首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two distinct forms of the highly conserved uracil-DNA glycosylase (UNG) have been isolated from Atlantic cod (Gadus morhua) liver cDNA by rapid amplification of cDNA ends (RACE). From the cDNA sequences, both forms were deduced to encode an open reading frame of 301 amino acids, with an identical 267-amino-acid C-terminal region and different N-terminal regions of 34 amino acids. By comparison with the human UNG sequences, the two forms were identified as possible mitochondrial (cUNG1) and nuclear (cUNG2) forms. Several constructs of recombinant cUNG (rcUNG) were expressed in Escherichia coli in order to optimize the yield. The recombinant enzyme was purified to apparent homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Activity and stability experiments showed that rcUNG was similar to cUNG previously purified from Atlantic cod liver, and was more pH- and temperature labile than a recombinant human UNG (rhUNG). Under optimal assay conditions for both rcUNG and rhUNG, the turnover number (k(cat)) was three times higher for rcUNG compared with rhUNG, with an identical K(M), resulting in a threefold higher catalytic efficiency (k(cat)/K(M)) for rcUNG. These activity and stability experiments reveal cold-adapted features in rcUNG. Homology models of the catalytic domains of Atlantic cod (cUNG) and mouse uracil-DNA glycosylase (mUNG) were built using the human UNG (hUNG) crystal structure as a template. The unique amino acid substitutions observed in cod UNG were mainly located in the N- and C-terminal parts of the sequence. The analysis indicated a more stable N-terminal, a more flexible C-terminal, and a less stabilized core in cUNG as compared with the mammalian UNGs. Substitution of several amino acids in or near the DNA-binding site in cUNG could give rise to a more positively charged surface and a higher electrostatic potential near the active site compared with the mammalian UNGs. The higher potential may increase the electrostatic interactions between the enzyme and DNA, and may explain the increased substrate affinity and, in combination with the higher flexibility, the higher catalytic efficiency observed for rcUNG.  相似文献   

2.
Uracil-DNA N-glycosylase (UNG; EC 3.2.2.27) from Atlantic cod (cUNG) possesses cold adapted features like increased catalytic efficiency and reduced temperature optimum for activity compared to its warm-adapted homologue human UNG (hUNG). Here, we present the first thermal stability analysis of cUNG and hUNG by differential scanning calorimetry (DSC), and the results showed that cUNG is less stable than hUNG and unfolds at a melting temperature (Tm) 9° lower than its warm-adapted homologue. In addition, an ion-pair (D183-K302) suggested to be crucial for global stability of hUNG was investigated by biochemical characterization and DSC of four mutants (cUNG G183D and cUNG G183D-R302K, hUNG D183G and hUNG D183G-K302R). The hUNG mutants with an expected disruption of the ion-pair showed a slight increase in stability with concomitant reduction in the enzyme activity, while the apparent introduction of the ion-pair in cUNG caused a reduction in the enzyme activity but no increase in stability. Because the mutants did not behave as expected, the phenomenon was further investigated by crystal structure determination. Indeed, the crystal structure of the hUNG D183G-K302R mutant revealed that compensating interactions for the loss of the ion-pair were generated close to and in regions distant from the mutation site. In conclusion, the reduced stability of cUNG supports the suggested requirement of a flexible structure for improved activity at low temperatures. Furthermore, the lack of a direct correlation between enzyme activity and global stability of the mutants supports the significance of distributing locally flexible and/or rigid regions for modulation of enzyme activity.  相似文献   

3.
Uracil-DNA glycosylase (UDG; UNG) has been purified 17000-fold from Atlantic cod liver (Gadus morhua). The enzyme has an apparent molecular mass of 25 kDa, as determined by gel filtration, and an isoelectric point above 9.0. Atlantic cUNG is inhibited by the specific UNG inhibitor (Ugi) from the Bacillus subtilis bacteriophage (PBS2), and has a 2-fold higher activity for single-stranded DNA than for double-stranded DNA. cUNG has an optimum activity between pH 7.0-9.0 and 25-50 mM NaCl, and a temperature optimum of 41 degrees C. Cod UNG was compared with the recombinant human UNG (rhUNG), and was found to have slightly higher relative activity at low temperatures compared with their respective optimum temperatures. Cod UNG is also more pH- and temperature labile than rhUNG. At pH 10.0, the recombinant human UNG had 66% residual activity compared with only 0.4% for the Atlantic cUNG. At 50 degrees C, cUNG had a half-life of 0.5 min compared with 8 min for the rhUNG. These activity and stability experiments reveal cold-adapted features in cUNG.  相似文献   

4.
Life has adapted to most environments on earth, including low and high temperature niches. The increased catalytic efficiency and thermoliability observed for enzymes from organisms living in constantly cold regions when compared to their mesophilic and thermophilic cousins are poorly understood at the molecular level. Uracil DNA glycosylase (UNG) from cod (cUNG) catalyzes removal of uracil from DNA with an increased kcat and reduced Km relative to its warm-active human (hUNG) counterpart. Specific issues related to DNA repair and substrate binding/recognition (Km) are here investigated by continuum electrostatics calculations, MD simulations and free energy calculations. Continuum electrostatic calculations reveal that cUNG has surface potentials that are more complementary to the DNA potential at and around the catalytic site when compared to hUNG, indicating improved substrate binding. Comparative MD simulations combined with free energy calculations using the molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) method show that large opposing energies are involved when forming the enzyme-substrate complexes. Furthermore, the binding free energies obtained reveal that the Michaelis-Menten complex is more stable for cUNG, primarily due to enhanced electrostatic properties, suggesting that energetic fine-tuning of electrostatics can be utilized for enzymatic temperature adaptation. Energy decomposition pinpoints the residual determinants responsible for this adaptation. Figure Electrostatic isosurfaces of cod uracil DNA glycosylase in complex with double stranded DNA  相似文献   

5.
The decision to stop smallpox vaccination and the loss of specific immunity in a large proportion of the population could jeopardise world health due to the possibility of a natural or provoked re-emergence of smallpox. Therefore, it is mandatory to improve the current capability to prevent or treat such infections. The DNA repair protein uracil-DNA glycosylase (UNG) is one of the viral enzymes important for poxvirus pathogenesis. Consequently, the inhibition of UNG could be a rational strategy for the treatment of infections with poxviruses. In order to develop inhibitor assays for UNG, as a first step, we have characterised the recombinant vaccinia virus UNG (vUNG) and compared it with the human nuclear form (hUNG2) and catalytic fragment (hUNG) UNG. In contrast to hUNG2, vUNG is strongly inhibited in the presence of 7.5 mM MgCl2. We have shown that highly purified vUNG is not inhibited by a specific uracil-DNA glycosylase inhibitor. Interestingly, both viral and human enzymes preferentially excise uracil when it is opposite to cytosine. The present study provides the basis for the design of specific inhibitors for vUNG.  相似文献   

6.
Uracil-DNA glycosylase (UNG) is the key enzyme responsible for initiation of base excision repair. We have used both kinetic and binding assays for comparative analysis of UNG enzymes from humans and herpes simplex virus type 1 (HSV-1). Steady-state fluorescence assays showed that hUNG has a much higher specificity constant (k(cat)/K(m)) compared with the viral enzyme due to a lower K(m). The binding of UNG to DNA was also studied using a catalytically inactive mutant of UNG and non-cleavable substrate analogs (2'-deoxypseudouridine and 2'-alpha-fluoro-2'-deoxyuridine). Equilibrium DNA binding revealed that both human and HSV-1 UNG enzymes bind to abasic DNA and both substrate analogs more weakly than to uracil-containing DNA. Structure determination of HSV-1 D88N/H210N UNG in complex with uracil revealed detailed information on substrate binding. Together, these results suggest that a significant proportion of the binding energy is provided by specific interactions with the target uracil. The kinetic parameters for human UNG indicate that it is likely to have activity against both U.A and U.G mismatches in vivo. Weak binding to abasic DNA also suggests that UNG activity is unlikely to be coupled to the subsequent common steps of base excision repair.  相似文献   

7.
Random mutagenesis coupled with screening of the active enzyme at a low temperature was applied to isolate cold-adapted mutants of a thermophilic enzyme. Four mutant enzymes with enhanced specific activities (up to 4.1-fold at 40 degrees C) at a moderate temperature were isolated from randomly mutated Thermus thermophilus 3-isopropylmalate dehydrogenase. Kinetic analysis revealed two types of cold-adapted mutants, i.e. k(cat)-improved and K(m)-improved types. The k(cat)-improved mutants showed less temperature-dependent catalytic properties, resulting in improvement of k(cat) (up to 7.5-fold at 40 degrees C) at lower temperatures with increased K(m) values mainly for NAD. The K(m)-improved enzyme showed higher affinities toward the substrate and the coenzyme without significant change in k(cat) at the temperatures investigated (30-70 degrees C). In k(cat)-improved mutants, replacement of a residue was found near the binding pocket for the adenine portion of NAD. Two of the mutants retained thermal stability indistinguishable from the wild-type enzyme. Extreme thermal stability of the thermophilic enzyme is not necessarily decreased to improve the catalytic function at lower temperatures. The present strategy provides a powerful tool for obtaining active mutant enzymes at lower temperatures. The results also indicate that it is possible to obtain cold-adapted mutant enzymes with high thermal stability.  相似文献   

8.
Random PCR mutagenesis was applied to the Thermus thermophilus xylA gene encoding xylose isomerase. Three cold-adapted mutants were isolated with the following amino-acid substitutions: E372G, V379A (M-1021), E372G, F163L (M-1024) and E372G (M-1026). The wild-type and mutated xylA genes were cloned and expressed in Escherichia coli HB101 using the vector pGEM-T Easy, and their physicochemical and catalytic properties were determined. The optimum pH for xylose isomerization activity for the mutants was approximately 7.0, which is similar to the wild-type enzyme. Compared with the wild-type, the mutants were active over a broader pH range. The mutants exhibited up to nine times higher catalytic rate constants (k(cat)) for d-xylose compared with the wild-type enzyme at 60 degrees C, but they did not show any increase in catalytic efficiency (k(cat)/K(m)). For d-glucose, both the k(cat) and the k(cat)/K(m) values for the mutants were increased compared with the wild-type enzyme. Furthermore, the mutant enzymes exhibited up to 255 times higher inhibition constants (K(i)) for xylitol than the wild-type, indicating that they are less inhibited by xylitol. The thermal stability of the mutated enzymes was poorer than that of the wild-type enzyme. The results are discussed in terms of increased molecular flexibility of the mutant enzymes at low temperatures.  相似文献   

9.
To investigate the role of Arginine 276 in the conserved leucine-loop of human uracil-DNA glycosylase (UNG), the effects of six R276 amino acid substitutions (C, E, H, L, W, and Y) on nucleotide flipping and enzyme conformational change were determined using transient and steady state, fluorescence-based, kinetic analysis. Relative to UNG, the mutant proteins exhibited a 2.6- to 7.7-fold reduction in affinity for a doubled-stranded oligonucleotide containing a pseudouracil residue opposite 2-aminopurine, as judged by steady-state DNA binding-base flipping assays. An anisotropy binding assay was utilized to determine the K(d) of UNG and the R276 mutants for carboxyfluorescein-labeled uracil-containing single- and double-stranded oligonucleotides; the binding affinities varied 11-fold for single-stranded uracil-DNA, and 43-fold for double-stranded uracil-DNA. Productive uracil-DNA binding was monitored by rapid quenching of UNG intrinsic protein fluorescence. Relative to UNG, the rate of intrinsic fluorescence quenching of five mutant proteins for binding double-stranded uracil-DNA was reduced approximately 50%; the R276E mutant exhibited 1% of the rate of fluorescence quenching of UNG. When reacted with single-stranded uracil-DNA, the rate of UNG fluorescence quenching increased. Moreover, the rate of fluorescence quenching for all the mutant proteins, except R276E, was slightly faster than UNG. The k(cat) of the R276 mutants was comparable to UNG on single-stranded DNA and differentially affected by NaCl; however, k(cat) on double-stranded DNA substrate was reduced 4-12-fold and decreased sharply at NaCl concentrations as low as 20 mM. Taken together, these results indicate that the effects of mutations at Arg276 were largely limited to enzyme interactions with double-stranded uracil-containing DNA, and suggested that mutations at Arg276 effectively transformed UNG into a single-stranded DNA-specific uracil-DNA glycosylase.  相似文献   

10.
Weak or nonexistent smallpox immunity in today's human population raises concerns about the possibility of natural or provoked genetic modifications leading to re-emergence of variola virus and other poxviruses. Thus, the development of new antiviral strategies aimed at poxvirus infections in humans is a high priority. The DNA repair protein uracil-DNA glycosylase (UNG) is one of the viral enzymes important for poxvirus pathogenesis. Consequently, the inhibition of UNG is a rational therapeutic strategy for infections with poxviruses. Monkeypox virus, which occurs naturally in Africa, can cause a smallpox-like disease in humans. Here, the monkeypox virus UNG (mpUNG) is characterized and compared to vaccinia virus UNG (vUNG) and human UNG (hUNG). The mpUNG protein excises uracil preferentially from single-stranded DNA. Furthermore, mpUNG prefers the U.G pair over the U.A pair and does not excise oxidized bases. Both mpUNG and vUNG viral proteins are strongly inhibited by physiological concentrations of NaCl and MgCl2. Although the two viral DNA repair enzymes have similar substrate specificities, the kcat/KM values of mpUNG are higher than those of vUNG. The mpUNG protein was strongly inhibited by 5-azauracil and to a lesser extent by 4(6)-aminouracil and 5-halogenated uracil analogues, whereas uracil had no effect. To develop antiviral drugs toward mpUNG, we also validated a repair assay using the molecular beacons containing multiple uracil residues. Potential targets and strategies for combating pathogenic orthopoxviruses, including smallpox, are discussed.  相似文献   

11.
We have performed random mutagenesis coupled with selection to isolate mutant enzymes with high catalytic activities at low temperature from thermophilic 3-isopropylmalate dehydrogenase (IPMDH) originally isolated from Thermus thermophilus. Five cold-adapted mutant IPMDHs with single-amino-acid substitutions were obtained and analyzed. Kinetic analysis revealed that there are two types of cold-adapted mutant IPMDH: k(cat)-improved (improved in k(cat)) and K(m)-improved (improved in k(cat)/K(m)) types. To determine the mechanisms of cold adaptation of these mutants, thermodynamic parameters were estimated and compared with those of the Escherichia coli wild-type IPMDH. The Delta G(m) values for Michaelis intermediate formation of the k(cat)-improved-type enzymes were larger than that of the T. thermophilus wild-type IPMDH and similar to that of the E. coli wild-type IPMDH. The Delta G(m) values of K(m)-improved-type enzymes were smaller than that of the T. thermophilus wild-type IPMDH. Fitting of NAD(+) binding was improved in the K(m)-improved-type enzymes. The two types of cold-adapted mutants employed one of the two strategies of E. coli wild-type IPMDH: relative destabilization of the Michaelis complex in k(cat)-improved-type, and destabilization of the rate-limiting step in K(m)-improved type mutants. Some cold-adapted mutant IPMDHs retained thermostability similar to that of the T. thermophilus wild-type IPMDH.  相似文献   

12.
Atlantic cod trypsin I is a cold-adapted proteolytic enzyme exhibiting approximately 20 times higher catalytic efficiency (kcat/KM) than its mesophilic bovine counterpart for the simple amide substrate BAPNA. In general, cold-adapted proteolytic enzymes are sensitive to autolytic degradation, thermal inactivation as well as molecular aggregation, even at temperatures as low as 18-25 degrees C which may explain the problems observed with their expression, activation, and purification. Prior to the data presented here, there have been no reports in the literature on the expression of psychrophilic or cold-adapted proteolytic enzymes from fish. Nevertheless, numerous cold-adapted proteolytic microbial enzymes have been successfully expressed in bacteria and yeast. This report describes successful expression, activation, and purification of the recombinant cod trypsin I in the His-Patch ThioFusion Escherichia coli expression system. The E. coli pThioHis expression vector used in the study enabled the formation of a fusion protein between a highly soluble fraction of HP-thioredoxin contained in the vector and the N-terminal end of the precursor form of cod trypsin I. The HP-thioredoxin part of the fusion protein binds to a metal-chelating ProBond column, which facilitated its purification. The cod trypsin I part of the purified fusion protein was released by proteolytic cleavage, resulting in concomitant activation of the recombinant enzyme. The recombinant cod trypsin I was purified to homogeneity on a trypsin-specific benzamidine affinity column. The identity of the recombinant enzyme was demonstrated by electrophoresis and chromatography.  相似文献   

13.
The flavoenzyme nitroalkane oxidase catalyzes the oxidation of primary and secondary nitroalkanes to the corresponding aldehydes and ketones plus nitrite. The structure of the enzyme shows that Ser171 forms a hydrogen bond to the flavin N5, suggesting that it plays a role in catalysis. Cys397 and Tyr398 were previously identified by chemical modification as potential active site residues. To more directly probe the roles of these residues, the S171A, S171V, S171T, C397S, and Y398F enzymes have been characterized with nitroethane as substrate. The C397S and Y398 enzymes were less stable than the wild-type enzyme, and the C397S enzyme routinely contained a substoichiometric amount of FAD. Analysis of the steady-state kinetic parameters for the mutant enzymes, including deuterium isotope effects, establishes that all of the mutations result in decreases in the rate constants for removal of the substrate proton by ∼5-fold and decreases in the rate constant for product release of ∼2-fold. Only the S171V and S171T mutations alter the rate constant for flavin oxidation. These results establish that these residues are not involved in catalysis, but rather are required for maintaining the protein structure.  相似文献   

14.
Here, we report the molecular characterization of the human cytomegalovirus uracil DNA glycosylase (UNG) UL114. Purified UL114 was shown to be a DNA glycosylase, which removes uracil from double-stranded and single-stranded DNA. However, kinetic analysis has shown that viral UNG removed uracil more slowly compared with the core form of human UNG (Δ84hUNG), which has a catalytic efficiency (kcat/KM) 350- to 650-fold higher than that of UL114. Furthermore, UL114 showed a maximum level of DNA glycosylase activity at equimolar concentrations of the viral polymerase processivity factor UL44. Next, UL114 was coprecipitated with DNA immobilized to magnetic beads only in the presence of UL44, suggesting that UL44 facilitated the loading of UL114 on DNA. Moreover, mutant analysis demonstrated that the C-terminal part of UL44 (residues 291-433) is important for the interplay with UL114. Immunofluorescence microscopy revealed that UL44 and UL114 colocalized in numerous small punctuate foci at the immediate-early (5 and 8 hpi) phases of infection and that these foci grew in size throughout the infection. Furthermore, coimmunoprecipitation assays with cellular extracts of infected cells confirmed that UL44 associated with UL114. Finally, the nuclear concentration of UL114 was estimated to be 5- to 10-fold higher than that of UL44 in infected cells, which indicated a UL44-independent role of UL114. In summary, our data have demonstrated a catalytically inefficient viral UNG that was highly enriched in viral replication foci, thus supporting an important role of UL114 in replication rather than repair of the viral genome.  相似文献   

15.
Glucoamylase 1 (GA1) from Aspergillus niger is a multidomain starch hydrolysing enzyme that consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated linker. The fungus also produces a truncated form without the starch-binding domain (GA2). The active site mutant Trp(52)-->Phe of both forms and the Asp(55)-->Val mutant of the GA1 form have been prepared and physicochemically characterised and compared to recombinant wild-type enzymes. The characterisation included substrate hydrolysis, inhibitor binding, denaturant stability, and thermal stability, and the consequences for the active site of glucoamylase are discussed. The circular dichroic (CD) spectra of the mutants were very similar to the wild-type enzymes, indicating that they have similar tertiary structures. The D55V GA1 mutant showed slower kinetics of hydrolysis of maltose and maltoheptaose with delta delta G(double dagger) congruent with 22 kJ mol(-1), whereas the binding of the strong inhibitor acarbose was greatly diminished by delta delta G degrees congruent with 52 kJ mol(-1). Both W52F mutant forms have almost the same stability as the wild-type enzyme, whereas the D55V GA1 mutant showed slight destabilisation both towards denaturant and heat (DSC). The difference between the CD unfolding curves recorded by near- and far-UV indicated that D55V GA1 unfolds through a molten globule intermediate.  相似文献   

16.
Many analyses published in the last decade suggest that enzymes isolated from cold-adapted organisms are characterized by a higher flexibility of their molecular structure. Recently, it has been argued that all cold-adapted enzymes with catalytic efficiency greater than that of their mesophilic counterparts display local flexibility or rigidity that are likely to cooperate, each acting on specific areas of the enzyme structure. Here we report an analysis of the normalized thermal B-factor distributions in psychrophilic proteins compared with those of their mesophilic and thermophilic counterparts with the aim to detect statistically significant local variations of relative backbone flexibility possibly linked to cold adaptation. We utilized a strategy based mainly on intra-family comparison of local distribution of normalized B-factors. After careful statistical treatment of data, the picture emerging from our results suggests that the distribution of the flexibility in psychrophilic enzymes is locally more heterogeneous than in their respective mesophilic homologues.  相似文献   

17.
Uracil DNA glycosylase (UDG) is a DNA repair enzyme in the base excision repair pathway and removes uracil from the DNA strand. Atlantic cod UDG (cUDG), which is a cold-adapted enzyme, has been found to be up to 10 times more catalytically active in the temperature range 15-37 degrees C as compared with the warm-active human counterpart. The increased catalytic activity of cold-adapted enzymes as compared with their mesophilic homologues are partly believed to be caused by an increase in the structural flexibility. However, no direct experimental evidence supports the proposal of increased flexibility of cold-adapted enzymes. We have used molecular dynamics simulations to gain insight into the structural flexibility of UDG. The results from these simulations show that an important loop involved in DNA recognition (the Leu(272) loop) is the most flexible part of the cUDG structure and that the human counterpart has much lower flexibility in the Leu(272) loop. The flexibility in this loop correlates well with the experimental k(cat)/K(m) values. Thus, the data presented here add strong support to the idea that flexibility plays a central role in adaptation to cold environments.  相似文献   

18.
The thermal stability and catalytic activity of phospholipase A(1) from Serratia sp. strain MK1 were improved by evolutionary molecular engineering. Two thermostable mutants were isolated after sequential rounds of error-prone PCR performed to introduce random mutations and filter-based screening of the resultant mutant library; we determined that these mutants had six (mutant TA3) and seven (mutant TA13) amino acid substitutions. Different types of substitutions were found in the two mutants, and these substitutions resulted in an increase in nonpolar residues (mutant TA3) or in differences between side chains for polar or charged residues (mutant TA13). The wild-type and mutant enzymes were purified, and the effect of temperature on the stability and catalytic activity of the enzymes was investigated. The melting temperatures of the TA3 and TA13 enzymes were increased by 7 and 11 degrees C, respectively, compared with the melting temperature of the wild-type enzyme. Thus, we found that evolutionary molecular engineering was an effective and efficient approach for increasing thermostability without compromising enzyme activity.  相似文献   

19.
A newly selected cold-adapted mutant 3-isopropylmalate dehydrogenase (IPMDH) from a random mutant library was a double mutant containing the mutations I11V and S92F that were found in cold-adapted mutant IPMDHs previously isolated. To elucidate the effect of each mutation on enzymatic activity, I11V and six multiple mutant IPMDHs were constructed and analyzed. All of the multiple mutant IPMDHs were found to be improved in catalytic activity at moderate temperatures by increasing the k(cat) with a simultaneous increase of K(m) for the coenzyme NAD(+). k(cat) was improved by a decrease in the activation enthalpy, DeltaH( not equal). The multiple mutants did not show large reduction in thermal stability, and one of them showed enhanced thermal stability. Mutation from I11 to V was revealed to have a stabilizing effect. Mutants showed increased thermal stability when the mutation I11V was combined. This indicates that it is possible to construct mutants with enhanced thermal stability by combining stabilizing mutation. No additivity was observed for the thermodynamic properties of catalytic reaction in the multiple mutant IPMDHs, implying that the structural changes induced by the mutations were interacting with each other. This indicates that careful and detailed tuning is required for enhancing activity in contrast to thermal stability.  相似文献   

20.
Escherichia coli dimethylsulfoxide (DMSO) reductase is a trimeric enzyme with a catalytic dimer (DmsAB) and an integral membrane anchor (DmsC). Using site-directed mutagenesis, we examined six residues in the periplasmic loop between helices two and three, potentially involved in menaquinol binding in DmsC. Mutants were characterised for growth, enzyme expression and activity, and 2-n-heptyl-4-hydroxoquinoline N-oxide (HOQNO) inhibitor binding. Mutations of leucine 66, glycine 67, arginine 71, phenylalanine 73 and serine 75 had no effect on menaquinol binding. Only a glutamate residue (E87) located in helix three was important for menaquinol binding. E87 was replaced with lysine, glutamine and aspartate. All three mutants were assembled into the membrane. Neither the lysine nor the glutamine mutant enzymes were able to support anaerobic growth on glycerol/DMSO minimal media or oxidise lapachol. The glutamine mutant bound the inhibitor with lower affinity compared to wild-type, whereas in the lysine mutant, binding was almost abolished. The aspartate mutant behaved as a wild-type enzyme. The data shows that E87 is important for menaquinol binding and oxidation and is likely to act as a proton acceptor in the menaquinol binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号