首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three potential routes to generation of reactive oxygen species (ROS) from α-tocopherolquinone (α-TQ) have been identified. The quinone of the water-soluble vitamin E analogue Trolox C (Trol-Q) is reduced by hydrated electron and isopropanol α-hydroxyalkyl radical, and the resulting semiquinone reacts with molecular oxygen to form superoxide with a second order rate constant of 1.3 × 108 dm3/mol/s, illustrating the potential for redox cycling. Illumination (UV-A, 355 nm) of the quinone of 2,2,5,7,8-pentamethyl-6-hydroxychromanol (PMHC-Q) leads to a reactive short-lived (ca. 10? 6 s) triplet state, able to oxidise tryptophan with a second order rate constant greater than 109 dm3/mol/s. The triplet states of these quinones sensitize singlet oxygen formation with quantum yields of about 0.8. Such potentially damaging reactions of α-TQ may in part account for the recent findings that high levels of dietary vitamin E supplementation lack any beneficial effect and may lead to slightly enhanced levels of overall mortality.  相似文献   

2.
3.
The reactivity of Br(-) and Cl(-) with triplet of anionic 6-chloropicolinic acid (pH = 5.4) and with triplets of 6-chloro and 6-bromopicolinic acids in zwitterionic forms (pH = 0.9) was studied by laser flash photolysis and steady-state irradiation. Br(-) was found to trap the three triplets. Triplet lifetime measurements gave quenching rate constants of 8 x 10(8) mol(-1) dm(3) s(-1) for the zwitterion of 6-chloropicolinic acid and of 3.4 x 10(5) mol(-1) dm(3) s(-1) for the anionic counterpart. No secondary transient species were observed indicating that the charge transfer intermediates are subject to dissipative processes. Cl(-) trapped triplet of zwitterions only, and reactions were found to be associated with a high quantum yield of radicals. The photolysis of 6-bromopicolinic acid photolysis was drastically enhanced by Cl(-), 6-chloropicolinic acid being produced with a chemical yield of about 90%. The 6-bromo-2-carboxypyridinyl radical could be characterized (lambda(max)/nm = 318 with shoulder at 370 nm and epsilon/mol(-1) dm(3) cm(-1) = 8100).  相似文献   

4.
Photosynthesis operates in a constantly shifting balance between efficient capture of solar energy and its rapid dissipation when captured in excess. In an attempt to better understand the role of alpha-tocopherol in plant photoprotection, we examined the changes in alpha-tocopherol quinone (alpha-TQ), in parallel with those of other low-molecular-weight antioxidants, in rosemary plants exposed to water deficit during a Mediterranean winter. Relative leaf water content (RWC) decreased from about 85% to approximately 65% in drought, but plants did not show symptoms of oxidative damage, as indicated by constant Fv/Fm ratios and malondialdehyde (MDA) levels. alpha-TQ was present at concentrations of 20 mmol per 100 mol of chlorophyll, and represented less than 1% of total tocopherol content in non-stressed leaves. Although alpha-tocopherol levels were not significantly altered, alpha-TQ reached up to 36 mmol per 100 mol of chlorophyll under stress (under both high light and after exposure to increasing water deficit at lower light intensities). Furthermore, both alpha-TQ and xanthophyll cycle de-epoxidation were strongly negatively correlated with the relative efficiency of photosystem II photochemistry (phiPSII) at midday. The biological significance of alpha-tocopherol and alpha-TQ in the network of photo- and antioxidative protection mechanisms evolved by plants to withstand stress is discussed.  相似文献   

5.
As a powerful natural antioxidant, lipoic acid exerts significant antioxidant activities in vivo and in vitro by deactivation of reactive oxygen and nitrogen species. In this study we present a novel synergistic interaction of lipoic acid with other endogenous or exogenous antioxidants. Antioxidants vitamins C and E analogue (Trolox C) and hydroxycinnamic acid derivatives were found to recycle lipoic acid by donating electrons to lipoic acid radical cations, thereby increasing the antioxidant capacity of lipoic acid in vivo and in vitro. The rate constant of the electron transfer is in the order 10(9)dm(3)mol(-1)s(-1), close to the diffusion-controlled limit, and transfer quantum yield is above 95%.  相似文献   

6.
Getoff N 《Radiation research》2000,154(6):692-696
The spectroscopic and kinetic characteristics of beta-carotene radical cation (beta-carotene(.+)) were studied by pulse radiolysis in aerated DMSO solution. The buildup of beta-carotene(.+) with k(1) = (4.8 +/- 0.2) x 10(8) dm(3) mol(-1) s(-1) [lambda(max) = 942 nm, epsilon = (1.6 +/- 0.1) x 10(4) dm(3) mol(-1) cm(-1)] results from an electron transfer from beta-carotene to DMSO(.+). The beta-carotene(.+) species decays exclusively by first-order reaction, k = (2.1 +/- 0.1) x 10(3) s(-1), probably by two processes: (1) at low substrate concentration by hydrolysis and (2) at high concentrations also by formation of dimer radical cation (beta-carotene)(2)(.+). Under the experimental conditions, a small additional beta-carotene triplet-state absorption ((3)beta-carotene) in the range of 525 to 660 nm was observed. This triplet absorption is quenched by oxygen (k = 7 x 10(4) s(-1)), resulting in singlet oxygen ((1)O(2)), whose reactions can also lead to additional formation of beta-carotene(.+).  相似文献   

7.
The effects of dietary vitamin E deficiency on mouse cerebral membrane order and oxygen reactive species were studied. Quantitation of vitamin E levels in several brain regions showed greatest deficiencies in striatum and cerebellum, followed by substantia nigra, and cortex. Vitamin E deficiency increased central-core membrane order in cerebral P2 fraction, but was without effect in the superficial hydrophilic membrane domain. Oxygen radical formation was studied using the probe 2',7'-dichlorofluorescein diacetate. Basal generation rates of oxygen reactive species were 2.5-fold higher when compared to control animals. While hepatic levels of vitamin E are much more reduced than brain levels, in deficient mice, the rate of oxygen radical formation in the liver was unaltered. This implies an special susceptibility of the brain to deficiency of this lipophilic antioxidant vitamin. Data demonstrate that endogenous levels of free radical scavengers, such as vitamin E, may play an important role in maintaining basal oxygen radical levels and membrane integrity. The dietary vitamin E depletion paradigm suggests that a relation exists between elevated levels of oxygen radicals and more rigid hydrophobic central-cores in cerebral membranes, effects that may play a role in mechanisms underlying the neuropathologic lesions observed following vitamin E deficiency.  相似文献   

8.
Abstract Antioxidant activity of gentisic acid has been studied using fast chemical kinetics and two in vitro models, namely the isolated rat liver mitochondria (RLM) and the human erythrocytes. The presence of gentisic acid (GA) during irradiation significantly reduced the levels of gamma radiation induced damages to lipids and proteins in RLM. Further, GA imparted protection to the human erythrocytes against exposure to gamma radiation. Molecular mechanism of free radical scavenging reactions has been evaluated with the help of rate constants and transients obtained from gentisic acid using pulse radiolysis technique. GA efficiently scavenged hydroxyl radical (k = 1.1 × 10(10) dm(3)mol(-1)s(-1)) to produce reducing adduct radical (~76%) and oxidizing phenoxyl radical (~24%). GA has also scavenged organohaloperoxyl radical (k = 9.3 × 10(7) dm(3) mol(-1)s(-1)). Ascorbate has been found to repair phenoxyl radical of GA (k = 1.0 × 10(7) dm(3)mol(-1)s(-1)). Redox potential value of GA(?)/GA couple (0.774 V vs NHE) obtained by cyclic voltammetry is less than those of physiologically important oxidants, which supports the observed antioxidant capacity of GA. We, therefore, propose that the antioxidant and radioprotective properties of GA are exerted by its phenoxyl group.  相似文献   

9.
By using a fast reaction technique which employs H2S gas as a fast-reacting chemical repair agent, it is possible to measure the competition kinetics between chemical repair reactions and oxygen fixation reactions in model DNA and cellular systems. In plasmid pBR322 DNA irradiated with electrons, we have compared the oxygen fixation reactions of the free radical precursors that lead to the production of single-strand (SSBs) and double-strand breaks (DSBs). For the oxygen-dependent fixation of radical damage leading to SSBs, a second-order rate constant of 2.3 x 10(8) dm3 mol(-1) s(-1) was obtained compared to 8.9 x 10(7) dm3 mol(-1) s(-1) for DSBs. The difference is in general agreement with predictions from a multiple-radical model where the precursor of a DSB originates from two radicals. The fixation of this precursor by oxygen will require both radicals to be fixed for the DSB to be formed, which will have slower kinetics than that of single free-radical precursors of SSBs.  相似文献   

10.
Baicalein (5, 6, 7-trihydroxy-2-phenyl-4H-1-benzopyran-4-one), a naturally occurring flavone present in some of the medicinal plants is known for its potential therapeutic effects, such as cardioprotective, anticancer and anti-inflammatory properties. However, detailed role and mechanisms behind its protective properties against different generators for oxidative stress have not been examined. In the present study, we investigated the possible protective ability of baicalein against the membrane damage caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS) and the mechanisms involved using pulse radiolysis technique. Baicalein offered efficient protection even at a concentration of 10 microM towards membrane damage caused by lipid peroxidation induced by the gamma-radiation, peroxyl radicals, ascorbate-Fe2+ and peroxynitrite in rat liver mitochondria and heart homogenate. To elucidate its reaction mechanisms with biologically relevant radicals, transient absorption spectroscopy employing pulse radiolysis technique was used. Baicalein showed fairly high rate constants (3.7 x 10(9), 1.3 x 10(9) and 8.0 x 10(8) dm3 mol(-1) s(-1) for hydroxyl, azidyl and alkylchloroperoxyl radicals, respectively), suggesting that baicalein can act as an effective scavenger of these radicals. In each case, the phenoxyl radical of baicalein was generated. Thus, it was evident that the phenolic moiety of baicalein was responsible for the free radical scavenging process. Baicalein also reacts with linoleic acid peroxyl radical (LOO*), indicating its ability to act as a chain breaking antioxidant. Peroxynitrite-mediated radicals were shown to be reactive towards baicalein and the bimolecular rate constants were 2.5 x 10(7) and 3 x 10(8) dm3 mol(-1) s(-1) for *NO2 and CO3*(-) radicals, respectively. In conclusion, our results revealed the potential of baicalein in protecting mitochondrial membrane against oxidative damage induced by the four different agents. We propose that the protective effect is mediated via scavenging of primary and secondary radicals generated during oxidative stress.  相似文献   

11.
S-Nitrosothiols serve as a good source of nitric oxide ((*)NO) mainly due to the ease of cleavage of the S-N bond which consequently produces (*)NO. The reductive decomposition of S-nitrosoglutathione (GSNO) by l-ascorbic acid (vitamin C) yields (*)NO which was monitored both electrochemically (using NO-probe) and spectrophotometrically. The rate of reaction and (*)NO release was found to be pH dependent in a manner which drastically increases with pH demonstrating that the l-ascorbic acid dianion (A(2-)) is by far the most reactive species of l-ascorbic acid (H(2)A). The derived rate expression (measuring the disappearance of the absorption at ca. 336 nm due to GSNO) was established as rate = -d[GSNO](t)/dt = ((k(a)[H(+)](2) + k(b)[H(+)]K(1) + k(c)K(1)K(2))/([H(+)](2) + K(1)[H(+)] + K(1)K(2)))[GSNO](t)[H(2)A](t). k(a), k(b), and k(c) are second-order rate constants via the H(2)A, HA(-), and A(2-) pathways, respectively, while K(1) and K(2) represent the first and second equilibrium dissociation constants of l-ascorbic acid. There is little or no reaction at low pH (below 5.5), where H(2)A is a predominant species, and as a result the rate constant (k(a)) via this route was found to be negligible. At 25 degrees C, k(b) = 5.23 +/- 1.47 x 10(-3) dm(3) mol(-1) s(-1) and k(c) = 1.22 +/- 0.04 x 10(3) dm(3) mol(-1) s(-1), activation parameters DeltaH(double dagger)(b) = 54.4 +/- 4.3 kJ mol(-1), DeltaS(double dagger)(b) = -106 +/- 16 J K(-1) mol(-1), DeltaH(double dagger)(c) = 80.5 +/- 7.5 kJ mol(-1), DeltaS(double dagger)(c) = 84 +/- 7 kJ mol(-1). The experimental rate and activation parameters suggest that this redox process follows an outer-sphere electron transfer mechanism. GSNO is relatively stable in the dark, aqueous medium and even in the presence of trace quantities of Cu(2+). Induced catalytic decomposition of GSNO only becomes significant above ca. 10 microM Cu(2+), but after this it shows linear dependency. To nullify any catalysis by Cu(2+) or any other transition metal ions, EDTA was added to all experimental reactions except those where catalysis by Cu(2+) was studied.  相似文献   

12.
D C Liebler  J A Burr 《Biochemistry》1992,31(35):8278-8284
Incubation of phosphatidylcholine liposomes containing the biological antioxidant alpha-tocopherol (alpha-TH) with xanthine, xanthine oxidase, and FeCl2 caused alpha-TH oxidation to alpha-tocopherol quinone (alpha-TQ) and 8a-hydroperoxytocopherone (2). In addition, 4a,5-epoxy-8a-hydroperoxytocopherone (3), 7,8-epoxy-8a-hydroperoxytocopherone (4), and their respective hydrolysis products 2,3-epoxy-alpha-tocopherol quinone (6) and 5,6-epoxy-alpha-tocopherol quinone (7) also were formed. alpha-TQ was the major product at less than 20% alpha-TH oxidation, whereas epoxides were the predominant products when alpha-TH was more extensively oxidized. 8a-(Alkyldioxy)tocopherones 1, which are formed when peroxyl radicals oxidize alpha-TH in other systems and which are precursors to alpha-TQ, were not found. 8a-Hydroxytocopherone (5), rather than 8a-(alkyldioxy)tocopherones 1, appeared to be the precursor to alpha-TQ. Approximately 30% of the alpha-TH consumed was regenerated by treatment of samples with ascorbic acid or nordehydroguaiaretic acid (NDGA) at pH 3, but not at pH 7. The stability of the ascorbic acid- and NDGA-reducible species and pH dependence for regeneration matched those of 8a-hydroxytocopherone (5) and contrasted with the properties of the tocopheroxyl radical (alpha-T.). Incubation of liposomes containing alpha-TH with the diphenylpicrylhydrazyl (DPPH) radical, which oxidizes alpha-TH to alpha-T. in high yield, formed an ascorbic acid-reducible species with properties identical to those of compound 5. The results indicate that phospholipid peroxyl radicals oxidize alpha-T. to epoxides, 8a-hydroperoxytocopherone (2), and the tocopherone cation (alpha-T+), which hydrolyzes to 5, the immediate precursor to alpha-TQ.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Antioxidant properties of melatonin: a pulse radiolysis study   总被引:5,自引:0,他引:5  
Various one-electron oxidants such as OH*, tert-BuO*, CCl3OO*, Br2*- and N3*, generated pulse radiolytically in aqueous solutions at pH 7, were scavenged by melatonin to form two main absorption bands with lambda(max) = 335 nm and 500 nm. The assignment of the spectra and determination of extinction coefficients of the transients have been reported. Rate constants for the formation of these species ranged from 0.6-12.5x10(9) dm3 mol(-1) s(-1). These transients decayed by second order, as observed in the case of Br2*- and N3* radical reactions. Both the NO2* and NO* radicals react with the substrate with k = 0.37x10(7) and 3x10(7) dm3 mol(-1) s(-1), respectively. At pH approximately 2.5, the protonated form of the transient is formed due to the reaction of Br2*- radical with melatonin, pKa ( MelH* <=> Mel* + H+) = 4.7+/-0.1. Reduction potential of the couple (Mel*/MelH), determined both by cyclic voltammetric and pulse-radiolytic techniques, gave a value E(1)7 = 0.95+/-0.02 V vs. NHE. Repair of guanosine radical and regeneration of melatonin radicals by ascorbate and urate ions at pH 7 have been reported. Reactions of the reducing radicals e(aq)- and H* atoms with melatonin have been shown to occur at near diffusion rates.  相似文献   

14.
Vitamin E offers protection against oxidative stress and is an efficient quencher of singlet oxygen. A recent report suggests that photo-excitation of vitamin E results in the formation of a triplet state (Naqvi et al. Photochem Photobiol Sci 2, 381 (2003)). This leads to the possibility of the triplet state of vitamin E being able to sensitize singlet oxygen and if this is the case it would be counter productive in terms of the biological protective function of vitamin E. We report the production of singlet oxygen, detected by 1270 nm luminescence, from pulsed laser excitation (308 nm) of vitamin E and an analogue, 2,2,5,7,8-pentamethyl-6-hydroxy-chroman (PMHC), with quantum yields between ∼0.1 and 0.2. The luminescence was identified as singlet oxygen from self-quenching by vitamin E with solvent-dependent rate constants similar to published values. Whilst the beneficial antioxidant aspects of vitamin E are well established, these results indicate that vitamin E when directly excited can sensitize singlet oxygen formation and may, therefore, be capable of inducing biochemical and biological damage. The results are discussed in relation to recent reports on the deleterious effects of vitamin E dietary supplementation and pro-oxidant effects of vitamin E.  相似文献   

15.
Vitamin E offers protection against oxidative stress and is an efficient quencher of singlet oxygen. A recent report suggests that photo-excitation of vitamin E results in the formation of a triplet state (Naqvi et al. Photochem Photobiol Sci 2, 381 (2003)). This leads to the possibility of the triplet state of vitamin E being able to sensitize singlet oxygen and if this is the case it would be counter productive in terms of the biological protective function of vitamin E. We report the production of singlet oxygen, detected by 1270 nm luminescence, from pulsed laser excitation (308 nm) of vitamin E and an analogue, 2,2,5,7,8-pentamethyl-6-hydroxy-chroman (PMHC), with quantum yields between ~0.1 and 0.2. The luminescence was identified as singlet oxygen from self-quenching by vitamin E with solvent-dependent rate constants similar to published values. Whilst the beneficial antioxidant aspects of vitamin E are well established, these results indicate that vitamin E when directly excited can sensitize singlet oxygen formation and may, therefore, be capable of inducing biochemical and biological damage. The results are discussed in relation to recent reports on the deleterious effects of vitamin E dietary supplementation and pro-oxidant effects of vitamin E.  相似文献   

16.
Using a mitochondria-targeted vitamin E (Mito-Vit-E) in a rat pneumonia-related sepsis model, we examined the role of mitochondrial reactive oxygen species in sepsis-mediated myocardial inflammation and subsequent cardiac contractile dysfunction. Sepsis was produced in adult male Sprague-Dawley rats via intratracheal injection of S. pneumonia (4 × 10(6) colony formation units per rat). A single dose of Mito-Vit-E, vitamin E, or control vehicle, at 21.5 μmol/kg, was administered 30 min postinoculation. Blood was collected, and heart tissue was harvested at various time points. Mito-Vit-E in vivo distribution was confirmed by mass spectrometry. In cardiac mitochondria, Mito-Vit-E improved total antioxidant capacity and suppressed H(2)O(2) generation, whereas vitamin E offered little effect. In cytosol, both antioxidants decreased H(2)O(2) levels, but only vitamin E strengthened antioxidant capacity. Mito-Vit-E protected mitochondrial structure and function in the heart during sepsis, demonstrated by reduction in lipid and protein oxidation, preservation of mitochondrial membrane integrity, and recovery of respiratory function. While both Mito-Vit-E and vitamin E suppressed sepsis-induced peripheral and myocardial production of proinflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6), Mito-Vit-E exhibited significantly higher efficacy (P < 0.05). Stronger anti-inflammatory action of Mito-Vit-E was further shown by its near-complete inhibition of sepsis-induced myeloperoxidase accumulation in myocardium, suggesting its effect on neutrophil infiltration. Echocardiography analysis indicated that Mito-Vit-E ameliorated cardiac contractility of sepsis animals, shown by improved fractional shortening and ejection fraction. Together, our data suggest that targeted scavenging of mitochondrial reactive oxygen species protects mitochondrial function, attenuates tissue-level inflammation, and improves whole organ activities in the heart during sepsis.  相似文献   

17.
Enterobacter cloacae NAD(P)H:nitroreductase (NR; EC 1.6.99.7) catalyzes two-electron reduction of a series of quinoidal compounds according to a "ping-pong" scheme, with marked substrate inhibition by quinones. The steady-state catalytic constants (k(cat)) range from 0.1 to 1600s(-1), and bimolecular rate constants (k(cat)/K(m)) range from 10(3) to 10(8)M(-1)s(-1). Quinones, nitroaromatic compounds and competitive to NADH inhibitor dicumarol, quench the flavin mononucleotide (FMN) fluorescence of nitroreductase. The reactivity of NR with single-electron acceptors is consistent with an "outer-sphere" electron transfer model, taking into account high potential of FMN semiquinone/FMNH(-) couple and good solvent accessibility of FMN. However, the single-electron acceptor 1,1(')-dibenzyl-4,4(')-bipyridinium was far less reactive than quinones possessing similar single-electron reduction potentials (E(1)(7)). For all quinoidal compounds except 2-hydroxy-1,4-naphthoquinones, there existed parabolic correlations between the log of rate constants of quinone reduction and their E(1)(7) or hydride-transfer potential (E(7)(Q/QH(-))). Based on pH dependence of rate constants, a single-step hydride transfer seems to be a more feasible quinone reduction mechanism. The reactivities of 2-hydroxy-1,4-naphthoquinones were much higher than expected from their reduction potential. Most probably, their enhanced reactivity was determined by their binding at or close to the binding site of NADH and dicumarol, whereas other quinones used the alternative, currently unidentified binding site.  相似文献   

18.
A method was developed for the quantification of 1-4 ring quinones in urine samples using liquid-liquid extraction followed by analysis with gas chromatography-mass spectrometry. Detection limits for the ten quinones analyzed are in the range 1-2 nmol dm(-3). The potential use of this approach to monitor urinary quinone levels was then evaluated in urine samples from both Sprague-Dawley rats and human subjects. Rats were exposed to 9,10-phenanthraquinone (PQ) by both injection and ingestion (mixed with solid food and dissolved in drinking water). Urinary levels of PQ were found to increase by up to a factor of ten compared to control samples, and the levels were found to depend on both the dose and duration of exposure. Samples were also collected and analyzed periodically from human subjects over the course of six months. Eight quinones were detected in the samples, with levels varying from below the detection limit up to 3 μmol dm(-3).  相似文献   

19.
Cyclosporin A (CsA) is a potent immunosuppressive agent, and can cause severe adverse effects including nephrotoxicity partly due to generation of reactive oxygen species (ROS). Glucocorticoids, which are widely used in combination with CsA, have been shown to reduce oxidative injuries in various cells, but its mechanism is not understood well. To investigate the effects of prednisolone (Pd) on CsA-induced cellular damage and ROS generation in Madin-Darby canine kidney (MDCK) tubular epithelial cells, cells were treated with CsA, CsA plus Pd, or CsA plus vitamin E. Pretreatment with Pd protected cells from CsA-induced apoptosis but not from G(0)/G(1) cell cycle arrest even at its maximal protective concentration (30 microM), whereas vitamin E almost completely inhibited both CsA-induced apoptosis and cell cycle arrest at 1 microM concentration. In addition, Pd reduced the amount of CsA-induced ROS and showed partly restored catalase which was down-regulated by 10 microM CsA at both the mRNA and protein levels. Vitamin E completely abolished CsA-induced ROS generation and catalase attenuation at 10 microM concentration. Finally, the effects of 1 microM vitamin E on CsA-induced ROS and apoptosis as well as cell cycle arrest were similar to those of 30 microM Pd. We conclude that, in MDCK cells, Pd protects against CsA-induced cytotoxicity by suppressing ROS generation, although its protective effect is weaker than that of vitamin E.  相似文献   

20.
Diabetes mellitus is associated with diabetic impairment of testicular function, ultimately leading to reduced fertility. Its etiology may involve oxidative damage by reactive oxygen substances, and protection against this damage can be offered by antioxidant supplementation. The aim of this study was to investigate the effects of intraperitoneal administration of vitamin C and E, selenium (Se), and vitamin E plus Se (COM) on concentrations of lipid peroxide (as malondialdehyde; MDA), reduced glutathione (GSH), and vitamin E concentrations and glutathione peroxidase (GSH-Px) activity in the testes of rats with diabetes induced by streptozotocin (STZ). Sixty groups were used (10 animals each) and these animals were initially allocated to two groups: control group and diabetic group. The diabetic group was subdivided into five groups as follows: diabetic control (DC), vitamin E, Se, COM, and vitamin C. Animals in the DC group and vitamin C, vitamin E, Se, and COM groups were made diabetic by the injection of STZ on 4 d after an injection of vitamins C and E, Se, and COM. Those vitamins and Se were also administered for 21 consecutive days. The MDA, vitamin E, GSH levels, and GSH-Px activities in testes were determined. Although the vitamin E concentration was higher in the control than in the DC group, the MDA levels were found to be lower in the control than in the DC group. The MDA levels in the testes samples of vitamin C, vitamin E, Se, and COM groups were lower than the DC group. However, GSH-Px activity and GSH levels in the testes were not significantly different between the control and DC groups. Vitamin E concentrations in the vitamin C, vitamin E, Se, and COM groups and GSH levels and GSH-Px activities in the Se, COM, and vitamin C groups were higher than either the control or DC group. The results indicate that reactive oxygen substances may be involved in possible testicular complications in diabetes of rats. Administration of vitamins C and E and Se reduced the testicular lipid peroxidation; these vitamins and Se had significant protective effects on testes of rats against oxidative damage in diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号