首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The aim of this study is to investigate the effects of type I collagen on bone defects and on genes specifically for osteogenesis in a rat model. Two millimeter drill hole bone defect was created in the femur of rats. In the experimental group, type I collagen was applied in bone defects whereas in control group defects were left empty. Inflammation, development of connective tissue, osteogenesis, and foreign body reaction parameters evaluated with histologically and genes evaluated by blood samples. In the experimental group, the histopathologically significant change was found in favor of bone healing only at the first week. A significant increase was found in genetic expressions of BMP-1, 2, 3, 4, 5, 6, 7, TGF-βRII, Smad-1, IL-6, BMPR-IA, BMPR-IB, Eng, BMPR-II, c-fos, Cdkn1a, Chrd, Gdf-5, Id-1, PDGF-β, IGF-1, Serpine-1, and TGF-βRI at the first hour. At the first, third, and sixth week, no significant increase was found in any of the gene expressions. Type I collagen is found to be effective in favor of bone healing through increased inflammatory cytokines and expression of BMP genes in the early stages of fracture healing.  相似文献   

2.
YB1 is a negative regulator in liver fibrosis. We wondered whether SJYB1, a homologous protein of YB1 from Schistosoma japonicum, has an effect on liver fibrosis in vitro. Recombinant SJYB1 (rSJYB1) protein was expressed in a bacterial system and purified by Ni‐NTA His·Bind Resin. A human hepatic stellate cell line, the LX‐2 cell line, was cultured and treated with rSJYB1. The role of rSJYB1 on LX‐2 cells was then analysed by Western blot and luciferase assay. We succeeded in expressing and purifying SJYB1 in a bacterial system and the purified rSJYB1 could be recognized by S japonicum‐infected rabbit sera. Western bolt analysis showed that rSJYB1 inhibited the expression of collagen type I, but had little effect on α‐smooth muscle actin (α‐SMA). Further analysis revealed that rSJYB1 inhibited the activity of collagen α1 (I) (COL1A1) promoter and functioned at ?1592/?1176 region of COL1A1 promoter. Our data demonstrate that rSJYB1‐mediated anti‐fibrotic activity involves inhibiting the activity of COL1A1 promoter and subsequently suppressing the expression of collagen type I in hepatic stellate cells.  相似文献   

3.
4.
The expression of dentin matrix protein 1 (Dmp1) mRNA has been compared with that of type I collagen and osteocalcin mRNAs during bone formation in the rat mandible, using in situ hybridization. At embryonic day 15 (E15), type I collagen and osteocalcin mRNAs were expressed by the majority of newly-differentiated osteoblasts attached to unmineralized bone matrices, whereas Dmp1 mRNA expression was confined to only a few osteoblasts. Expression of these genes increased as the number of osteoblasts increased in specimens from E16 to E18. At E20, expression of Dmp1, type I collagen and osteocalcin was also observed in osteocytes. Dmp1 expression continued in osteocytes as they matured up to the 90-day-old specimens, whereas type I collagen and osteocalcin expression in osteocytes almost disappeared at 30 days of postnatal life. In contrast, osteoblasts continued to express type I collagen and osteocalcin in 90-day-old rats, but transiently expressed Dmp1 mRNA, which was seen in the minority of osteoblasts at 14 days of postnatal life. These data show that the developmental expression patterns of Dmp1 in osteogenic differentiation differ from those of type I collagen and osteocalcin, and Dmp1 appears to be expressed by osteocytes throughout ossification in the skeleton. These observations indicate that Dmp1 may serve unique biological functions in osteocyte and bone metabolism.  相似文献   

5.
Osteoblasts are the cells which form bone under the regulation not only by hormones and cytokines but also by ECM molecules via their attachment. To obtain insights into the role of intracellular signaling molecules operating to mediate the attachment-related regulation of osteoblastic functions, we investigated in osteoblast-like MC3T3E1 cells the effects of the overexpression of CIZ, a novel signaling protein which interacts with p130Cas. In MC3T3E1 cells, CIZ mRNA is expressed constitutively. Endogenous CIZ was localized in the MC3T3E1 cells with relatively high levels of accumulation at the attachment sites when the cells were cultured on fibronectin, collagen, or BSA. CIZ overexpression increased the number of adhesion plaques and reduced proliferation of the cells compared to that of control cells transfected with an empty vector. Furthermore, CIZ overexpression enhanced type I collagen mRNA expression, the most abundant constituent of bone matrix and a major product of osteoblasts. Analysis of the promoter region of type I collagen gene identified the presence of a consensus CIZ-binding sequence, which indeed conferred responsiveness to CIZ overexpression to a heterologous promoter. These data indicate that CIZ acts as a novel regulatory molecule in controlling osteoblastic function.  相似文献   

6.
Molecular and Cellular Biochemistry - Recent studies suggest that angiotensin II (angiotensin) may be involved in the regulation of metabolism of the cardiac extracellular matrix (ECM). Two major...  相似文献   

7.
8.
The low-density lipoprotein receptor-related protein-1 (LRP-1) is a member of Low Density Lipoprotein Receptor (LDLR) family, which is ubiquitously expressed and which is described as a multifunctional endocytic receptor which mediates the clearance of various extracellular matrix molecules including serine proteinases, proteinase-inhibitor complexes, and matricellular proteins. Several studies showed that high LRP-1 expression promotes breast cancer cell invasiveness, and LRP-1 invalidation leads to cell motility abrogation in both tumor and non-tumor cells. Furthermore, our group has reported that LRP-1 silencing prevents the invasion of a follicular thyroid carcinoma despite increased pericellular proteolytic activities from MMP2 and uPA using a 2D-cell culture model. As the use of 3D culture systems is becoming more and more popular due to their promise as enhanced models of tissue physiology, the aim of the present work is to characterize for the first time how the 3D collagen type I matrix may impact the ability of LRP-1 to regulate the migratory properties of thyroid carcinoma using as a model FTC-133 cells. Our results show that inhibition of LRP-1 activity or expression leads to morphological changes affecting cell-matrix interactions, reorganizations of the actin-cytoskeleton especially by inhibiting FAK activation and increasing RhoA activity and MLC-2 phosphorylation, thus preventing cell migration. Taken together, our results suggest that LRP-1 silencing leads to a decrease of cell migratory capacity in a 3D configuration.  相似文献   

9.
10.
11.
Collagen biosynthesis is a complex process that begins with the association of three procollagen chains. A series of conserved intra- and interchain disulfide bonds in the carboxyl-terminal region of the procollagen chains, or C-propeptide, has been hypothesized to play an important role in the nucleation and alignment of the chains. We tested this hypothesis by analyzing the ability of normal and cysteine-mutated pro-α2(I) chains to assemble into type I collagen heterotrimers when expressed in a cell line (D2) that produces only endogenous pro-α1(I). Pro-α2(I) chains containing single or double cysteine mutations that disrupted individual intra- or interchain disulfide bonds were able to form pepsin resistant type I collagen with pro-α1(I), indicating that individual disulfide bonds were not critical for assembly of the pro-α2(I) chain with pro-α1(I). Pro-α2(I) chains containing a triple cysteine mutation that disrupted both intrachain disulfide bonds were not able to form pepsin resistant type I collagen with pro-α1(I). Therefore, disruption of both pro-α2(I) intrachain disulfide bonds prevented the production and secretion of type I collagen heterotrimers. Although none of the individual disulfide bonds is essential for assembly of the procollagen chains, the presence of at least one intrachain disulfide bond may be necessary as a structural requirement for chain association or to stabilize the protein to prevent intracellular degradation. J.Cell. Biochem. 71:233–242, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
13.
Summary Cell suspensions prepared by collagenase digestion of pancreases obtained from rat fetuses (21.5 d old) and newborns (2.5 d old) were mixed with a collagen solution and inoculated on a collagen base layer. At the onset of the culture, most acinar cells became necrotic, whereas other epithelial cells proliferated. Most of the cell clusters arranged themselves into simple polarozed structures composed of epithelial cells forming hollow spheres, and from these budded neoformed endocrine islets. Scarce fibroblasts were located close to these structures. Immunocytochemical localization of insulin and glucagon, as well as ultrastructural characteristics of the cell types revealed an intrainsular distribution similar to the in vivo localization. Tridimensional matrix of collagen offers, to perinatal pancreatic cells in culture, an environment close to the in vivo conditions: cells reorganize themselves in tissuelike structures and cell interactions concerned in the cytodifferentiation of pancreatic islets occur. This system allows for the study of undifferentiated epithelial cells—the presumed stem cells—differentiating and differentiated endocrine cells in the same preparation. B.A. is supported by a doctoral scholarship from the Institut pour l'Encouragement de la Recherche Scientifique dans l'Industrie et l'Agriculture, Brussels. This work was supported by grants from the Fonds National de la Recherche Scientifique, Brussels, and from Petrofina S.A., Brussels.  相似文献   

14.
15.
16.
Recent studies have indicated that maternal skeletal metabolism undergoes significant changes during gestation. The agents that are responsible for eliciting these changes in bone turnover during pregnancy have yet to be defined. We therefore sought to investigate whether chaperonin 10 (Cpn10), a homolog of early-pregnancy factor, or human placental lactogen (PL) were capable of influencing the synthesis of type I collagen by human osteoblasts in vitro. Both Cpn10 and PL are major components of the maternal circulation during pregnancy, but how they might contribute to bone metabolism has not been determined. Type I collagen represents the most abundant component of bone tissue, accounting for approximately 90% of the organic compartment. Both Cpn10 and PL were capable of stimulating the synthesis of type I collagen by human osteoblasts in culture. The inclusion of 17 beta-estradiol or prolactin, however, failed to influence the ability of cells to mobilize type I collagen. These novel findings support a role for PL and Cpn10 in the metabolism of bone tissue during pregnancy. Maternal bone collagen metabolism is clearly an important event during pregnancy, and the identification of the factors responsible will aid our understanding of the regulation of skeletal metabolism during gestation.  相似文献   

17.
The oim mouse is a model of human Osteogenesis Imperfecta (OI) that has deficient synthesis of proalpha2(I) chains. Cells isolated from oim mice synthesize alpha1(I) collagen homotrimers that accumulate in tissues. To explore the feasibility of gene therapy for OI, a murine proalpha2(I) cDNA was inserted into an adenovirus vector and transferred into bone marrow stromal cells isolated from oim mice femurs. The murine cDNA under the control of the cytomegalovirus early promoter was expressed by the transduced cells. Analysis of the collagens synthesized by the transduced cells demonstrated that the cells synthesized stable type I collagen comprised of alpha1(I) and alpha2(I) heterotrimers in the correct ratio of 2:1. The collagen was efficiently secreted and also the cells retained the osteogenic potential as indicated by the expression of alkaline phosphatase activity when the transduced cells were treated with recombinant human bone morphogenetic protein 2. Injection of the virus carrying the murine proalpha2(I) cDNA into oim skin demonstrated synthesis of type I collagen comprised of alpha1 and alpha2 chains at the injection site. These preliminary data demonstrate that collagen genes can be transferred into bone marrow stromal cells as well as fibroblasts in vivo and that the genes are efficiently expressed. These data encourage further studies in gene replacement for some forms of OI and use of bone marrow stromal cells as vehicles to deliver therapeutic genes to bone.  相似文献   

18.
Non-enzymatic glycation of type I collagen occurs in aging and diabetes, and may affect collagen solubility, charge, polymerization, and intermolecular interactions. Proteoglycans(1) (PGs) bind type I collagen and are proposed to regulate fibril assembly, function, and cell-collagen interactions. Moreover, on the collagen fibril a keratan sulfate (KS) PG binding region overlaps with preferred collagen glycation sites. Thus, we examined the effect of collagen modified by simple glycation on PG-collagen interactions. By affinity coelectrophoresis (ACE), we found reduced affinities of heparin and KSPGs for glycated but not normal collagen, whereas the dermatan sulfate (DS)PGs decorin and biglycan bound similarly to both, and that the affinity of heparin for normal collagen decreased with increasing pH. Circular dichroism (CD) spectroscopy revealed normal and glycated collagens to assume triple helical conformations, but heparin addition caused precipitation and decreased triple helical content-effects that were more marked with glycated collagen. A spectrophotometric assay revealed slower polymerization of glycated collagen. However, ultrastructural analyses indicated that fibrils assembled from normal and glycated collagen exhibited normal periodicity, and had similar structures and comparable diameter distributions. B-cells expressing the cell surface heparan sulfate PG syndecan-1 adhered well to normal but not glycated collagen, and endothelial cell migration was delayed on glycated collagen. We speculate that glycation diminishes the electrostatic interactions between type I collagen and PGs, and may interfere with core protein-collagen associations for KSPGs but not DSPGs. Therefore in vivo, collagen glycation may weaken PG-collagen interactions, thereby disrupting matrix integrity and cell-collagen interactions, adhesion, and migration.  相似文献   

19.
To determine whether the NV gene of viral hemorrhagic septicemia virus (VHSV) is related to the type I interferon response of hosts, expression of Mx gene in Epithelioma papulosum cyprini (EPC) cells and in olive flounder (Paralichthys olivaceus) in response to infection with either wild-type VHSV or recombinant VHSVs (rVHSV-ΔNV-EGFP and rVHSV-wild) was investigated. A reporter vector was constructed for measuring Mx gene expression using olive flounder Mx promoter, in which the reporter Metridia luciferase was designed to be excreted to culture medium to facilitate measurement. The highest increase of luciferase activity was detected from supernatant of cells infected with rVHSV-ΔNV-EGFP. In contrast cells infected with wild-type VHSV showed a slight increase of the luciferase activity. Interestingly, cells infected with rVHSV-wild that has artificially changed nucleotides just before and after the NV gene ORF, also showed highly increased luciferase activity, but the increased amplitude was lower than that by rVHSV-ΔNV-EGFP. These results strongly suggest that the NV protein of VHSV plays an important role in suppressing interferon response in host cells, which provides a condition for the viruses to efficiently proliferate in host cells. In an in vivo experiment, the Mx gene expression in olive flounder challenged with the rVHSV-ΔNV-EGFP was clearly higher than fish challenged with rVHSV-wild or wild-type VHSV, suggesting that lacking of the NV gene in the genome of rVHSV-ΔNV-EGFP brought to strong interferon response that subsequently inhibit viral replication in fish.  相似文献   

20.
Full-length cDNAs of a type I (zfCKI), and a type II (zfCKII) cytokeratin from the adult zebrafish, Danio rerio, were characterized and their expressions studied during early development and in the adult. The 1,426 bp long zfCKI cDNA encodes a 46.7 kD protein, whereas the 2,398 bp zfCKII cDNA encodes a protein of 58.6 kD. zfCKI and zfCKII each have a central rod domain that is characteristic of intermediate filaments and which share 73%-91% and 87%-93% similarity, respectively, with those of type I and type II cytokeratins from zebrafish, goldfish, and the rainbow trout. The central rod domains of zfCKI and zfCKII also contain the IF signature motif, IA[T/E]YR[K/R]LL[D/E]. zfCKI has, in addition, a leucine-zipper motif at a.a. residues 184-205 and 191-212. Both zfCKI and zfCKII mRNAs are expressed in the epidermis of the zebrafish. zfCKII mRNA was both maternally inherited and zygotically transcribed and was detected from the one-cell embryo to adult stages. zfCKII was also strongly expressed specifically during the 20-somites, protruding-mouth, and adult stages. In the adult, it was uniformly expressed in the skin, fins and scale epidermis. In contrast, zfCKI mRNA was undetectable in the oocyte but was zygotically transcribed from the epiboly stage onwards. Its expression in the skin was strong only up to the swimming larva stage and was weak and patchy in the adult. Both zfCKI and zfCKII were expressed in the neurons and glial cells of the brain and spinal cord. In the adult eye, zfCKI and zfCKII were expressed in the ganglion cell layer and the retina, but zfCKII was also strongly expressed in the cornea as well as in chondrocytes in the skull.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号