 mice in the lights-off period and the whole day in males, but not in females. Similarly, the male Formosan WMs had more locomotor activities than the male C57BL/6 mice in the lights-off period, but this phenomenon did not appear in female mice. These results indicated that even though the Formosan WMs have been successfully inbred in the laboratory, they still keep more native paradigm than the laboratory C57BL/6 mice do. This study is the first report to provide basic physiological comparisons on native and common laboratory mice.  相似文献   

18.
Discrete areas of freshly obtained adult bovine brain were assayed for their content of immunoreactive β-lipotropin (β-LPH), ACTH and β-endorphin. Highest concentrations (pg/100ug protein) of β-LPH were present in hypothalamus (517 ± 81), hippocampus (218 ± 60), central grey rostral mesencephalic level, pons, striatum, and spinal cord (163–258). Lesser concentrations (49–138) were present in other parts of the limbic system, brain stem, cortex and thalamus. Immunoreactive ACTH concentrations were highest in hypothalamus (1702 ± 487) and hippocampus (210 ± 40), with markedly lesser concentrations (5–24) being present in all the other aforementioned areas. Immunoreactive β-endorphin concentrations in hypothalamus were 1990 ± 510, in hippocampus 280 ± 50.  相似文献   

19.
We developed a new selective liquid chromatography-electrospray ionization-tandem mass spectrometry method for the identification and quantification of anandamide (AEA), an endogenous cannabinoid receptor ligand, and other bioactive fatty acid ethanolamides (FAEs) in biological samples. Detection limit (0.025 pmol for AEA and 0.1 pmol for palmitoylethanolamide (PEA) and oleoylethanolamide (OEA)) and quantification limit (0.2 pmol for AEA and 0.4 pmol for OEA and PEA) were in the high fmol to low pmol range for all analytes. Linear correlations (r(2)=0.99) were observed in the calibration curves for standard AEA over the range of 0.025-25 pmol and for standard PEA and OEA over the range of 0.1-500 pmol. This method provides a time-saving and sensitive alternative to existing methods for the analysis of FAEs in biological samples.  相似文献   

20.
This study tested the hypothesis that changes in photoperiod alter plasma catecholamine concentrations in the rhesus monkey during late gestation. Twelve chronically catheterized pregnant rhesus macaques were acclimated to a 12-h photoperiod (lights-on, 0700-1900 h). Under the control L:D cycle, blood samples were collected at 3-h intervals over 24 h for catecholamine analysis. Plasma concentrations (mean +/- SEM, pg/ml) ranged from 678 +/- 90 to 928 +/- 142 for norepinephrine; 230 +/- 22 to 631 +/- 141 for epinephrine; and 282 +/- 70 to 1090 +/- 362 for dopamine. A diurnal rhythm was observed in epinephrine with peak concentrations during lights-on (0900-1800 h; p less than 0.05, compared to lights-off). After the first sampling protocol, the animals were divided equally between two groups: phase shift, in which lights-on was shifted 11 h (2000-0800 h) and constant light, with lights on continuously. After the phase shift, a parallel shift in the plasma epinephrine rhythm was noted, with peak levels observed between 2200 and 0700 h (p less than 0.05). Constant light abolished the rhythm in epinephrine, with an overall reduction in mean basal levels of all three catecholamines. Daily melatonin infusions (0.2 micrograms/kg/h, 1900-0630 h) under constant light failed to restore the epinephrine rhythm or to return basal catecholamine concentrations to control photoperiod levels. These data suggest that photoperiod entrains the rhythm in epinephrine secretion, but the rhythm is ablated under constant conditions. Further, melatonin does not appear to play a role in the regulation of catecholamine secretion in the pregnant rhesus macaque.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号