首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T A Gahn  C L Schildkraut 《Cell》1989,58(3):527-535
Epstein-Barr virus (EBV) oriP contains two components, a dyad symmetry element and a direct repeat element, that, in the presence of EBV nuclear antigen 1, are necessary and sufficient for plasmid replication. We have examined the replicative forms generated by EBV oriP using 2D gel electrophoresis. The patterns obtained from an oriP plasmid in a transfected cell line indicate that the site of initiation of DNA replication is at or very near the dyad symmetry element, while the direct repeats contain a replication fork barrier and the termination site. Thus, replication from oriP proceeds in a predominantly undirectional manner. The patterns obtained from cells immortalized by EBV suggest that replication from oriP proceeds similarly in the viral genome.  相似文献   

2.
3.
The Epstein-Barr virus nuclear antigen 1 (EBNA1) protein binds and activates the latent replication origin (oriP) of the Epstein-Barr virus. We have been studying EBNA1 to determine how it activates replication at oriP. Here we demonstrate that upon binding of EBNA1 to oriP, two thymine residues become reactive to potassium permanganate (KMnO4), indicating a helical distortion at these sites. The KMnO4-reactive thymines are 64 bp apart in the region of dyad symmetry of oriP. Dimethyl sulfate protection studies indicated that EBNA1 binds on the opposite face of the helix from the reactive thymines. The nature of the helical distortion induced by EBNA1 and its possible significance to the initiation of replication are discussed.  相似文献   

4.
The Epstein-Barr virus (EBV) genome contains two cis-acting elements which are required for stable extrachromosomal plasmid maintenance in latently infected cells. The first consists of 20 30-base-pair (bp) repeats, each of which contains a DNA-binding site for EBV nuclear antigen 1 (EBNA-1), the trans-acting factor required for plasmid persistence. The second element is composed of a 65-bp dyad symmetry, containing four EBNA-1-binding sites. Deletion mutants were constructed which reduce the number of EBNA-1-binding sites in the 30-bp repeats, alter the number of EBNA-1-binding sites in the dyad region, or truncate the dyad element. The effect of the deletion mutations on plasmid maintenance was examined by transfecting recombinant plasmids, containing both the mutated EBV sequences and a drug resistance marker, into D98-Raji cells. The plasmids were tested for their ability to generate drug-resistant D98-Raji cell colonies and their capacity to be maintained in an extrachromosomal form without undergoing extensive rearrangements. EBV plasmids with 12 or 15 copies of the 30-bp repeats were wild type in both assays. Plasmids with just two or six copies of these repeated elements failed to generate drug-resistant colonies at a normal level, and normal episomal plasmids were not detected in the resulting colonies. Rare colonies of cells resulting from transfection of these two- or six-copy mutants contained rearranged, episomal forms of the input plasmids. The rearrangements most often produced head-to-tail oligomers containing a minimum of eight 30-bp repeated elements. The rearranged plasmids were shown to be revertant for plasmid maintenance in that they yielded wild-type or greater numbers of drug-resistant colonies and persisted at the wild-type or a greater episomal copy number. By use of an EBV plasmid that contained no 30-bp elements, no revertants could be isolated. One to five copies of a synthetic linker corresponding to a consensus 30-bp repeated element inserted into a plasmid with no 30-bp elements now permitted the generation of oligomeric, episomal forms of the mutant test plasmid. These experiments demonstrate a requirement for a minimal number (six to eight copies) of the 30-bp repeated element. Deletions in the 65-bp dyad region had little or no effect upon the ability to generate enhanced numbers of drug-resistant D98-Raji colonies, indicating that the 30-bp repeated element is predominantly required for this phenotype.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
D J Hsieh  S M Camiolo    J L Yates 《The EMBO journal》1993,12(13):4933-4944
Replication of the circular, 170 kb genome of Epstein-Barr virus (EBV) during latent infection is performed by the cellular replication machinery under cell-cycle control. A single viral protein, EBNA1, directs the cellular replication apparatus to initiate replication within the genetically defined replication origin, oriP, at a cluster of four EBNA1 binding sites, referred to here as the physical origin of bidirectional replication, or OBR. A second cluster of EBNA1 binding sites within oriP, the 30 bp repeats, serves an essential role as a replication enhancer and also provides a distinct episome maintenance function that is unrelated to replication. We examined the functional elements of oriP for binding by EBNA1 and possibly other proteins in proliferating Raji cells by generating in vivo footprints using two reagents, dimethylsulfate (DMS) and KMnO4. We also employed deoxyribonuclease I (DNase I) with permeabilized cells. The in vivo and permeabilized cell footprints at the EBNA1 binding sites, particularly those obtained using DMS, gave strong evidence that all of these sites are bound by EBNA1 in asynchronously dividing cells. No consistent evidence was found to suggest binding by other proteins at any other sites within the functional regions of oriP. Thymines at symmetrical positions of the OBR within oriP were oxidized when cells were treated with permanganate, suggestive of bends or other distortions of DNA structure at these positions; binding of EBNA1 in vitro to total DNA from Raji cells induced reactivity to permanganate at identical positions. The simplest interpretation of the results, which were obtained using asynchronously dividing cells, is that EBNA1 binds to its sites at oriP and holds the OBR in a distorted conformation throughout most of the cell cycle, implying that replication is initiated by a cellular mechanism and is not limited by an availability of EBNA1 for binding to oriP.  相似文献   

6.
7.
The Epstein-Barr virus (EBV) nuclear antigen EBNA-1 plays an integral role in the maintenance of latency in EBV-infected B lymphocytes. EBNA-1 binds to sequences within the plasmid origin of replication (oriP). It is essential for the replication of the latent episomal form of EBV DNA and may also regulate the expression of the EBNA group of latency gene products. We have used sequence-specific DNA-binding assays to purify EBNA-1 away from nonspecific DNA-binding proteins in a B-lymphocyte cell extract. The availability of this eucaryotic protein has allowed an examination of the interaction of EBNA-1 with its specific DNA-binding sites and an evaluation of possible roles for the different binding loci within the EBV genome. DNA filter binding assays and DNase I footprinting experiments showed that the intact Raji EBNA-1 protein recognized the two binding site loci in oriP and the BamHI-Q locus and no other sites in the EBV genome. Competition filter binding experiments with monomer and multimer region I consensus binding sites indicated that cooperative interactions between binding sites have relatively little impact on EBNA-1 binding to region I. An analysis of the binding parameters of the Raji EBNA-1 to the three naturally occurring binding loci revealed that the affinity of EBNA-1 for the three loci differed. The affinity for the sites in region I of oriP was greater than the affinity for the dyad symmetry sites (region II) of oriP, while the physically distant region III locus showed the lowest affinity. This arrangement may provide a mechanism whereby EBNA-1 can lowest affinity. This arrangement may provide a mechanism whereby EBNA-1 can mediate differing regulatory functions through differential binding to its recognition sequence.  相似文献   

8.
9.
Dominant-negative inhibitors of EBNA-1 of Epstein-Barr virus.   总被引:9,自引:4,他引:5       下载免费PDF全文
  相似文献   

10.
The two Epstein-Barr virus (EBV) types, EBV-1 and EBV-2, are known to differ in their EBNA-2 genes, which are 64 and 53% identical in their nucleotide and predicted amino acid sequences, respectively. Restriction endonuclease maps and serologic analyses detect few other differences between EBV-1 and EBV-2 except in the EBNA-3 gene family. We determined the DNA sequence of the AG876 EBV-2 EBNA-3 coding region and have compared it with known B95-8 EBV-1 EBNA-3 sequences to delineate the extent of divergence between EBV-1 and EBV-2 isolates in their EBNA-3 genes. The B95-8 and AG876 EBV isolates had nucleotide and amino acid identity levels of 90 and 84%, 88 and 80%, and 81 and 72% for the EBNA-3A, -3B, and -3C genes, respectively. In contrast, nucleotide sequence identity in the noncoding DNA adjacent to the B95-8 and AG876 EBNA-3 open reading frames was 96%. We used the polymerase chain reaction to demonstrate that five additional EBV-1 isolates and six additional EBV-2 isolates have the type-specific differences in their EBNA-3 genes predicted from the B95-8 or AG876 sequences. Thus, EBV-1 and EBV-2 are two distinct wild-type EBV strains that have significantly diverged at four genetic loci and have maintained type-characteristic differences at each locus. The delineation of these sequence differences between EBV-1 and EBV-2 is essential to ongoing molecular dissection of the biologic properties of EBV and of the human immune response to EBV infection. The application of these data to the delineation of epitopes recognized in the EBV-immune T-cell response is also discussed.  相似文献   

11.
Latently infected B lymphocytes continuously express an Epstein-Barr Virus nuclear antigen (EBNA-1) required in trans for maintenance of the plasmid state of the EBV genome. Filter binding assays and DNAase I footprinting analyses revealed that the carboxy-terminal domain of EBNA-1 protects binding sites at three different loci in the 172,000 bp EBV genome. Two of these loci correspond to essential elements within an 1800 bp segment defined as the minimal region required for plasmid maintenance (ori-P). Binding to each of 20 X 30 bp tandem repeats in the "sink" locus protects 25 bp centered over a 12 bp palindromic consensus sequence TAGCATATGCTA. The nearby dyad symmetry "origin" locus contains two 46 bp protected regions each encompassing two paired core binding sites. The demonstration of sequence-specific binding at multiple loci suggests that EBNA-1 has pleiotropic functions, which may include control of copy number and segregation of the EBV plasmids as well as initiation of replication.  相似文献   

12.
Functional domains of Epstein-Barr virus nuclear antigen EBNA-1.   总被引:25,自引:18,他引:7  
  相似文献   

13.
Whether or not metazoan replication initiates at random or specific but flexible sites is an unsolved question. The lack of sequence specificity in origin recognition complex (ORC) DNA binding complicates genome-scale chromatin immunoprecipitation (ChIP)-based studies. Epstein-Barr virus (EBV) persists as chromatinized minichromosomes that are replicated by the host replication machinery. We used EBV to investigate the link between zones of pre-replication complex (pre-RC) assembly, replication initiation, and micrococcal nuclease (MNase) sensitivity at different cell cycle stages in a genome-wide fashion. The dyad symmetry element (DS) of EBV's latent origin, a well-established and very efficient pre-RC assembly region, served as an internal control. We identified 64 pre-RC zones that correlate spatially with 57 short nascent strand (SNS) zones. MNase experiments revealed that pre-RC and SNS zones were linked to regions of increased MNase sensitivity, which is a marker of origin strength. Interestingly, although spatially correlated, pre-RC and SNS zones were characterized by different features. We propose that pre-RCs are formed at flexible but distinct sites, from which only a few are activated per single genome and cell cycle.  相似文献   

14.
In mammalian cells, the activity of the sites of initiation of DNA replication appears to be influenced epigenetically, but this regulation is not fully understood. Most studies of DNA replication have focused on the activity of individual initiation sites, making it difficult to evaluate the impact of changes in initiation activity on the replication of entire genomic loci. Here, we used single molecule analysis of replicated DNA (SMARD) to study the latent duplication of Epstein-Barr virus (EBV) episomes in human cell lines. We found that initiation sites are present throughout the EBV genome and that their utilization is not conserved in different EBV strains. In addition, SMARD shows that modifications in the utilization of multiple initiation sites occur across large genomic regions (tens of kilobases in size). These observations indicate that individual initiation sites play a limited role in determining the replication dynamics of the EBV genome. Long-range mechanisms and the genomic context appear to play much more important roles, affecting the frequency of utilization and the order of activation of multiple initiation sites. Finally, these results confirm that initiation sites are extremely redundant elements of the EBV genome. We propose that these conclusions also apply to mammalian chromosomes.  相似文献   

15.
Epstein-Barr virus nuclear antigen 1 (EBNA-1) is a multi-functional protein of the Epstein-Barr virus (EBV). Due to its low abundance in EBV-transformed cells, overproduction in a foreign host is preferred to obtain purified EBNA-1 protein. The EBNA-1 gene possesses a large number of Escherichia coli rare codons (23%). By using E. coli BL21(DE3)Rosetta2 cells that augment the low-abundance tRNA genes, the expression level of EBNA-1 in E. coli was greatly enhanced. EBNA-1 was then purified by applying the whole cell extract soluble fraction to a Ni-NTA Superflow column and eluting with an imidazole gradient. The improved overexpression in E. coli followed by a one-step Ni-NTA purification resulted in a sufficient amount of pure EBNA-1 protein to test DNA binding activity, and prepare and test EBNA-1-specific monoclonal antibodies (mAbs).  相似文献   

16.
17.
18.
Replication of the Epstein-Barr virus genome initiates at one of several sites in latently infected, dividing cells. One of these replication origins is close to the viral DNA maintenance element, and, together, this replication origin and the maintenance element are referred to as oriP. The replicator of oriP contains four binding sites for Epstein-Barr virus nuclear antigen 1 (EBNA-1), the sole viral protein required for the replication and maintenance of oriP plasmids. We showed previously that these EBNA-1 sites function in pairs and that mutational inactivation of one pair does not eliminate replicator function. In this study we characterized the contribution of each EBNA-1 site within the replicator and flanking sequences through the use of an internally controlled replication assay. We present evidence that shows that all four EBNA-1 sites are required for an oriP plasmid to be replicated in every cell cycle. Results from these experiments also show that the paired EBNA-1 binding sites are not functionally equivalent and that the low affinity of sites 2 and 3 compared to that of sites 1 and 4 is not essential for replicator function. Our results suggest that a host cell protein(s) binds sequences flanking the EBNA-1 sites and that interactions between EBNA-1 and this protein(s) are critical for replicator function. Finally, we present evidence that shows that the minimal replicator of oriP consists of EBNA-1 sites 3 and 4 and two copies of a 14-bp repeat that is present in inverse orientation flanking these EBNA-1 sites. EBNA-1 sites 1 and 2, together with an element(s) within nucleotides 9138 to 9516, are ancillary elements required for full replicator activity.  相似文献   

19.
Most of the Epstein-Barr virus genome in latently infected cells is in a standard nucleosomal structure, but the region encompassing oriP and the Epstein-Barr virus-encoded small RNA (EBER) genes shows a distinctive pattern when digested with micrococcal nuclease. This pattern corresponds to a previously mapped nuclear matrix attachment region. Although the EBER genes are adjacent to oriP, there is only a two- to fourfold effect of oriP on EBER expression. However, sequences containing a consensus ATF site upstream of EBER1 are important for EBER1 expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号