首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A role for retinoic acid in regulating the regeneration of deer antlers   总被引:14,自引:0,他引:14  
Deer antlers are the only mammalian organs that can be repeatedly regenerated; each year, these complex structures are shed and then regrow to be used for display and fighting. To date, the molecular mechanisms controlling antler regeneration are not well understood. Vitamin A and its derivatives, retinoic acids, play important roles in embryonic skeletal development. Here, we provide several lines of evidence consistent with retinoids playing a functional role in controlling cellular differentiation during bone formation in the regenerating antler. Three receptors (alpha, beta, gamma) for both the retinoic acid receptor (RAR) and retinoid X receptor (RXR) families show distinct patterns of expression in the growing antler tip, the site of endochondral ossification. RAR alpha and RXR beta are expressed in skin ("velvet") and the underlying perichondrium. In cartilage, which is vascularised, RXR beta is specifically expressed in chondrocytes, which express type II collagen, and RAR alpha in perivascular cells, which also express type I collagen, a marker of the osteoblast phenotype. High-performance liquid chromatography analysis shows significant amounts of Vitamin A (retinol) in antler tissues at all stages of differentiation. The metabolites all-trans-RA and 4-oxo-RA are found in skin, perichondrium, cartilage, bone, and periosteum. The RXR ligand, 9-cis-RA, is found in perichondrium, mineralised cartilage, and bone. To further define sites of RA synthesis in antler, we immunolocalised retinaldehyde dehydrogenase type 2 (RALDH-2), a major retinoic acid-generating enzyme. RALDH-2 is expressed in the skin and perichondrium and in perivascular cells in cartilage, although chondroprogenitors and chondrocytes express very low levels. At sites of bone formation, differentiated osteoblasts which express the bone-specific protein osteocalcin express high levels of RALDH2. The effect of RA on antler cell differentiation was studied in vitro; all-trans-RA inhibits expression of the chondrocyte phenotype, an effect that is blocked by addition of the RAR antagonist Ro41-5253. In monolayer cultures of mesenchymal progenitor cells, all-trans-RA increases the expression of alkaline phosphatase, a marker of the osteoblastic phenotype. In summary, this study has shown that antler tissues contain endogenous retinoids, including 9-cis RA, and the enzyme RALDH2 that generates RA. Sites of RA synthesis in antler correspond closely with the localisation of cells which express receptors for these ligands and which respond to the effects of RA.  相似文献   

2.
3.
4.
Retinoic acid (RA) is an important mediator of cell differentiation. It stimulates hCG secretion by JEG-3 choriocarcinoma cells in vitro after a time lag. The first aim of this study was to characterize which types of retinoid receptors (RARs and RXRs) are present in JEG-3 cells. Using Western blot analysis and immunocytochemistry with specific antibodies as well as Northern blot analysis, we found that JEG-3 cells expressed RARα and RXRα, the latter being the predominant receptor. We then analyzed the action on cell proliferation and hCG secretion of the physiological retinoids all-trans RA (RA) and 9 cis RA as well as synthetic retinoids with specific affinity for RARα and RXRα. All these retinoids were potent inhibitors of cell growth, maximal inhibition (72 ± 2%) being observed after 4 days of treatment with Ro 25, a RXRα specific ligand. Within 24 h, 9 cis RA and Ro 25 stimulated hCG secretion, and maximal stimulation (1,472 ± 10%) occurred at 48 h with the RXRα-specific ligand. The RARα-specific ligand also stimulated hCG secretion but to a lower extend and after a delay of 48 h. These results suggest a predominant role of RXRα in mediating the biological effects of retinoids on JEG-3 cells and the possible induction by RA itself of the metabolic pathway leading to 9 cis RA. J. Cell. Physiol. 176:595–601, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
6.
In mouse embryonic cells, ligand-activated retinoic acid receptors (RARs) play a key role in inhibiting pluripotency-maintaining genes and activating some major actors of cell differentiation.To investigate the mechanism underlying this dual regulation, we performed joint RAR/RXR ChIP-seq and mRNA-seq time series during the first 48 h of the RA-induced Primitive Endoderm (PrE) differentiation process in F9 embryonal carcinoma (EC) cells. We show here that this dual regulation is associated with RAR/RXR genomic redistribution during the differentiation process. In-depth analysis of RAR/RXR binding sites occupancy dynamics and composition show that in undifferentiated cells, RAR/RXR interact with genomic regions characterized by binding of pluripotency-associated factors and high prevalence of the non-canonical DR0-containing RA response element. By contrast, in differentiated cells, RAR/RXR bound regions are enriched in functional Sox17 binding sites and are characterized with a higher frequency of the canonical DR5 motif. Our data offer an unprecedentedly detailed view on the action of RA in triggering pluripotent cell differentiation and demonstrate that RAR/RXR action is mediated via two different sets of regulatory regions tightly associated with cell differentiation status.  相似文献   

7.
8.
9.
We have previously shown that retinoic acid (RA) is able to act on the development of Leydig, Sertoli, and germ cells in the testis in culture (Livera et al., Biol Reprod 2000; 62:1303-1314). To identify which receptors mediate these effects, we have now added selective agonists and antagonists of retinoic acid receptors (RARs) or retinoid X receptors (RXRs) in the same organotypic culture system. The RAR alpha agonist mimicked most of the effects of RA on the cultured fetal or neonatal testis, whereas the RAR beta, gamma, and pan RXR agonists did not. The RAR alpha agonist decreased the testosterone production, the number of gonocytes, and the cAMP response to FSH of fetal testis explanted at 14.5 days postconception (dpc). The RAR alpha agonist disorganized the cords of the 14.5-dpc cultured testis and increased the cord diameter in cultured 3-days-postpartum (dpp) testis in the same way as RA. All these RA effects could be reversed by an RAR alpha antagonist and were unchanged by an RAR beta/gamma antagonist. The RAR beta agonist, however, increased Sertoli cell proliferation in the 3-dpp testis in the same way as RA, and this effect was blocked by an RAR beta antagonist. The RAR gamma and the pan RXR agonists had no selective effect. These results suggest that all the effects of RA on development of the fetal and neonatal testis are mediated via RAR alpha, except for its effect on Sertoli cell proliferation, which involves RAR beta.  相似文献   

10.
11.
Epstein-Barr virus (EBV) reactivation, indicated by induction of EBV early antigens from latently infected lymphoid cell lines by phorbol esters, is inhibited by retinoic acid (RA). Viral reactivation, which is triggered by the immediate-early BZLF-1 (Z) viral gene product, is repressed by retinoic acid receptors (RARs) RAR alpha and RXR alpha. These proteins negatively regulate Z-mediated transactivation of the promoter for an EBV early gene product, early antigen-diffuse (EaD). Here we confirm a direct physical interaction between the AP1-like protein Z and RXR alpha and map the domains of interaction in the Z protein and RXR alpha. The domain required for homodimerization of Z is separate from that required for its interaction with RXR alpha. Z also has the effect of repressing activation of an RAR-responsive cellular promoter (BRE). Point mutants in the dimerization domain of Z unable to interact with RXR alpha do not repress RXR alpha-mediated transactivation of BRE, the promoter for RAR beta, which suggests that interaction between the two proteins is required for this repressor effect. The domain of RXR alpha required for interaction with Z has been mapped, and is again separate from that required for homodimerization. These results indicate that a 'cross-coupling' or direct interaction between Z and RAR alpha and RXR alpha can modulate the reactivation of latent EBV infection and suggest that, reciprocally, the viral protein Z may influence cellular regulatory pathways.  相似文献   

12.
13.
14.
15.
We have previously reported that the binding site repertoires of heterodimers formed between retinoid X receptor (RXR) and either retinoic acid receptor (RAR) or thyroid hormone receptor (TR) bound to response elements consisting of directly repeated PuG(G/T)TCA motifs spaced by 1-5 bp [direct repeat (DR) elements 1-5] are highly similar to those of their corresponding DNA binding domains (DBDs). We have now mapped the dimerization surfaces located in the DBDs of RXR, RAR and TR, which are responsible for cooperative interaction on DR4 (RXR and TR) and DR5 (RXR and RAR). The D-box of the C-terminal CII finger of RXR provides one of the surfaces which is specifically required for the formation of the heterodimerization interfaces on both DR4 and DR5. Heterodimerization with the RXR DBD on DR5 specifically requires the tip of the RAR CI finger as the complementary surface, while a 7 amino acid sequence encompassing the 'prefinger region', but not the TR CI finger, is specifically required for efficient dimerization of TR and RXR DBDs on DR4. Importantly, DBD swapping experiments demonstrate not only that the binding site repertoires of the full-length receptors are dictated by those of their DBDs, but also that the formation of distinct dimerization interfaces between the DBDs are the critical determinants for cooperative DNA binding of these receptors to specific DRs.  相似文献   

16.
To study mechanisms involved in the antiestrogenic effect of retinoic acid (RA), previously described in mammalian cells, we used in vitro and in vivo approaches. One hypothesis was direct competition between nuclear receptors (ER, RAR and RXR) at the DNA level. We first showed in vitro that the RAR/RXR heterodimer could weakly bind an ERE and that retinoid receptors reduced binding of ER to an ERE. We next checked whether, in yeast, direct competition between receptors that recognize the same responsive element could be monitored in a reconstituted heterologous estrogen-responsive system, by determining the expression of a reporter gene. We then co-transformed RAR and RXR in an estrogenic responsive strain. This model demonstrated that, even though RAR/RXR was able to bind an ERE, the addition of retinoic acid had no inhibitory effect on estrogen-induced responses in this yeast system, unlike in mammalian cells. Interference between these receptors should require other factors than interactions at the ERE level. This model could be used to identify mammalian factors interacting with estrogen and retinoic acid receptors which could play a role in crosstalk between these receptors.  相似文献   

17.
18.
19.
Retinoic acid receptor (RAR), thyroid hormone receptor (T3R) and vitamin D3 receptor (VD3R) differ from steroid hormone receptors in that they bind and transactivate through responsive elements organized as direct rather than inverted repeats. We now show that recombinant RAR and T3R are monomers in solution and cannot form stable homodimeric complexes on their responsive elements. Stable binding of the receptors to their responsive elements requires heterodimerization with a nuclear factor. This auxiliary factor is tightly associated with RAR and T3R in the absence of DNA and co-purifies with both receptors. As demonstrated by extensive purification, the same auxiliary factor is required for stable DNA binding of RAR as for that of T3R; the factor also facilitates the formation of a stable VD3R-DNA complex. The auxiliary factor is identical to the retinoid X receptor alpha (RXR alpha) by biochemical and functional criteria. The identification of RXR alpha as a dimerization partner for the RARs, T3Rs and VD3R has important implications as to the function of these receptors and their ligands in development, homeostasis and neoplasia.  相似文献   

20.
Retinoic acid (RA) has been detected in the regenerating limb of the axolotl, and exogenous RA can proximalize, posteriorize, and ventralize blastemal cells. Thus, RA may be an endogenous regulatory factor during limb regeneration. We have investigated whether endogenous retinoids are essential for patterning during axolotl (Ambystoma mexicanum) limb regeneration by using retinoid antagonists that bind to specific RAR (retinoic acid receptor) or RXR (retinoid X receptor) retinoid receptor subtypes. Retinoid antagonists (Ro41-5253, Ro61-8431, LE135, and LE540) were administered to regenerating limbs using implanted silastin blocks loaded with each antagonist. The skeletal pattern of regenerated limbs treated with Ro41-5253 or Ro61-8431 differed only slightly from control limbs. Treatment with LE135 inhibited limb regeneration, while treatment with LE540 allowed relatively normal limb regeneration. When LE135 and LE540 were implanted together, regeneration was not completely inhibited and a hand-like process regenerated. These results demonstrate that interfering with retinoid receptors can modify pattern in the regenerating limb indicating that endogenous retinoids are important during patterning of the regenerating limb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号