首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phycobilisomes of the cyanobacterium Synechococcus 6301 contain C-phycocyanin and allophycocyanin in a molar ratio of approximately 3.8:1, a minor biliprotein, allophycocyanin B, and nonpigmented polypeptides of 75, 33, 30, and 27 kilodaltons. A nitrosoguanidine-induced mutant AN112 produces altered phycobilisomes with the molar ratio of C-phycocyanin to allophycocyanin reduced to approximately 1.4:1 and without any of the 33- and 30-kilodalton polypeptides. The mutant and wild type phycobilisomes contain the same molar amount of the 75- and 27-kilodalton polypeptides relative to allophycocyanin. As seen by electron microscopy, the allophycocyanin-containing core of the mutant and of the wild type phycobilisomes appears the same. In some views of the core, each of the two core units in the mutant particles can be seen to consist of four discs approximately 3 nm thick. In wild type phycobilisomes five or six rods, made up of two to six stacked discs (11.5 X 6 nm) are attached to the core. In the mutant, no such rods are seen; rather, single disc-shaped elements, ranging from two to six in number, are found attached. Spectroscopic measurements show that the assembly form of phycocyanin in the mutant phycobilisomes differs from that in the wild type particles but reveal no difference in the organization of the core elements. These results indicate that the portions of the rod substructures of wild type phycobilisomes, beyond the disc proximal to the core, are made up of phycocyanin and the 33- and 30-kilodalton polypeptides. Emission from phycocyanin is a significant component in the fluorescence from isolated Synechococcus 6301 phycobilisomes and indicates an upper limit of 94% for the efficiency of energy transfer from phycocyanin to allophycocyanin and allophycocyanin B in these particles.  相似文献   

2.
Erhard Mörschel 《Planta》1982,154(3):251-258
Phycobilisomes of red algae and cyanobacteria contain small amounts of nonpigmented polypeptides in addition to the major constituent biliprotein pigments. The localization of these polypeptides is analyzed by gel electrophoresis of phycobilisome fragments obtained by selective dissociation and subsequent separation. Five groups of biliprotein aggregates are determined, belonging to the 6, 11, 16, 18 and 23 S categories. Accessory nonpigmented high molecular weight proteins (80,000 MW) are exclusively bound to phycobilisome core fractions and thylakoids, thus apparently serving as links between the phycobilisomes and the photosynthetic units of the thylakoids. In contrast, smaller nonpigmented accessory polypeptides of 20,000 to 60,000 MW are preferably found in the peripheral biliprotein stacks. They may either form a compatible link between the phycobilisome core and periphery or bind and co-polymerize with hexameric biliproteins in the peripheral stacks to enhance or effect binding of the aggregates. Furthermore, they may determine the arrangement and composition of the phycobilisomes during development and chromatic adaptation.Abbreviations PE phycoerythrin - PEC phycoerythrocyanin - PC phycocyanin - APC allophycocyanin  相似文献   

3.
The phycobiliproteins contain a conserved unique modified residue, gamma-N-methylasparagine at beta-72. This study examines the consequences of this methylation for the structure and function of phycocyanin and of phycobilisomes. An assay for the protein asparagine methylase activity was developed using [methyl-3H]S-adenosylmethionine and apophycocyanin purified from Escherichia coli containing the genes for the alpha and beta subunits of phycocyanin from Synechococcus sp. PCC 7002 as substrates. This assay permitted the partial purification, from Synechococcus sp. PCC 6301, of the activity that methylates phycocyanin and allophycocyanin completely at residue beta-72. Using the methylase assay, two independent nitrosoguanidine-induced mutants of Synechococcus sp. PCC 7942 were isolated that do not exhibit detectable phycobiliprotein methylase activity. These mutants, designated pcm 1 and pcm 2, produce phycocyanin and allophycocyanin unmethylated at beta-72. The phycobiliproteins in these mutants are assembled into phycobilisomes and can be methylated in vitro by the partially purified methylase from Synechococcus sp. PCC 6301. The mutants produce phycobiliproteins in amounts comparable to those of wild-type and the mutant and wild-type phycocyanins are equivalent with respect to thermal stability profiles. Monomeric phycocyanins purified from these strains show small spectral shifts that correlate with the level of methylation. Phycobilisomes from the mutant strains exhibit defects in energy transfer, both in vivo and in vitro, that are also correlated with deficiencies in methylation. Unmethylated or undermethylated phycobilisomes show greater emission from phycocyanin and allophycocyanin and lower fluorescence emission quantum yields than do fully methylated particles. The results support the conclusion that the site-specific methylation of phycobiliproteins contributes significantly to the efficiency of directional energy transfer in the phycobilisome.  相似文献   

4.
Synechococcus 6301 mutant, strain AN112, produces phycobilisomes containing two major biliproteins, phycocyanin and allophycocyanin, and two major linker polypeptides of 27 and 75 kilodaltons (27K and 75K). These phycobilisomes have a molecular weight of approximately 2.5 X 10(6) and are the smallest of these particles known to date. Sucrose density gradient centrifugation of AN112 phycobilisomes partially dissociated in 50 mM N-[tris(hydroxymethyl)methyl]glycine, 5 mM CaCl2, 10% (w/v) glycerol, pH 7.8, separated three distinct fractions: (1) free trimeric biliproteins, (2) hexameric complexes of phycocyanin with 27K (11 S particles), and (3) phycobilisome subassemblies equivalent in mass to approximately 25% of the intact phycobilisome (18 S particles). The 18 S particles contained equimolar amounts of phycocyanin and allophycocyanin, which represented approximately 30 and 50%, respectively, of the content of these biliproteins in the AN112 phycobilisome. The 18 S particles also contained 75% and 100%, respectively, of 27K and 75K polypeptides; i.e. 75K was present in a 2-fold higher amount than in the intact phycobilisome. The absorption spectrum (lambda max 648 nm) of the 18 S particles was similar to that of allophycocyanin. Upon excitation at 580 nm, these particles exhibited a fluorescence emission spectrum consisting of 680 and 660 nm components, identical with that of intact phycobilisomes. The circular dichroism spectra of AN112 phycobilisomes and of the 18 S particles, in the region between 650 and 700 nm, were also very similar. Allophycocyanin B, which fluoresces at 680 nm, was found in fraction 1, and was totally absent from the 18 S particle. Thus, the long wavelength emission of the 18 S particle must have arisen from another terminal energy acceptor. The most probable candidate is the 75K polypeptide, which has been shown to carry a bilin chromophore and emit near 680 nm (Lundell, D. J., Yamanaka, G., and Glazer, A. N. (1980) J. Cell Biol. 91, 315-319). The 27K polypeptide, present in both fractions 2 and 3, was a component of different complexes in the two fractions. Fraction 2 displayed the physical and spectroscopic properties characteristic of the phycocyanin-linker complex, (alpha beta)6.27K. However, in the 18 S particle, 27K functioned in the assembly and attachment of phycocyanin trimers to a core domain. Based on the analysis of the components in fractions 1-3, a model is proposed which describes the structure of the AN112 phycobilisome, with emphasis on the roles of the linker polypeptides in the assembly of the core.  相似文献   

5.
The picosecond fluorescence and energy-transfer kinetics of isolated phycobilisomes from Synechococcus 6301 were studied under low intensity excitation. Different combinations of excitation and emission wavelengths were used in order to monitor selectively the fluorescence of the pigments phycocyanin and allophycocyanin. The relatively long overall energy-transfer time of 120 ps from the phycocyanin rods to the allophycocyanin-core is rationalized in terms of the special structure of the rods being built up of several phycocyanin hexamers in this alga species. The fluorescence lifetime of the terminal chromophores in the core was determined to be 1.8–1.9 ns depending on the excitation wavelength. A fast decay component of 20 ± 10 ps which is most prominent at short emission wavelengths is assigned to arise mainly from energy transfer within the C-phycocyanin-units from ‘sensitizing’ to ‘fluorescing’ chromophores.  相似文献   

6.
A rapid procedure is described for the isolation of "linker" polypeptides (Lundell, D. J., R. C. Williams, and A. N. Glazer. 1981. J. Biol. Chem. 256:3580-3592) of cyanobacterial phycobilisomes. The 75,000-dalton component of the core of Synechococcus 6301 phycobilisomes isolated by this procedure has been shown to carry a bilin similar in spectroscopic properties to phycocyanobilin. "Renatured" 75,000-dalton polypeptide has absorption maxima at 610 and 665 nm and a fluorescence emission maximum at 676 nm, similar to that of intact phycobilisomes. A complex of allophycocyanin and a 40,000- dalton bilin-carrying fragment of the 75,000-dalton polypeptide, obtained by limited tryptic digestion, is described. This complex, which lacks allophycocyanin B, shows a fluorescence emission maximum at 676 nm. The above data indicate that the 75,000-dalton polypeptide functions as a terminal energy acceptor in the phycobilisome.  相似文献   

7.
Disc-shaped phycobilisomes were purified from Triton X100 treated cell homogenates of the unicellular marine red alga, Rhodella violacea. Their absorption spectrum had principal maxima at 544 and 568 nm (B-phycoerythrin), 624 nm (C-phycocyanin) and a distinct shoulder at 652 nm (allophycocyanin). Intermolecular energy transfer within the phycobilisomes was clearly demonstrated by fluorescence data. Excited at 546 nm intact phycobilisomes showed a main fluorescence emission maximum at 665 nm, a minor one at 577 nm and a shoulder at 730 nm.Dissociated phycobilisomes revealed a composition of 58% B-phycoerythrin, 25% C-phycocyanin and 17% allophycocyanin under the cultural conditions used. Analytical methods resolved no other components than phycobiliproteins. In addition to the defined C-phycocyanin and two isoproteins of B-phycoerythrin a stable heterogeneous aggregate of B-phycoerythrin/C-phycocyanin was separated in considerable amounts.In the electron microscope negatively stained phycobilisomes appeared as elliptical aggregates having dimensions slightly above the values found in ultrathin sections and a detailed subunit structure. All observations and data suggest a new rhodophytan phycobilisome type in Rhodella violacea.Abbreviations PBS phycobilisome(s) - PE B-phycoerythrin - PC C-phycocyanin - APC allophycocyanin - C concentration (mg/ml) - E extinction  相似文献   

8.
Yu J  Wu Q  Mao H  Zhao N  Vermaas WF 《IUBMB life》1999,48(6):625-630
Inactivation of the chlL gene in Synechocystis sp. PCC 6803 resulted in negligible chlorophyll content when the mutant was grown in darkness. Upon phycocyanin excitation at 580 nm, the 77K fluorescence spectrum of dark-grown cells showed three peaks at 648 nm, 665 nm, and 685 nm, this last being the largest. This reflects the functional presence of major components of phycobilisomes, including phycocyanin, allophycocyanin, and the terminal emitter, and efficient energy transfer between these components. As expected, no fluorescence emission peaks corresponding to chlorophyll in the photosystems were observed. Intact phycobilisomes could be isolated from the dark-grown chlL-deletion mutant. However, the phycobilisomes had a lower efficiency of energy transfer than did those isolated from the light-grown mutant, probably because of a decreased phycobilisome stability in the absence of chlorophyll. Exposing the dark-grown chlL-deletion mutant to light triggered the biosynthesis of chlorophyll. For the first 6 h in the light, upon phycocyanin excitation at 580 nm, the 77K fluorescence emission spectrum of greening cells was identical to that of dark-grown cells that lacked significant amounts of chlorophyll. With increased chlorophyll synthesis, gradual energy transfer from phycobilisomes to the two photosystems can be demonstrated.  相似文献   

9.
In exponentially growing cells of Synechococcus sp. 6301, over 95% of the phycobiliproteins are located in phycobilisomes, and the remainder is present in the form of low molecular weight aggregates. In addition to the subunits of the phycobiliproteins (C-phycocyanin, allophycocyanin, allophycocyanin B), the phycobilisomes of this unicellular cyanobacterium contain five non-pigmented polypeptides. During the initial phase of starvation (24 h after removal of combined nitrogen from the growth medium), the phycobiliproteins in the low molecular weight fraction largely disappeared. Phycocyanin was lost more rapidly from this fraction than allophycocyanin. Simultaneous changes in the phycobilisome were (1) a decrease in sedimentation coefficient, (2) a decrease in phycocyanin: allophycocyanin ratio, (3) a shift in the fluorescence emission maximum from 673 to 676 nm, and (4) a selective complete loss of a 30,000 dalton non-pigmented polypeptide. Upon extensive nitrogen starvation (72 h), the intracellular level of phycocyanin decreased by over 30-fold. These results indicate that in the early stage of nitrogen starvation, the free phycobiliproteins of the cell are degraded, as well as a significant proportion of the phycocyanin from the periphery of the phycobilisome. However, the structures partially depleted of phycocyanin still function efficiently in energy transfer. On extended starvation, total degradation of residual phycobilisomes takes place, possibly in conjunction with the detachment of these structures from the thylakoids.None of the effects of the absence of combined nitrogen were seen when cells were starved in the presence of chloramphenicol, or in a methionine auxotroph starved for methionine.Abbreviations Used NaK-PO4 NaH2PO4 titrated with K2HPO4 to a given pH - SDS sodium dodecyl sulfate - Tris Tris(hydroxymethyl)aminomethane  相似文献   

10.
Low temperature (-196C) and room temperature (25C) absorption spectra of a family of allophycocyanin spectral forms isolated from Nostoc sp. phycobilisomes as well as of the phycobilisomes themselves have been analyzed by Gaussian curve-fitting. Allophycocyanin I and B share long wavelength components at 668 and 679 nm, bands that are absent from allophycocyanin II and III. These long wavelength absorption components are apparently responsible for the 20 nm difference between the 680 nm fluorescence emission maximum of allophycocyanin I and B and the 660 nm maximum of II and III. This indicates that allophycocyanin I and B are the final acceptors of excitation energy in the phycobilisome and the excitation energy transfer bridge linking the phycobilisome with the chlorophyll-containing thylakoid membranes. These Gaussian components are also found in resolved spectra of phycobilisomes, are arguing against this family of allophycocyanin molecules being artifactual products of protein purification procedures.  相似文献   

11.
Ora Canaani  Elisabeth Gantt 《BBA》1983,723(3):340-349
The relationship of the structure and function of the light-harvesting antennae in the blue-green alga Nostoc sp. was further elucidated by reconstitution experiments. Separated phycoerythrin-phycocyanin complexes and allophycocyanin fractions were reassociated as described earlier (Canaani, O., Lipschultz, C.A. and Gantt, E. (1980) FEBS Lett. 115, 225–229) into functional phycobilisomes with a 70% yield. Native and reassociated physobilisomes had molar ratios of about 1.4:1.1:1.0 of phycoerythrin:phycocyanin:allophycocyanim. Energy transfer was demonstrated by their fluorescence emission maximum at approx. 675 nm (20°C), and their excitation spectra (emission wavelength 680 nm) which reflected the contribution of the three constitutive phycobiliproteins. Scans of Coomassie blue-stained SDS-polyacrylamide gels showed that the polypeptide composition of native and reassociated phycobilisomes was virtually indistinguishable. Reassociation of phycobilisomes was dependent on the interaction of allophycocyanin and phycocyanin, because it could be blocked with antisera to phycocyanin and allophycocyanin, but not to phycoerythrin. In addition, reassociation did not occur when a 31 000 Da polypeptide, which is part of the phycoerythrin-phycocyanin complex, was reduced in size (by 4000 Da). These results suggest that at least two domains are required for functional reassociation of phycobilisomes involving phycocyanin and allophycocyanin.  相似文献   

12.
Phycobilisomes of the cyanobacterium Synechococcus 6301 contain the phycobiliproteins phycocyanin, allophycocyanin, and allophycocyanin B, and four major non pigmented polypeptides of 75, 33, 30, and 27 kdaltons. The molar ratio of phycocyanin to allophycocyanin in wild type phycobilisomes can be varied over about a two-fold range by alterations in culture conditions with parallel changes in the amounts of the 33 and 30 kdalton polypeptides whereas the levels of the 27 and 75 kdalton polypeptides do not vary. Two nitrosoguanidine-induced mutants, AN112 and AN135, produce abnormally small phycobilisomes, containing only 35 and 50% of the wild type level of phycocyanin. AN135 phycobilisomes contain less 33 kdalton polypeptide than wild type and the 30 kdalton polypeptide is only detected in phycobilisomes from cultures grown under conditions favoring high levels of phycocyanin. AN112 lacks both the 30 and 33 kdalton polypeptides and produces phycobilisomes of constant size and composition, independent of growth conditions. Both mutant phycobilisomes have wild type levels of 27 and 75 kdalton polypeptides relative to allophycocyanin and have normal energy transfer properties. These results indicate that modulation of phycobilisome size involves concurrent regulation of the levels of phycocyanin and of both the 30 and 33 kdalton polypeptides with no change in the composition of the allophycocyanin-containing core.Abbreviations LP cells cells grown under conditions favoring low p phycobiliprotein levels - HP cells cells grown under conditions favoring high phycobiliprotein levels - SDS sodium dodecylsulfate - EDTA ethylenediamine tetraacetic acid - NaK-PO4 NaH2PO4 titrated with K2HPO4 to a given pH A preliminary report of some of this work was presented at the 81st Annual Meeting of the American Society for Microbiology, Dallas, Texas, March 1981  相似文献   

13.
The phycobilisomes of the unicellular cyanobacterium Synechocystis 6701, grown in white light, contain C-phycoerythrin, C-phycocyanin, and allophycocyanin in a molar ration of approximately 2:2:1, and in addition, polypeptides of 99, 46, 33.5, 31.5, 30.5, and 27 x 10(3) Daltons, as well as a trace of a approximately 9 x 10(3)-dalton component. Two nitrosoguanidine-induced mutants of this organism produce aberrant phycobilisomes. Crude cell extracts of these mutants, 6701-NTG25 and NTG31, contain phycoerythrin, phycocyanin, and allophycocyanin in a molar ration of 1:5:1:1 and 0.55:0.3:1.0, respectively. The phycobilisomes from both mutants lack the 33.5 x 10(3)-dalton polypeptide. Wile-type phycobilisomes consist of a core composed of an equilateral array of three cylindrical elements surrounded by six rods in a fanlike arrangement. The rods are made up of stacked disks, 11 nm in diameter and 6 nm thick. In phycobilisomes of mutant 6701-NTG25, numerous particles with fewer than six rods are seen. Mutant 6701-NTG31 produces incomplete structures that extend from triangular core particles, through cores with one or two attached rods, to cores with as many as five rods. The structure of the core appears unaltered throughout. The amount of phycocyanin (relative to allophycocyanin) appears to determine the number of rods per core. A common assembly form seen in 6701-NTG31 is the core with two rods attached at opposite sides. From observations of this form, it is concluded that the core elements are cylindrical, with a height of 14 nm and a diameter of 11 nm. No consistently recognizable structural details are evident within the core elements.  相似文献   

14.
Synechococcus sp. PCC 7002 (Agmenellum quadruplicatum PR6) genes encoding two highly conserved phycobilisome core polypeptides, a small linker polypeptide (LC8, apcC) and the allophycocyanin-B alpha-subunit (alpha APB, apcD), respectively, were interrupted by insertion of restriction fragments carrying the neomycin phosphotransferase gene of Tn5. The interrupted genes were used to transform Synechococcus sp. PCC 7002 to kanamycin resistance. The apcC- mutant assembled phycobilisomes lacking the LC8 polypeptide and the apcD- mutant assembled phycobilisomes lacking alpha APB. No other differences between the compositions of the mutant and wild-type phycobilisomes were detected. The apcC- strain grew about 25% more slowly than the wild-type, and its phycobilisomes dissociated more rapidly in 0.33 M Na/K-PO4 (pH 8.0) or in 0.75 M Na/K-PO4 at pH 8.0, at 40 degrees C, than did those of the wild-type. The phycobilisomes of this mutant were indistinguishable from those of the wild-type with respect to absorption and circular dichroism spectra, as well as time-resolved fluorescence emission. Steady-state emission spectra indicate a small decrease in long wavelength (680 nm) emission from the apcC- phycobilisomes and a complementary increase in shorter wavelength (665 nm) emission, relative to wild-type phycobilisomes. Strain apcD- phycobilisomes appear to be functionally indistinguishable from those of the wild-type, in spite of the absence of the two alpha APB subunits which bear terminal acceptor bilins. The only spectroscopic difference was seen in the steady-state fluorescence emission, for which the emission of the mutant was about 15% higher than that of the wild-type and was slightly blue-shifted. A phenotype has yet to be found for the apcD- mutation.  相似文献   

15.
We have identified the function of the `extra' polypeptides involved in phycobilisome assembly in Nostoc sp. These phycobilisomes, as those of other cyanobacteria, are composed of an allophycocyanin core, phycoerythrin- and phycocyanin-containing rods, and five additional polypeptides of 95, 34.5, 34, 32, and 29 kilodaltons. The 95 kilodalton polypeptide anchors the phycobilisome to the thylakoid membrane (Rusckowski, Zilinskas 1982 Plant Physiol 70: 1055-1059); the 29 kilodalton polypeptide attaches the phycoerythrin- and phycocyanin-containing rods to the allophycocyanin core (Glick, Zilinskas 1982 Plant Physiol 69: 991-997). Two populations of rods can exist simultaneously or separately in phycobilisomes, depending upon illumination conditions. In white light, only one type of rod with phycoerythrin and phycocyanin in a 2:1 molar ratio is synthesized. Associated with this rod are the 29, 32, and 34 kilodalton colorless polypeptides; the 32 kilodalton polypeptide links the two phycoerythrin hexamers, and the 34 kilodalton polypeptide attaches a phycoerythrin hexamer to a phycocyanin hexamer. The second rod, containing predominantly phycocyanin, and the 34.5 and 29 kilodalton polypeptides, is synthesized by redlight-adapted cells; the 34.5 kilodalton polypeptide links two phycocyanin hexamers. These assignments are based on isolation of rods, dissociation of these rods into their component biliproteins, and analysis of colorless polypeptide composition, followed by investigation of complexes formed or not formed upon their recombination.  相似文献   

16.
Allophycocyanin was isolated from dissociated phycobilisomes from Nostoc sp. and was separated into allophycocyanin I, II, III, and B as described elsewhere. If the separation of the proteins following phycobilisome isolation is done in the presence of the protease inhibitor, phenylmethylsulfonylfluoride, associated with allophycocyanin I are two colored polypeptides of 95 kilodalton (kD) and 80 kD, belonging to the class of Group I polypeptides as defined by Tandeau de Marsac and Cohen-Bazire (Proc Natl Acad Sci USA 1977 74: 1635-1639). Allophycocyanin I has a fluorescence maximum of 680 nanometers as do intact phycobilisomes and has thus been suggested to be the final emitter of excitation energy in phycobilisomes. Thylakoid membranes washed in low ionic strength buffer containing phenylmethylsulfonylfluoride lose all biliproteins, but retain the 95 kD and 80 kD polypeptides. As suggested by Tandeau de Marsac and Cohen-Bazire, these are likely to be the polypeptides involved in binding the phycobilisome to the membrane. As these polypeptides are isolated with allophycocyanin I, structural evidence is provided for placing allophycocyanin I as the bridge between the phycobilisome and the membrane. These Group I polypeptides and the 29 kD polypeptide (involved in rod attachment to the APC core) are particularly susceptible to proteolytic breakdown. It is thought that in vivo the active protease may be selectively attacking these polypeptides to detach the phycobilisome from the membrane and release the phycoerythrin and phycocyanin containing rods from the allophycocyanin core for greater susceptibility of the biliproteins to protease attack.  相似文献   

17.
The dissociation products of isolated phycobilisomes of Mastigocladus laminosus were separated and analyzed by ultracentrifugation and, in part, by isoelectric focusing. With the exception of the allophycocyanin core, the sedimentation constants of peripheral phycocyanin- and phycoerythrocyanin-phycocyanin complexes lay in the range of 6 to 17S. The latter was represented by a 17S aggregate of two hexameric phycocyanins (dodecamer, dipartite unit). A complex with an absorption maximum at 610 nm (phycocyanin) and a shoulder at 580 nm (phycoerythrocyanin), a fluorescence emission maximum at 645 nm and a sedimentation constant of 11 S is described as a heterogeneously composed hexamer of ()3-phycoerythrocyanin-()3-phycocyanin. It was stable under extended dissociation in the cold and under isoelectric focusing. An aggregate of 14 S with an absorption maximum at 576 nm and a shoulder in the fluorescence emission spectrum at 625 nm (phycoerythrocyanin) in addition to the maximum at 645 nm (phycocyanin) is interpreted as a polar phycoerythrocyanin/ phycoerythrocyanin-phycocyanin complex. Combining these complexes with phycocyanin dodecamers creates peripheral rods of the phycobilisome. A proposal of the phycobiliprotein distribution within the phycobilisome of M. laminosus is presented.Abbreviations APC allophycocyanin - PC phycocyanin - PE phycoerythrin - PEC phycoerythrocyanin  相似文献   

18.
19.
Phycobilisomes isolated from actively growing Synechocystis sp. strain 6308 (ATCC 27150) consist of 12 polypeptides ranging in molecular mass from 11.5 to 95 kilodaltons. The phycobilisome anchor and linker polypeptides are glycosylated. Nitrogen starvation causes the progressive loss of phycocyanin and allophycocyanin subunits with molecular masses between 16 and 20 kilodaltons and of two linker polypeptides with molecular masses of 27 and 33 kilodaltons. Nitrogen starvation also leads to enrichment of four additional polypeptides with molecular masses of 46, 53, 57, and 61 kilodaltons and a transient enrichment of 35- and 41-kilodalton polypeptides in isolated phycobilisomes. The 57-kilodalton additional polypeptide was identified by immunoblotting as the large subunit of ribulosebisphosphate carboxylase/oxygenase. Proteins with the same molecular weights as the additional polypeptides were also coisolated with the 12 phycobilisome polypeptides in the supernatant of nitrogen-replete Synechocystis thylakoid membranes extracted in high-ionic-strength buffer and washed with deionized water. These observations suggest that the additional polypeptides in phycobilisomes from nitrogen-starved cells may be soluble or loosely bound membrane proteins which associate with phycobilisomes. The composition and degree of association of phycobilisomes with soluble and adjacent membrane polypeptides appear to be highly dynamic and specifically regulated by nitrogen availability. Possible mechanisms for variation in the strength of association between phycobilisomes and other polypeptides are suggested.  相似文献   

20.
《BBA》1985,808(1):52-65
Excitation-energy-transfer kinetics in isolated phycobilisomes from the cyanobacterium Synechococcus 6301 (Anacystis nidulans) and the mutant AN 112 (rods containing one hexameric C-phycocyanin unit only) was investigated by picosecond absorption and fluorescence techniques. The different chromophores in the phycobilisomes were selectively excited. A lifetime component of about 10 ps was found for both C-phycocyanin and allophycocyanin in both types of phycobilisomes. We assign these signals to a transfer of excitation energy from sensitizing (‘s’) to fluorescing (‘f’) chromophores within C-phycocyanin and allophycocyanin units. A 10 ps component was also observed in the anisotropy relaxation measurements. The anisotropy decay is attributed mainly to differently oriented transition dipole moments of ‘s’- and ‘f’-chromophores and partially to ‘f’ → ‘f’ transfer. An absorption recovery signal of τ ≈ 90 ps at λ ≤ 630 nm in phycobilisomes of Synechococcus 6301 is reduced to 40–50 ps in AN 112 phycobilisomes. This is rationalized in terms of a decreased rod → core transfer time in the shorter rods of AN 112. The 40–50 ps lifetime of fluorescence and absorption recovery in AN 112 phycobilisomes is assigned mainly to a rate-limiting transfer step between C-phycocyanin and the allophycocyanin core. A decay component of allophycocyanin τ ≈ 50 ps was observed both in absorption recovery measurements and in fluorescence decay. It is assigned to energy transfer to the terminal chromophores. The final emitter(s) of the phycobilisomes from AN 112 have fluorescence lifetimes of 1.9 and 1.3 ns. We find a good correlation in the fluorescence kinetics between the decay times of phycocyanin and allophycocyanin and the fluorescence risetimes of the terminal emitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号